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1 INTRODUCTION
For a reductive group $G$ defined over a number field $k$ , a cusp form $\phi$ on $G(A_{k})$ is said to
be a CAP form if there exists an element $\phi’$ of an irreducible component of the residual
spectrum such that $\phi$ and $\phi’$ share the same absolute values of Hecke eigenvalues at almost
all places of $k$ . In case of $GSp(2)$ , Piatetski-Shapiro constructed the Saito-Kurokawa
representations as examples of CAP forms [6], and Soudry determined the other CAP
forms $[7|$ . The residual spectrum for $G$ is decomposed into the spaces of residues of
Eisenstein series for the cuspidal representations of Levi subgroups of parabolic subgroups
from the Langlands’ spectral theory of Eisenstein series. Similarly the space of CAP
forms for $G$ should be decomposed into subspaces along parabolic subgroups of $G$ . The
Saito-Kurokawa representations and the examples constructed by Soudry are related to
the Siegel and Klingen parabolic subgroup, respectively.

In this note, we treat the case that $G$ is an inner form of $Sp(2)$ . This $G$ has only one
unique proper parabolic subgroup $P$ up to $G(k)$-conjugate, which corresponds to the Siegel
parabolic subgroup of $Sp(2)$ via an inner twist. Therefore any irreducible component of the
residual spectrum of $G$ is associated to $P$ . However, there exists an irreducible component
of the space of the CAP forms which is associated to the Klingen parabolic subgroup or
the Borel subgroup of $Sp(2)$ . An aim in this note is to construct such an example of CAP
forms associated to the Klingen parabolic subgroup.

Generally, for an elliptic Arthur parameter there should exist a non-zero set of irre-
ducible automorphic representations corresponding to it, which is called its Arthur packet,
and such packets should exhaust the discrete spectrum of space of automorphic forms in
case of a quasisplit group [2]. However in case of non-quasisplit group like as $G$ it is possi-
ble that an Arthur packet is empty. Since $G$ and $Sp(2)$ share the Arthur parameters, there
may exist an Arthur packet which shares an Arthur parameter with an irreducible com-
ponent of the residual spectrum of $Sp(2)$ associated to the Klingen parabolic subgroup.
Since it is not included in the residual spectrum of $G$ , it is included in the space of the
CAP forms associated to the Klingen parabolic subgroup. It is what we want. I tried
to construct this CAP form by the analogy of the lift considered by Howe and Piatetski-
Shapiro [3]. They used the theta lift from $O(2)$ to $Sp(2)$ , which is included in the subspace
associated to the Klingen parabolic subgroup of the residual spectrum. Therefore its anal-
ogy is the theta lift from the unitary group of one-dimensional skew-hermitian space over
a quatemion algebra to $G$ . The failure of the Hasse principle for skew-hermitian spaces
causes the failure of the multiplicity one property for the theta lift. This phenomenon does
not occur in case of $Sp(2)$ . These multiplicities is consistent with the Arthur’s multiplicity
conjecture $[2|$ .
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2 INNER FORMS OF $Sp(2)$

Let $k$ be a number field and $\mathbb{A}$ its adele ring. $||_{A}$ denotes the idele norm of $A^{x}$ . For any
place $v$ of $k$ , we write $k_{v}$ for the completion of $k$ at $v$ and $||_{v}$ for the v-adic norm. Let $\psi$

be a non-trivial character of $\mathbb{A}$ which is trivial on $k$ , and for any place $v$ of $k\psi_{v}$ denotes
the v-component of $\psi$ .

Let $D$ be a quaternion division algebra over $k$ . We write $\nu,$ $\tau$ and $\iota$ for the reduced
norm, the reduced trace and the main involution of $D$ , respectively. We write $D_{-}=\{x\in$

$D|\tau(x)=0\}$ . Also we write $S_{D}$ for the set of places $v$ of $k$ at $w$}$\dot{u}chD$ is ramified, and
$sD$ for the number of its elements, which is non-zero, finite and even. Let $W=D^{\oplus 2}$ be
the hee left module over $D$ with rank two, and we equip it with a hermitian form $(,$ $\rangle$

given by
$\langle(x_{1,y1}),$ $(x_{2}, y2))=x_{1^{l}}y_{2}+y1^{\iota_{X}}2$ $(x_{1}, x_{2,y1,y2}\in D)$ .

