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1. INTRODUCTION

Let $G$ be a connected semisimple Lie group with finite center of non-compact type, and
$\mathfrak{D}=G/K$ the corresponding symmetric space with $K$ a maximal compact subgroup of
$G$ . Set $d=\dim_{R}(\mathfrak{D})$ . By fixing a G-invariant $\mathbb{R}$-bilinear form proportional to the Killing
form on the Lie algebra of $G$ , we endow the manifold $\mathfrak{D}$ with a G-invariant Riemannian
metric ds2. Given an arithmetic subgroup $\Gamma$ of $G$ , let $L^{2}(\Gamma\backslash \mathfrak{D})$ be the Hilbert spaoe of all
the complex valued measurable functions $\phi(\tau)$ on $\mathfrak{D}$ such that $\phi(\gamma\tau)=\phi(\tau)$ for all $\gamma\in\Gamma$

with the finite $L^{2}$-norm

$||\phi||=\{/r\backslash G|\phi(\tau)|^{2}d\mu \mathfrak{D}(\tau)\}^{1/2}$.

where $d\mu_{\Phi}$ is the volume form of $(\mathfrak{D},ds^{2})$ . Let $\overline{\Delta}_{\Gamma}$ be the self-adjoint extension of the
Laplacian of $(\mathfrak{D}, ds^{2})$ with the domain $\{L^{2}(\Gamma\backslash G)^{\infty}\}^{K}$, where $L^{2}(\Gamma\backslash G)^{\infty}$ means the smooth
vectors of the right regular representation of $G$ on $L^{2}(\Gamma\backslash G)$ . Then the space of $L^{2}$-wave
forms on $\Gamma$ of eigenvalue $\lambda$ is defined by

$A(\Gamma\backslash \mathfrak{D};\lambda)^{d}=^{ef}\{\phi\in$ Dom$(\overline{\Delta}_{\Gamma})|\overline{\Delta}_{\Gamma}\phi=\lambda\phi\}$ ,

and the set of eigenvalues of $\overline{\Delta}_{\Gamma}$ by
$\Lambda_{\Gamma}^{d}=^{ef}\{\lambda\in \mathbb{C}|A(\Gamma\backslash \mathfrak{D};\lambda)\neq\{0\}\}$ .

It is known that the space $A(\Gamma\backslash \mathfrak{D};\lambda)$ is a finite dimensional space consisting of automor-
phic forms in the sense of Harish-Chandra and that the set $\Lambda_{\Gamma}$ is a subset of non-negative
real numbers such that $\#(\Lambda_{\Gamma}\cap[0, x))<+\infty$ for any $x>0$ ([1]). Note that $0$ is the min-
imal element of $\Lambda_{\Gamma}$ with the corresponding normalized eigenfunction $\phi_{0}=(vol(\mathcal{F}_{\Gamma}))^{-1/2}$

(constant).
In order to study the distribution of eigenvalues counted with multiplicities, it is com-

mon to introduoe the counting function

$N_{\Gamma}(x):= \sum_{\lambda\in\Lambda_{\Gamma}\cap(0_{i}x)}\dim_{C}A(\Gamma\backslash \mathfrak{D};\lambda)$
, $x>0$ .

Then, by Selberg’s trace formula, one can show that the non-Euclidean analogue of Weyl’s
law for the asymptotic distribution of the eigenvalues of the Laplacian takes the fom

$N_{\Gamma}(x) \sim\frac{vo1(\Gamma\backslash \mathfrak{D})}{(4\pi)^{d/2}\Gamma(d/2+1)}x^{d/2}$ , $xarrow+\infty$

at least when the lattice $\Gamma$ is uniform or of real rank one ( $[$4$]$ , $[10|)$ . For a non-uniform
$\Gamma$ of higher rank, it gets harder to establish a similar formula. A weak fom of Weyl’s
law for cuspidal spectrum is obtained by H. Donnelly ([2]) for a general setting. $n_{ue}$
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Weyl’s law for cusp forms on $SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/SO(n)(n\geq 3)$ is proved by M\"uller ([8]); a
refined formula with error term is obtained by Lapid-M\"uller quite recently ([9]). These
asymptotic formula yield infinitely many cusp forms belonging to different eigenvalues of
the Laplacian.