Let $G$ be the unitary group of this form, so that

$G=\{g\in GL(2, D)|g(_{1}^{0}$ $01$ $*g=(\begin{array}{ll}0 11 0\end{array})\}$ .

Here we write $*(a_{i,j})=(^{\iota}a_{j_{1}i})$ for $(a_{i_{\partial}j})\in M(2, D)$ . It can be regarded as a reductive group
defined over $k$ . It is non-quasisplit and an inner form of $Sp(2)$ with respect to a quadratic
extension $k’$ of $k$ such that all $v\in S_{D}$ do not split fully in $k’/k$ . Fix a k-parabolic subgroup
$P$ and its Levi factor $M$ as

$P=\{(* **)\in G\},$ $M=\{$ $(\begin{array}{ll}x 00 (^{\iota}x)^{-1}\end{array})$ $x\in D^{x}\}$ ,

$P$ is the unique proper parabolic subgroup of $G$ up to $G(k)$-conjugate and corresponds to
the Siegel parabolic subgroup via an inner twist. We write again $\nu$ for the character of $M$

corresponding to the reduced norm. $U$ denotes the unipotent radical of $P$ , so that

$U=\{(\begin{array}{ll}1 y0 1\end{array})$ $y\in D_{-}\}$ .

$H$ denotes either the quaternionic unitary group $G$ or $Sp(2)$ . $H(k)\backslash H(A)$ becomes
locally compact Hausdorff space and has a non-zero $H(A)$ -invariant measure up to scalars.
Fix such a measure $dh$ . Then the space $L^{2}(H(k)\backslash H(A))$ of square-integrable functions on
$H(k)\backslash H(A)$ is defined and the representation $\rho$ of $H(\mathbb{A})$ on $L^{2}(H(k)\backslash H(A))$ is defined by

$\rho(h)f(g)=f(gh)$ $(h,g\in H(A))$ .

This representation has an orthogonal decomposition;

$L^{2}(H(k)\backslash H(\mathbb{A}))=L_{disc}^{2}(H)\oplus L_{cont}^{2}(H)$ ,

where $L_{disc}^{2}(H)$ is the maximal completely reducible closed subspace of $L^{2}(H(k)\backslash H(A))$

and $L_{cont}^{2}(H)$ is its orthogonal complement. For $\phi\in L^{2}(H(k)\backslash H(A))$ its constant term
$\phi_{Q}$ along a k-parabolic subgroup $Q=M_{Q}U_{Q}$ of $H$ is defined by

$\phi_{Q}(g)=/U_{Q}(k)\backslash U_{Q}(A)^{\phi(ug)du}$ $(g\in H(A))$
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where $du$ is a Haar measure of $U_{Q}(k)\backslash U_{Q}(\mathbb{A})$ . $L_{0}^{2}(H)$ denotes the space of cuspidal elements
of $L^{2}(H(k)\backslash H(\mathbb{A}))$ , that is, elements whose constant terms along all the proper k-parabolic
subgroups vanish. It is known that $L_{0}^{2}(H)$ is a $H(\mathbb{A})$-invariant closed subspace contained in
$L_{disc}^{2}(H)$ . We write $L_{res}^{2}(H)$ for its orthogonal complement in $L_{disc}^{2}(H)$ , which is called the
residual spectrum. In this note, we call an irreducible component of $L_{disc}^{2}(H)$ an irreducible
automorphic representation of $H(\mathbb{A})$ . Any irreducible automorphic representation $\pi$ of
$H(\mathbb{A})$ has a decomposition into a restricted tensor product $\pi\simeq\otimes_{v}’\pi_{v}$ .

From the Langlands’ spectral theory of Eisenstein series, the residual spectrum of $H$

has an orthogonal decomposition of the form

$L_{res}^{2}(H)= \bigoplus_{Q}L_{r}^{2}(H)_{Q}$
.

Here $Q$ runs over the set of k-parabolic subgroup of $H$ up to $H(k)$-conjugate and $L_{res}^{2}(H)_{Q}$

is the space of residues of Eisenstein series associated to the cuspidal representations of a
Levi factor of $Q$ .

3 RESIDUAL SPECTRUM OF $G$ AND $Sp(2)$

The irreducible decomposition of residual spectrum of $G$ and $Sp(2)$ has been determined
$([4|, [8])$ . We review it in this section.

First, we see the case of $Sp(2)$ . $Sp(2)$ has three standard parabolic subgroups; $Ps=$
$M_{S}U_{S},$ $P_{K}=M_{K}U_{K}$ and $B$ which are the Siegel, Klingen and Borel parabolic subgroup
respectively. Therefore the residual spectrum of $Sp(2)$ has a decomposition of three spaces;

$L_{res}^{2}(Sp(2))=L_{res}^{2}(Sp(2))_{P_{S}}\oplus L_{res}^{2}(Sp(2))_{P_{K}}\oplus L_{r}^{2}(Sp(2))_{B}$.

Theorem 3.1 ([4]). Let $k$ be a totally real number field. For a standard parabolic sub-
group $Q$ of $Sp(2),$ $L_{res}^{2}(Sp(2))_{Q}$ is isomorphic to the direct sum of the following irreducible
representations. Each occurs with multiplicity one.

( $P_{S}$ case) The unique irreducible quotient $J_{p_{s}}^{Sp(2)}(\pi)$ of $Ind_{P_{S}(A)}^{Sp(2,A)}(\pi|\det|_{A}^{1/2})$ . Here $\pi$ runs
over irreducible self-dual cuspidal representations of $M_{S}(A)\simeq GL(2, A)$ whose stan-
dard L-functions $L(s, \pi)$ do not vanish at $s=1/2$ .

( $B$ case) The trivial representation 1$Sp(2)$ ; and
the theta lift $R(T)$ from the trivial representation of the orthogonal group $O(T,\mathbb{A})$ un-
der the Weil representation $\omega_{T,\psi}$ . Here $T$ runs over isometry classes of 2-dimensional
non-degenerate quadratic spaces over $k$ .

( $P_{K}$ case) The unique $ir\tau educible$ quotient $J_{P_{K}}^{Sp(2)}(k’, \theta, \psi)$ of $Ind_{P_{K}(A)}^{Sp(2,A)}(\omega_{k’/k}|\cdot|_{A}\otimes\pi_{\psi}(\theta))$ .
Here $k’/k$ is a non-trivial quadratic extension of $k$ . $\pi_{\psi}(\theta)$ denotes the endoscopic lift
from an automorphic character $\theta$ of $U_{k’/k}(1, A)$ which is $\psi$ -generic [5].

Next, we see the case of $G$ . Since $P$ is the unique proper k-parabolic subgroup of $G$

up to $G(k)$ -conjugate, $L_{res}^{2}(G)=L_{re8}^{2}(G)_{P}$ .

Theorem 3.2 ([8]). Let $k$ be a totally real number field. The $ir\tau educible\omega mponents$ of
the residual spectrum of $G$ consist of the following representations.
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(1) The trivial representation $1_{G}$ ,

(2) The unique irreducible quotient $J_{P}^{G}(\pi)$ of $Ind_{P(A)}^{G(A)}(\pi|\nu|_{A}^{1/2})$ . Here $\pi$ runs over the set
of infinite dimensional irreducible self-dual cuspidal representations of $M(\mathbb{A})$ whose
standard L-functions $L(s, \pi)$ do not vanish at $s=1/2$ , and

(3) The theta lift $R(V)$ from the $tr\dot{v}vial$ representation of $G(V_{A})$ under the Weil represen-
tation $\omega_{V,\psi}$ . Here $V$ runs over the set of local isometry classes of $(- 1)$ -hermitian right
D-spaces of dimension $one_{f}$ and $G(V)$ is the unitary group of $V$ .

In the case (1) and (2), the multiplicity of each representation is one. In the case (3), the
multiplicity of each representation is $2\# S_{R}-2$ .

The representations appearing in the two theorems above should be associated to
Arthur parameters from the point of view of Arthur) $s$ conjecture. We will describe the
associated Arthur parameters. Suppose the existence of the hypothetical global Langlands
group $\mathcal{L}_{k}$ of $k$ . By an Arthur parameter is meant a continuous homomorphism $\phi$ : $\mathcal{L}_{k}\cross$

$SL(2, \mathbb{C})arrow LH$ where $LH$ is the L-group of $H$ such that

(i) writing $Pk$ : $\mathcal{L}_{k}arrow W_{k}$ for the conjectural homomorphism and $p2$ : $LHarrow W_{k}$ the
canonical projection where $W_{k}$ is the Weil group of $k,$ $p2^{\circ\phi}=pk$ ,

(ii) its restriction to $\mathcal{L}_{k}$ is a Langlands parameter with bounded image, and

(iii) its restriction to $SL(2, \mathbb{C})$ is analytic.