Let $H\subset G$ be a closed subgroup and $\mathfrak{D}_{H}$ an H-orbit in $\mathfrak{D}$ . The integral of an automor-
phic form $f$ on $\Gamma\backslash \mathfrak{D}$ along the quotient $\Gamma\cap H\backslash \mathfrak{D}_{H}$ is often called the H-period integral of
$f$ , probably by abuse of terminology. In recent years, through an active research by many
people, it is observed that this kind of period integrals sometimes are closely related with
the special values of certain automorphic L-functions. In [11], we introduoe yet another
counting function by taking an average of norm square of H-periods of $L^{2}$-wave forms
for a symmetric subgroup $H\subset G$ , and derive its asymptotic law similar to Weyl’s law
for several examples. By our formula, we can show the existence of infinitely many $L^{2_{-}}$

wave forms with non-vanishing H-periods by assuming a subconvexity bound of certain
automorphic L-functions. This article contain a brief summary of results in [11].

The author would like to thank the organizer of the workshop, Professor Kaoru Hiraga,
for giving him an opportunity of taJk.

2. RESULTS

2.1. Let $G$ be a reductive algebraic group defined over $\mathbb{Q}$ and $G$ the identity component
of the real Lie group $G(R)$ . Let $\sigma$ be an involutive $\Phi$automorphism of $G$ and $H=G^{\sigma}$

the fixed point subgroup of $\sigma$ on $G$ . Let $\Gamma\subset G(\mathbb{Q})$ be an arithmetic lattioe in $G$ such
that $\Gamma_{H}=\Gamma\cap H$ yields a lattice of $H$ . In particular, $vol(\Gamma_{H}\backslash H)<+\infty$ . We suppose, for
simplicity, the base point $K$ of $\mathfrak{D}$ is taken so that $K_{H}=H\cap K$ is a maximal compact
subgroup of $H$ . Thus, $\mathfrak{D}_{H}=H/K_{H}$ is a symmetric space of $H$ with a natural inclusion
$\iota$ : $\mathfrak{D}_{H}rightarrow \mathfrak{D}$ . Let $ds_{H}^{2}$ be the pull back of $ds^{2}$ by $\iota$ , and $d\mu_{D_{H}}$ the volume form of
$(\mathfrak{D}_{H}, ds_{H}^{2})$ . Fix an $L^{2}$-wave form $\phi\in A(\Gamma_{H}\backslash \mathfrak{D}_{H};\mu)$ with the Laplace eigenvalue $\mu$ . Then
we make the following definition.
Deflnition: For a $\Gamma$-invariant continuous function $F$ : $\mathfrak{D}arrow \mathbb{C}$ , define the period integral
along $(\Gamma_{H}\backslash \mathfrak{D}_{H}, \phi)$ by

$\varphi_{H}^{\phi}(F)=\int_{\Gamma_{H\backslash \emptyset_{H}}}\phi\cdot(F|_{\emptyset_{H}})d\mu_{O_{\ddagger i}}$

if convergent.
From the fact we stated in the introduction, the set of eigenvalues $\Lambda_{\Gamma}$ of $\tilde{\Delta}_{\Gamma}$ can be
enumerated in a non-decreasing sequence

$0=\lambda_{0}<\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{n}\leq\cdots$

so that each $\lambda\in\Lambda_{\Gamma}$ occurs with its multiplicity $\dim_{C}\mathcal{A}(\Gamma\backslash \mathfrak{D};\lambda)$. Fix an orthonormal
system $\{F_{n}\}_{n=0}^{\infty}$ of $L^{2}$-wave forms such that $\Delta F_{n}=\lambda_{n}F_{n}$ for any $n$ . Then, our new
counting function is defined as follows.
Deflnition:

$N_{H}^{\phi}( \Gamma;x)^{d}=^{ef}\sum_{\lambda_{n}\leq x}|^{\mu_{H}}(F_{n})|^{2}$ , $x>0$ .
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2.2. Let $\mathbb{Q}\subset F\subset E$ be field extensions of finite degree. We suppose that $F$ is totally
real over $\mathbb{Q}$ of degree $d_{F}$ and that
(i) $E=F$, or
(ii) $E$ is a quadratic extension of $F$ such that $E$ is totally imaginary over $\mathbb{Q}$.