The Arthur’s conjecture says that for any elliptic Arthur parameter, a set of irreducible
automorphic representations of $H(\mathbb{A})$ which is called its Arthur packet is assigned (this
packet is possible to be empty), and such packets exhausts the irreducible components of
$L_{disc}^{2}(H)$ .

When $H=G$ or $Sp(2),$ $LH$ is isomorphic to $SO(5, \mathbb{C})xW_{k}$ . We realize $SO(5, \mathbb{C})$ as
the special orthogonal group defined by the quadratic form over $\mathbb{C}$ given by

$I_{5}=(\begin{array}{lllll} 1 -1 1 1 -1 \end{array})$ .

$\rho$ denotes the standard representation of $SL(2, \mathbb{C})$ . The image of n-th symmetric power
$Sym^{n}\rho$ can be embedded in $SO(n+1, \mathbb{C})$ for even integer $n,$ $Sp((n+1)/2,\mathbb{C})$ for odd
integer $n$ . The Arthur parameters associated to (the packets containing) automorphic
representations appearing in Theorem 3.1 and 3.2 is described as follows.

$\bullet$ 1 $Sp(2)$ and $1_{G}$ correspond to

$\phi=1_{5}\otimes Sym^{4}\rho\cross pk$ .
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$\bullet$ $J_{P_{S}}^{Sp(2)}(\pi)$ and $J_{P}^{G}(\pi)$ correspond to

$\phi=((\phi_{\pi}\otimes\rho)\oplus(1_{\mathcal{L}_{k}}\otimes 1_{SL(2,\mathbb{C})}))\cross pk$ .

Here $\phi_{\pi}$ is the Langlands parameter associated to $\pi$ , whose image is contained by
$SL(2, \mathbb{C})$ .

$\bullet$ $R(T)$ and $R(V)$ correspond to

$\phi=((Ind_{W_{k’}}^{W_{k}}1_{W_{k’}}\otimes 1_{SL(2,\mathbb{C})})\oplus(\omega_{k’/k}\otimes Sym^{2}\rho))\circ pk^{\cross}pk$ .

Here $\omega_{k’/k}$ is the quadratic character of $W_{k}$ associated to $k’/k$ . Remark the image
of $Ind_{W_{k}}^{W_{k}},1_{W_{k}}$, is contained by $O(2, \mathbb{C})$ .

$\bullet$ $J_{P_{K}}^{Sp(2)}$ $(k‘, \theta, \psi)$ corresponds to

$\phi=((\phi_{\pi_{\psi}(\theta)}\otimes 1_{SL(2,\mathbb{C})})\oplus(\omega_{k’/k}\otimes Sym^{2}p))\circ pkxpk$ . (3.1)

Here $\phi_{\pi_{\psi}(\theta)}$ is the Langlands parameter associated to $\pi_{\psi}(\theta)$ , whose image is contained
by $O(2, \mathbb{C})$ .

When we observe the above description of Arthur parameters we have a natural ques-
tion. Is the Arthur packet corresponding to the last Arthur parameter empty in case of
$H=G$? The answer is no. $\ln$ fact, the packet is realized in $L_{0}^{2}(G)$ . An aim in this note
is to construct it using theta correspondence.

4 THETA CORRESPONDENCE FROM UNITARY GROUP OF

SKEW-HERMITIAN SPACES

Let $V=V_{\xi}$ be the one-dimensional skew-hermitian space over $(D, \iota)$ defined by $\xi\in D_{-}$ .
Let $\delta=\det V_{\xi}=\nu D(\xi)=-\xi^{2}mod (k^{x})^{2}$ and $k‘=k(\xi)\simeq k(\sqrt{-\delta})$ . $G(V)$ and $G_{0}(V)$

denote the unitary group and special unitary group of $V$ , respectively. Then Go(V) is
isomorphic to the norm torus for the quadratic extension $k^{l}/k$ . Since $(G(V), G)$ is a dual
reductive pair we can consider the Weil representation $\omega v,\psi$ of $G(V_{A})\cross G(A)$ .