Let $\iota_{\alpha}$ : $Frightarrow \mathbb{R}(1\leq\alpha\leq d_{F})$ be the set of all the embeddings of $F$ into $\mathbb{R}$; when
$E\neq F$ , each $\iota_{\alpha}$ can be extended to embeddings $E\mapsto \mathbb{C}$ in exactly two ways, one of which
we choose once and for all and denote it by $\iota_{a}$ also.

Let $S=(s_{ij})\in GL_{m}(E)$ be a hermitian matrix $(i.e., {}^{t}\overline{S}=S)$ such that $S^{(\alpha)}$
$:=(s_{ij}^{\iota_{\alpha}})$ is

positive definite unless $\alpha=1$ in which case the signature of $S^{(1)}$ is $(p+, q-)$ with $p\geq 2$ ,
$q\geq 1$ and $p+q=m$.

Let $G={\rm Res}_{F/Q}U(S)$ be the restriction of scalars of the ‘unitary group’ of $S$ over $F$ ,
i.e.,

$G(\mathbb{Q})=\{g\in GL_{m}(E)|^{t}\overline{g}Sg=S\}$ .
Note that $G$ is an orthogonal group in the usual sense when $F=E$. Let $G^{(\alpha)}$ be the
unitary group of $S^{(\alpha)}$ . Then the $\mathbb{R}$-valued points $G(\mathbb{R})$ is decomposed as the product
$\prod_{\alpha=1}^{dp}G^{(\alpha)}$ . By the assumption on $S$ , the Lie group $G^{(\alpha)}$ for $2\leq\alpha\leq d_{F}$ is compact and
the group $G$ $:=G^{(1)}$ is isomorphic to (i) $0(p, q)$ if $F=E$, or to (ii) $U(p,.q)$ if $F\neq E$ . Let
$pr_{1}$ : $G(\mathbb{R})arrow G^{(1)}$ be the first projection in the decomposition $G(\mathbb{R})\cong\prod_{\alpha=1}^{d_{F}}G^{(\alpha)}$ .

Let $0$ be the integer ring of $E$ and $L=0^{m}$ the standard o-lattioe in $E^{m}$ , the space
of column vectors with entries in $E$ . Define $G_{Z}=\{\gamma\in G(\mathbb{Q})|\gamma L=L\}$ . Then, the
first projection $G_{Z};=pr_{1}G_{Z}$ is a lattice in $G$ which is uniform unless $d_{F}=1$ . Let
$\mathcal{L}$ be the set of lattices in $G$ commensurable to $G_{Z}$ . For an o-ideal $I\subset 0$ , the principal
congruence subgroup of level $I$ , denoted by $\Gamma(I)$ , is defined to be the kemel of the reduction
homomorphism $G_{Z}arrow$ GL$(L/IL)$ . Then $\Gamma(I)\in L$ .

Fix a non-zero vector $v\in L$ such that $S[v|^{\iota_{1}}>0$ and denote by $H$ the stabilizer of $v$ in
G. Set $H=pr_{1}H(\mathbb{R})$ .

Fix a positive definite subspace $U_{1}$ of maximal dimension for $S^{(1)}$ such that $v^{\iota_{1}}\in U_{1}$ .
Then $K=\{k\in G|kU_{1}=U_{1}\}$ is a maximal compact subgroup of $G$ such that $H\cap K$ is
maximally compact in $H$ .

For an o-ideal $I\subset 0$ , let $\delta(I)$ be the minimal norm of the vectors $(\xi^{\iota_{\alpha}})\in\alpha P(\xi\in$

$I-\{0\})$ .
2.3. Results for uniform lattices. Let us state our first result on the counting function
$N_{H}^{\phi}(\Gamma;x)$ with $\phi$ being the constant function 1 and $\Gamma\in L$ being cocompact.

Theorem 1. In the above settings, suppose $d_{F}>1$ further. Let $\{I_{n}\}$ be any sequence of
o-ideals such that $\delta(I_{n})arrow 0$ . Then there $e\dot{\alpha}sts$ some number $n_{0}$ such that the following
holds. For any $\Gamma\in g$ such that $\Gamma\subset\Gamma(I_{n})(\exists n\geq n_{0})$ ,

$N_{H}^{1}( \Gamma;x)\sim\frac{vo1(\Gamma_{H}\backslash \mathfrak{D}_{H})}{(4\pi)^{d}\Gamma(d+1)}x^{d}$ , $xarrow+\infty$ .

Here $d= \frac{1}{2}\{\dim_{R}\mathfrak{D}-\dim_{R}\mathfrak{D}_{H}\}$ .
2.4. Results for non-uniform lattices. Our second result concems a non-uniform lat-
tice inside $G=O(p+, 1-)$ . Let $F=E=\mathbb{Q}$ and $q=1$ in the notation of 2.2, and
take

$S=[_{-2^{1_{p-1}^{-2}}}]$ .
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Let $C$ be the set of all the one dimensional S-isotropic $\Phi$-subspaces $\ell\subset\Psi^{+1}$ . For $\ell\in C$ ,
let $P^{\ell}$ be the stabilizer of $\ell$ in $G$ . Then $P^{\ell}$ is a $\mathbb{Q}\cdot parabolic$ subgroup of $G$ . Let $N^{\ell}$ be
the unipotent radical of $P^{\ell}$ . Fix a basis $e_{\ell}\in p$ and choose an S-isotropic vector $e_{\ell}^{l}\in$ Qp$+1$

such that $S(e_{\ell}, e_{\ell}^{l})=+1$ . Define the torus $A^{\ell}$ to be the set of all the elements $a_{l}(t)$ ,
$t>0$ such that $a_{\ell}(t)e_{l}=te_{\ell},$ $a_{\ell}(t)e_{\ell}^{l}=t^{-1}e_{\ell}^{l}$ and $a_{\ell}(t)$ is identity on the orthogonal
complement of $\Phi\ell+oe_{\ell}’$ in $\Psi^{+1}$ . Then, $A^{\ell}$ is a Q-split component of $P^{p}$ and we have
an Iwasawa decomposition $G=N^{\ell}A^{\ell}K$ . For $g\in G$ , let us define the number $t_{\ell}(g)(>0)$

by the relation $g\in N^{\ell}a_{\ell}(t_{\ell}(g))K$.
Let $\Gamma\in L$ . Then, the orbit spaoe $\Gamma\backslash C$ is a finite set. Fix a complete set of representatives

$l_{j}(1\leq j\leq h)$ for $\Gamma\backslash C$ . For each $j$ , the Eisenstein series $E^{(j)}(s;\tau)$ is defined by the series

$E^{(j)}(s; \tau)=\sum_{\gamma\in\Gamma\cap N^{\ell_{j}}\backslash r}t_{\ell_{j}}(\gamma g)^{\ell+(p-1)/2}$
, $\tau=gK\in \mathfrak{D}$ .

which is absolutely convergent on ${\rm Re}(s)>(p-1)/2$ . It is known that the function $s\mapsto$

$E^{(j)}(s;\tau)$ has a meromorphic continuation to the whole complex plane so that $E^{(j)}(s;\tau)$

is holomorphic on the imaginary axis. Moreover, for a fixed $t\in \mathbb{R}$ the function $\tau\mapsto$

$E^{(j)}(\sqrt{-1}t;\tau)$ is an automorphic fom on $\Gamma\backslash \mathfrak{D}$ .