Let $\chi=\prod_{v}\chi_{v}$ be a non-trivial character of Go $(V_{k})\backslash G_{0}(V_{A})$ and put $S_{\chi}=\{v|\chi_{v}^{2}=1\}$ .
Since

$Ind_{G_{0}(V_{A})}^{G(V_{A})}\chi\subset L_{di\epsilon c}^{2}(G(V))=L^{2}(G(V))$

we want to construct an irreducible automorphic representation of $G(A)$ by the theta lift
from $1nd_{G_{0}(V_{A})}^{G(V_{A})}\chi$ . However $Ind_{G_{0}(V_{A})}^{G(V_{A})}\chi$ is not irreducible. Therefore the description of its
irreducible decomposition is needed. As for its local component we have

$1nd_{G_{0}(V_{v})}^{G(V_{v})}\chi_{v}\simeq\{\begin{array}{l}\tilde{\chi}_{v}^{+}\oplus\tilde{\chi}_{\overline{v}} v\in S_{\chi}\cap S_{D^{c}},\tilde{\chi}_{v} otherwise.\end{array}$

Here $\overline{\chi}_{v}^{+},\tilde{\chi}_{\overline{v}}$ are characters not isomorphic to each other, and $\tilde{\chi}_{v}$ is $\chi_{v}$ or a two-dimensional
irreducible representation. Fix a $\gamma 0\in O(k’, N_{k’/k})\backslash SO(k’, N_{k’/k})$ and embed $\gamma 0$ in $G(V_{v})\simeq$
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$O(k_{v}’, N_{k_{v}’/k_{v}})$ for all $v\not\in S_{D}$ . For $v\in S_{\chi}\cap S_{D^{c}}$ we may assume $\overline{\chi}_{v}^{+}(\gamma 0)=1$ , which
characterizes $\tilde{\chi}_{v}^{+}$ and $\tilde{\chi}_{\overline{v}}$ . Then an irreducible component of the global induction is of
form,

$\tau=(\otimes_{v\in S}\tilde{\chi}_{\overline{v}})\otimes(\otimes_{v\in S_{\chi}\backslash s}’\overline{\chi}_{v}^{+})\otimes(\otimes_{v\not\in s_{\chi}}’\tilde{\chi}_{v})$

for some finite set $S\subset S_{\chi}\cap S_{D^{c}}$ . For any $v\in S_{\chi}\cap S_{D^{c}}$ define

$S^{\pm}(V_{v})=\{f\in S(V_{v})|f(\gamma 0^{\cdot})=\pm f\}$

where $S(V_{v})$ is the spaoe of Schwartz-Bruhat functions on $V_{v}$ .
The theta lift from $\tau$ is defined as follows.

$We(1)\frac{Caseof\chi^{2}\neq 1}{adopttheusu}a1$

definition as that of theta kernel and theta integral;

$\theta(f, h,g)=\sum_{z\in V_{k}}\omega_{V,\psi}(h,g)f(x)$
$(g\in G(A), h\in G(V_{A}), f\in S(V_{A}))$ ,

$\theta(f,g)=/G_{0}(V_{k})\backslash G_{0}(V_{A})^{\theta(f,h,g)\chi(h)dh}$ .

The theta lift $\Theta(V,\chi, S)$ from $\tau$ is defined by

$\Theta(V, \chi, S)=\{\theta(f, g)|f\in S^{S}(V_{A})\}$

where $S^{S}(V_{A})=(\otimes_{v\in S}S^{-}(V_{v}))\otimes(\otimes_{v\in S_{\chi}\backslash S}^{l}S^{+}(V_{v}))\otimes(\otimes_{v\not\in S_{\chi}}’S(V_{v}))$ .
(2) Case of $\chi^{2}=1$

In this case $\tau$ is one-dimensional. The theta integral is defined by

$\theta(f,g)=\int_{G(V_{k})\backslash G(V_{A})}\theta(f, h,g)\tau(h)dh$,

where $\theta(f, h,g)$ is the same one as above. The theta lift $\Theta(V, \chi, S)$ from $\tau$ is defined by

$\Theta(V, \chi, S)=\{\theta(f, g)|f\in S(V_{A})\}$ .

To state the main theorem in this note we prepare the definition of CAP representation
with respect to the Klingen parabolic subgroup.