Theorem 2. $(\{11|)$ Let $\Gamma\in L.$ We assume $p>3$ unless $\Gamma_{H}\backslash \mathfrak{D}_{H}$ is $\omega mpact$. More-
over, suppose $\phi$ is a cusp form or the constant function 1. Then, the period integmls
$\varphi_{H}^{\phi}(F_{n}),$ $(n\in N)$ and $\varphi_{H}^{\phi}(E^{C)}(\sqrt{-1}t)),$ $(1\leq\acute{J}\leq h, t\in \mathbb{R})$ converge absolutely. We have
the asymptotic law

$N_{H}^{\phi}( \Gamma;x)+\frac{1}{4\pi}\int_{\sqrt{x}}^{\sqrt{x}}\sum_{\dot{f}=1}^{h}|\Psi_{H}(E^{C)}(\sqrt{-1}t))|^{2}dt\sim\frac{||\phi||^{2}}{\pi}x^{1/2}$, $xarrow+\infty$ .

2.4.1. Spectral zeta function with $pei\dot{\tau}od$ integrals. We consider a Dirichlet series associated
with a system of periods $\{\varphi_{H}^{\phi}(F_{n})\}_{n=1}^{\infty}$ and $\{\varphi_{H}^{\phi}(E^{U)}(\sqrt{-1}t))\}_{t\in R}$ ;

$Z_{H,\phi}^{\Gamma}(s)^{d}=^{ef} \sum_{n=1}^{\infty}\frac{1}{\lambda_{n}^{f}}|\varphi_{H}^{\phi}(F_{n})|^{2}+\frac{1}{4\pi}/_{R}\{\sum_{j=1}^{h}|\varphi_{H}^{\phi}(E^{C)}(it))|^{2}\}\frac{dt}{(t^{2}+\beta)^{\epsilon}}$ .

Theorem 3. $([11|)$ The series $Z_{H,\phi}^{\Gamma}(s)$ converges absolutely on the half-plane $ffi(s)>2$ .
The holomorphic function $Z_{H,\phi}^{\Gamma}(s)$ on ${\rm Re}(s)>2$ has a meromorphic $\omega ntinuation$ to the
whole s-plane. It has possible simple poles at $s= \frac{1}{2}-n(n\in Z_{\geq 0})$ and possible double
poles at $s=-m(m\in Z_{\geq 0})$ . We have

${\rm Res}_{s=1/2}Z_{H.\phi}^{\Gamma}(s)=(2\sqrt{\pi})^{-1}||\phi||^{2}$ .

3. THE CASE OF $PSL_{2}(R)$

An element $\eta\in PSL_{2}(\mathbb{R})$ is called hyperbolic if there exists $R_{\eta}\in PSL_{2}(R)$ and $N(\eta)>1$

such that
$\eta=\pm R_{\eta}\{\begin{array}{ll}N(\eta)^{1/}’ 00 N(\eta)^{-1/2}\end{array}\}R_{\eta}^{-1}$.

The number $N(\eta)$ is called the nom of $\eta$ . Let $C_{\eta}\subset\emptyset$ be the geodesic curve in fl
joining the two fixed points $\theta_{+}(\eta)=R_{\eta}\langle i\infty)$ and $\theta_{-}(\eta)=R_{\eta}\langle 0)$ of $\eta$ in $R$ or explicitly
$C_{\eta}=\{R_{\eta}\langle it\rangle|1<t<N(\eta)\}$. From now on, we fix a lattice $\Gamma$ commensurable with
PSL$2(Z)$ . A hyperbolic element $\eta\in\Gamma$ is called to be primitive in $\Gamma$ if the centralizer of
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$\eta$ in $\Gamma$ is a cyclic group $\langle\eta)$ generated by $\eta$ . The group $\langle\eta\rangle$ preserves the curve $C_{\eta}$ ; its
quotient $\langle\eta\rangle\backslash C_{\eta}$ , denoted by $C_{\eta}^{\Gamma}$ , is regarded as a simple geodesic of $\Gamma\backslash fl$ . The period
integral of a continuous function $f$ : $\Gamma\backslash 5arrow \mathbb{C}$ along $C_{\eta}^{\Gamma}$ is defined by

(3.1) $/c_{\eta}^{r}fds=/0^{logN(\eta)_{f(R_{\eta}\langle ie^{t}\rangle)dt}}$ .

We fix a complete set of $\Gamma$-inequivalent cusps $\{c_{j}\}$ of $\Gamma$ and a family of elements $\{\sigma_{j}\}$ in
SO(2) such that $\sigma_{j}\langle\infty\rangle=c_{j}$ . Then the Eisenstein series at the cusp $c_{j}$ is defined by the
series

$\epsilon^{(j)}(s;\tau)=\sum_{\gamma\in\Gamma_{\epsilon_{j}}\backslash \Gamma}{\rm Im}(\sigma_{j}^{-1}\gamma\tau)^{s}$

, ${\rm Re}(s)>1,$ $\tau\in \mathfrak{H}$ .

Let $\{\lambda_{n}\}$ be the non-decreasing sequenoe of eigenvalues counted with multiplicity of hy-
perbolic Laplacian $\Delta=-y^{2}(\frac{\theta^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x}\pi)$ acting on $L^{2}(\Gamma\backslash fl)$ , and $\{f_{n}\}$ an orthonormal
system of eigenforms, i.e.,

$-y^{2}( \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x^{2}})f_{n}=\lambda_{n}f_{n}$ .

Then from Theorem 2, we can deduce the following theorem.
Theorem 4. $([11|)$

$\sum_{\lambda_{\hslash}\leq x}|/_{C_{\eta}^{\Gamma}}f_{n}ds|^{2}+\frac{1}{4\pi}/_{-\sqrt{x}}^{\sqrt{x}}\sum_{j=1}^{h}|\int_{C_{\eta}^{\Gamma}}c^{(g)}(\frac{1}{2}+it).ds|^{2}dt\sim\frac{\log N(\eta)}{\pi}x^{1/2}$ , $xarrow+\infty$ .

3.0.2. The projective modular group $\Gamma=$ PSL2 $(\mathbb{Z})$ has a unique cusp $\infty$ up to $PSL_{2}(\mathbb{Z})-$

equivalence. The Eisenstein series is

$\epsilon(\nu, \tau)=\sum_{(c,d)=1}\frac{({\rm Im}(\tau))^{\nu}}{|c\tau+d|^{2\nu}}$ , ${\rm Re}(\nu)>1$ .

To each primitive hyperbolic element $\eta=[_{cd}^{ab}]$ of $PSL_{2}(Z)$ , we associate an integral binary
quadratic form $Q_{\eta}(X, Y)=cX^{2}+(d-a)XY-bY^{2}$ . The number $D=(tr(\eta))^{2}-4(>0)$
is the discriminant of $Q_{\eta}$ . For $n\in \mathbb{Z}-\{0\}$ , the representation number of $n$ by $Q_{\eta}$ is

$\Re(Q_{\eta};n)=\#(\{(x, y)\in Z^{2}|Q_{\eta}(x, y)=n\}/E(Q_{\eta}))$ ,
with $E(Q_{\eta})=\{\gamma\in SL2(\mathbb{Z})|^{t}\gamma Q_{\eta}\gamma=Q_{\eta}\}$ the unit group of $Q_{\eta}$ . Then define the zeta
function of $Q_{\eta}$ by

$\zeta(Q_{\eta i}\nu)=\sum_{n\in Z-\{0\}}\frac{\Re(Q_{\eta};n)}{|n|^{\nu}}$ ,

which is absolutely convergent on ${\rm Re}(\nu)>1$ . The computation of the period integral of
$e(\nu)$ along $C_{\eta}^{\Gamma}$ is due to Hecke. In our case, the formula is

(3.2) $/c_{\eta}^{r}c(\nu)$ ds $= \frac{1}{8}\hat{\zeta}(Q_{\eta};\nu)\hat{\zeta}(2\nu)^{-1}$

where $\hat{\zeta}(Q_{\eta};\nu)=D^{\nu/4}\Gamma_{B}(\nu)^{2}\zeta(Q_{\eta};\nu)$ . The functional equation $\hat{\zeta}(2\nu)e(\nu)=\hat{\zeta}(2-$