Definition 4.1. Let $\pi\simeq\otimes_{v}’\pi_{v}$ be an irreducible cuspidal representation of $G(\mathbb{A})$ . We say
that $\pi$ is a CAP representation with respect to $P_{K}$ if there exists an iweducible cuspidal
representation $\sigma\simeq\otimes_{v}’\sigma_{v}$ and a quadratic character $\omega=\prod_{v}\omega_{v}$ of $\mathbb{A}^{x}$ such that for almost

all $v,$ $\pi_{v}$ is isomorphic to a composition factor of $Ind_{P_{K}(k_{v})}^{Sp(2,k_{v})}(\sigma_{v}\otimes\omega_{v}|\cdot|_{v})$ .

Theorem 4.2. 1. $\Theta(V, \chi, S)$ is non-zero, irreducible and cuspidal.

2. $\Theta(V, \chi, S)$ is a CAP representation with respect to $P_{K}$ .

3. For the restricted tensor product $\Theta(V, \chi, S)\simeq\otimes_{v}’\Theta(V, \chi, S)_{v},$ $\Theta(V, \chi, S)_{v}$ can be
determined as a representation for any $v$ . (As for the description of local factors,
see the next section. )

47



We shall mention the proof of (2) only. In quasisplit case, as for the theta lift from
$O(k’, N_{k’/k})$ we have the following diagram.

$:Sp(2)$

$O(k’, N_{k’/k})$ : $:SL(2)$ .

$\Theta^{Sp(2)}(\chi)$ is included in $L_{res}^{2}(Sp(2))_{P_{K}}$ if $\chi^{2}\neq 1$ . Since $\Theta(V, \chi, S)$ is an inner form analogue
of $\Theta^{Sp(2)}(\chi)$ , its local components is isomorphic to the those of $\Theta^{Sp(2)}(\chi)$ for almost all
places. This implies (2) in the theorem.

$\Theta(V, \chi, S)$ is the automorphic representation associated to the Arthur parameter given
by (3.1). Adams conjectured the correspondent of Arthur parameters under the theta
correspondence [1]. According to this conjecture the correspondence of Arthur parameters
for our theta lift is given by $\Phi$ in the following diagram.

$:Sp(2)$

$O(k’, N_{k’/k})$ : $:SL(2)$ .

Here the Langlands parameter associated to $\chi$ is also written by $\chi$ .

5 MULTIPLICITY CONJECTURE

We write $m(\Theta(V, \chi, S))$ for the multiplicity of $\Theta(V, \chi, S)$ in $L_{disc}^{2}(G)$ .

Proposition 5.1.

$m(\Theta(V, \chi, S))\geq\{\begin{array}{ll}2^{\#(S_{\chi}\cap S_{D})-1} S_{D}\not\subset S_{\chi},2^{\#_{S_{D}-2}} S_{D}\subset S_{\chi}.\end{array}$

This result is caused by the failure of Hasse’s principle for skew-hermitian spaces.
(The last statementt in Theorem 3.2 is also caused by the same reason.) We can find one-
dimensional skew-hermitian spaces $V_{1}$ and $V_{2}$ which are locally isometric, but not globally
isometric. Then $\Theta(V_{1}, \chi, S)$ and $\Theta(V_{1}, \chi, S)$ have the same local components for all places.
On the other hand, by the calculation of Fourier coefficient we have that they are d\’ifferent

as spaces of automorphic forms. Therefore the multiplicity one property does not hold.
Arthur also conjectured the multiplicity for $L_{disc}^{2}(H)[2|$ . We shall compare the propo-

sition above with the conjecture. To describe the conjecture the description of the local
Arthur packets for the Arthur parameter given by (3.1) is needed. For any $v,$ $\Pi_{\phi_{v}}$ denotes
the local Arthur packet for the Arthur parameter

$\phi=((Ind_{W_{k’}}^{W_{k}}\chi\otimes 1)\oplus(\omega_{k’/k}\otimes Sym^{2}\rho))\circ pk\cross pk$ .
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(1) Case of $v\not\in S_{D}$