$2v)e(1-\nu)$ , combined with (3.2) yilelds the functional equation $\hat{\zeta}(Q_{\eta};1-\nu)=\hat{\zeta}(Q_{\eta};\nu)$ .
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Hence, by the usual technique, we obtain the convexity bound of the zeta function $\zeta(Q_{\eta};s)$

on the critical line:
$\zeta(Q_{\eta};\frac{1}{2}+it)\prec(1+|t|)^{1/2+\epsilon}$, $t\in \mathbb{R}$

for any $\epsilon>0$ .
Proposition 5. $([11|)$ Suppose the subconvenity bound of $\zeta(Q_{\eta};s)$ on the cntical line

$|\zeta(Q_{\eta};1/2+it)|\prec(1+|t|)^{\delta},$ $t\in \mathbb{R}$

2

$\lambda_{n}<x\sum_{\backslash }\int_{C_{\eta}^{\Gamma}}f_{n}ds$

$\sim\frac{\log N(\eta)}{\pi}x^{1/2}$ ,

holds for some $\delta<1/2$ . Then,

$xarrow+\infty$ .

4. CONCLUDING REMARKS AND PROBLEMS

4. 1. Observations.
$\bullet$ Theorem 2 yields the estimation of the mean value of the Eisenstein period:

$\int_{\sqrt{x}}^{\sqrt{x}}\sum_{j=1}^{h}|P_{H,\phi}(E^{0)}(\sqrt{-1}t))|^{2}dt\prec x^{1/2}$, $(xarrow+\infty)$ .

By combining this with the integral representation of the standard L-functions of
orthogonal groups by Murase-Sugano ([7]), we obtain some bound of the square mean
value

$/0^{x}|L( \frac{1}{2}+it;\phi)|^{2}dt$

for the Hecke eigen wave cuspform $\phi$ . This seems yield a better bound than the
convexity bound for general $\phi$ not necessarily belonging to the images of liftings
from other groups.

$\bullet$ In the situation of the paragraph 2.1, we further suppose that the symmetric space
$H\backslash G$ is of split rank one. From the experience of several concrete examples, we
can guess what the asymptotic formula of $N_{H}^{\phi}(\Gamma;x)$ should look like. Under the
convergence of relevant period integrals of automorphic forms, the following formula
is plausible.

$\lambda_{n}<x\sum_{\backslash }|\varphi_{H}^{\phi}(F_{n})|^{2}+\int|$ Eisenstein period ‘
$|^{2} \sim\frac{||\phi||^{2}}{(4\pi)^{d}\Gamma(1+d)}x^{d}$ , $xarrow+\infty$

with $d=\tilde{2}1\{\dim_{R}\mathfrak{D}-\dim_{R}\mathfrak{D}_{H}\}$.

4.2. Problems. Here are some problems on the asymptotic formula of $N_{H}^{\phi}(\Gamma;x)$ .
$\bullet$ Theorem 1 and Theorem 2 yields the main term of the asymptotic $N_{H}^{\phi}(\Gamma;x)$ as

$xarrow+\infty$ . It seems interesting to obtain an error term estimate.
$\bullet$ To formulate our problem, we assumed convergenoe of several integrals, for example

the $L^{2}$-nom of $\phi$ , the finiteness of the volume $vol(\Gamma_{H}\backslash \mathfrak{D}_{H})$ and the period of wave
forms $\mu_{H}(F_{n})$ . It may be interesting drop these conditions, replacing the relevant
integrals by properly regularized ones. In this aspect, we should mention the work
of Zagier $([12|)$ .
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$\bullet$ By a technical reason, all the spaces $H\backslash G$ we consider so far are of real-rank-one. To
drop this condition and prove an asymptotic formula for $N_{H}^{\phi}(\Gamma;x)$ of full generality,
the relative trace formula of Jacquet ([5]) should be the most promising tool.
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