$\Pi_{\phi_{v}}=\{\begin{array}{ll}\{\theta(V_{v}^{\pm},\tilde{\chi}_{v})\} \chi_{v}^{2}\neq 1 and \delta_{v}\neq-1,\{\theta(\mathbb{H}_{v},\tilde{\chi}_{v})\} \chi_{v}^{2}\neq 1 and \delta_{v}=-1,\{\theta(V_{v}^{\pm},\overline{\chi}_{v}^{\pm})\} \chi_{v}^{2}=1 and \delta_{v}\neq-1,\{\theta(\mathbb{H}_{v},\tilde{\chi}_{v}^{\pm})\} \chi_{v}^{2}=1 and \delta_{v}=-1.\end{array}$

Here $V_{v}^{\pm}$ is the two-dimensional quadratic space over $k_{v}$ with determinant $\delta_{v}$ and Hasse
invariant $\pm 1,$ $\mathbb{H}_{v}$ is the two-dimensional hyperbolic space over $k_{v}$ , and $\theta(V_{v}, \lambda_{v})$ denotes
the Howe correspondent of the representation $\lambda_{v}$ of $G(V_{v})$ . The correspondent from $\tilde{\chi}_{\overline{v}}$ is
supercuspidal and the others are of the form of a quotient of $Ind_{P_{K}(k_{v})}^{Sp(2,k_{v})}(\omega_{k_{v}^{l}/k_{v}} I . |_{v}\otimes\tau_{v})$

for some irreducible representation $\tau_{v}$ of $SL(2, \mathbb{A})$ .
(2) Case of $v\in S_{D}$

$\Pi_{\phi_{v}}=\{\begin{array}{ll}\{\theta(V_{v}, \chi_{v}), \theta(V_{v}, \chi_{v}^{-1})\} \chi_{v}^{2}\neq 1,\{\theta(V_{v}, \chi_{v})\} \chi_{v}^{2}=1.\end{array}$

Elements of $\Pi_{\phi_{v}}$ are supercuspidal except for $\chi_{v}=1$ .
Writing $S_{\phi}$ for the S-group for $\phi$ ,

$S_{\phi}=\{\begin{array}{ll}<s_{1}>\simeq \mathbb{Z}/2\mathbb{Z} \chi^{2}\neq 1,<s_{1}>\oplus<s_{2}>\simeq \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z} \chi^{2}=1.\end{array}$

A pairing $\langle$ , $\rangle_{v}$ on $S_{\phi}\cross\Pi_{\phi_{v}}$ is defined as follows.
(1) Case of $v\not\in S_{D}$

$\langle S_{1},$ $\theta(V_{v}^{\eta},\tilde{\chi}_{v}^{\epsilon})\rangle_{v}=\eta\cdot 1$ ,
$\langle s_{2},$ $\theta(V_{v}^{\eta},\tilde{\chi}_{V}^{\epsilon})\rangle_{V}=\epsilon\cdot 1$ ,

where we regard $\mathbb{H}_{v}=V_{v}^{+}$ and $\tilde{\chi}_{v}=\tilde{\chi}_{v}^{+}$ .
(2) Case of $v\in S_{D}$

$(s_{1},$ $\theta(V_{v}, \chi_{V}^{\kappa})\rangle_{V}=\kappa$ $\chi_{v}^{2}\neq 1$ ,

$\langle s,$ $\theta(V_{v}, \chi_{v}))_{v}=\{\begin{array}{l}2 s=1\chi_{v}^{2}=1.0 otherwise\end{array}$

The global Arthur packet $\Pi_{\phi}$ is included in $\otimes_{v}’\Pi_{\phi_{v}}$ . Arthur conjectured that for
$\pi\in\Pi_{\phi}$ its multiplicity in $L_{disc}^{2}(G)$ is given by

$\# s_{\phi}^{-1}\sum_{s\in S_{\phi}}\epsilon(s)\langle s,$ $\pi\rangle$

where $\epsilon$ is a character of $S_{\phi}$ and $\langle s,$ $\pi\rangle=\prod_{v}\langle s,$ $\pi_{v})_{v}$ . In our case, $\epsilon=1$ and

$\#_{S_{\phi}^{-1}\sum_{s\in S_{\phi}}\epsilon(s)\langle s,\theta(V,\chi,S)\rangle=}\{\begin{array}{ll}2^{\#(S_{\chi}\cap S_{D})-1} S_{D}\not\subset S_{\chi},2^{\# s_{D}-2} S_{D}\subset S_{\chi}.\end{array}$

Therefore this conjecture is consistent with Proposition 5.1.
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