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1 Introduction

In this paper, we report a ncw concept and method of construction of ap-
proximate solutions for linear singular integral equations by using the two
theorics of the Tikhonov regularization and reproducing kernels.

The theory of reproducing kernels has been developed and investigated by
many authors. Recently, Saitoh [10] and co-researchers [6] consider appli-
cations of the theory to construction of approximate solutions for bounded
lincar operator equations on Hilbert spaces by combining the theory with
the linear operators. This method can be applied to singular integral equa-
tions since it is well known that singular integral operators on L? space are
bounded linear operators, sce [7].

Singular integral equations are presently encountered in a wide range of
mathematical models, for instance in acoustics, fluid dynamics, elasticity
and fracturc mechanics. Particularly, crack problems in elasticity lead to
singular intcgral equations by the potential theory and [2, 4] showed the
uniquely existence of solution of the problem by proving the compactness
of the singular integral operator. Moreover, about a problem for prediction
of the direction of crack propagation in the elastic plate there only exist
some criteria in engineering sense. Unfortunately, we can not know which
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criterion is true and the best because it is very difficult to measure the angle
of crack propagation by experiment. Although the difference among the
criteria has been discussed by many authors, it remains an open problem.
Onc of difficulty comparing the criteria is to calculate the energy relcase
rate at the crack tip, which is a rate of the energy, per unit length along
the crack edge, that is supplied by the elastic energy in the body and by
the loading system in creating the new crack surface. Therefore, in order
to evaluate the energy release rate defined by the released potential energy
as the crack increases a unit length we need to construct the solution in
the elastic plate with virtual kinked crack extension. Itou [3] considered
the formulation of the kinked crack problem in linearized elastic plate and
introduced the procedure for reducing the problem to a singular integral
equation by employing a conformal mapping technique (cf. [8]). Then, an
explicit representation of the solution is required for discussing the difference
among the criteria.

As a typical singular integral equation, we shall consider the Carleman’s
equation over a real interval, for any L?(—1,1) (= L?) function g and for real
or complex valued continuous (or bounded integrable) functions a , b

(Ly)(t) = a(t)y(t) + %%)—p.v " y) d¢ = g(¢t) | on —1<t<1(11)

Jo (-t

in the class of the functions of the Paley-Wiener space. We denote by p.v.
the Cauchy’s principal value of the integral. According to [8], the operator
L satisfying a condition a?(t) — b%(t) # 0 for —1 < t < 1 is called a regular
type operator. It is well known that the equation (1.1) always has an explicit
solution for a regular type operator, see also [7]. However, when a®(t) —
b%(t) = 0 at some points t € (—1,1), special treatment is required, see
[1]. Namely, in general it is impossible to represent the solution explicitly.
Actually, the analysis of this case is important for the kinked crack problem.
In [5] we introduced a new approach for (1.1), including the case where
the condition of a regular type operator is violated, by transforming the
integral equations to integral equations of Fredholm of the second type with
sufficiently smooth coefficients and by using the two theories of the Tikhonov
regularization and reproducing kernels. And we can deal with a general linear
singular integral equation, however, for simplicity, we state the results for this
most typical case (1.1).

A brief outline of this paper is as follows. We shall use the Paley-Wiener
space as the approximate function space and so, in Section 2 we introduce
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their fundamental properties. In Scction 3 using the properties, we construct
an approximate solution for the equation (1.1) based on the Tikhonov reg-
ularization and the theory of reproducing kernels. In Scction 4, in order to
guarantee the validity of our method we introduce a concrete analytic repre-
sentation of the approximate solutions for the Carleman’s integral equation
for the case of the whole space and with constant coefficients. In Section 5
we sumimarize our resuit.

2 Paley-Wiener space and reproducing ker-
nels

At first we shall fix notations following {10, 11] and at the same time we shall
show the basic relation of the sampling theory (sinc method) and the theory
of reproducing kernels.

We consider the integral transform, for g € L? (—%, %), (h > 0)

f(z) = 51; /_F g(t)e™** dt. (2.1)

ﬁ_
In order to identify the image spacc following the theory of reproducing
kernels [9], we form the reproducing kernel

1 7l'/fl- R
Kh(z,'ﬁ) = Q}' ., e~ i#to—tut ¢
1
= —7;'(?—:—5 sin — (Z —_ U) (22)

The image space of (2.1) is called the Paley-Wicner space W () (= W)
comprised of all entire functions of exponential type satisfying the following
conditions:

|f(2)] £ Cexp (%)
and

/ F(@)? dz < oo
R
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for some constant C' and as |2| — co. From the identity we have

. i 1 Y
Kn(jh,j'h) = 55(3,3 )

with the Kronecker’s 6. Since §(4, j’) is the reproducing kernel for the Hilbert
space £, from the general theory of integral transforms and the Parseval’s
identity we have the isometric identities in (2.1)

e |, 00 at = h 321560 = [ @ do

This means that the reproducing kernel Hilbert space Hg, with Kj,(z, %)
is characterized as a space comprising the Paley-Wiener space W;, with the
norm squares defined above. Here we used the well-known result that {jh};
is a unique set for the Paley-Wiener space W, that is, f(jh) = 0 for all j
implies f = 0. Then, the reproducing property of K (z,%) states that

f(IE) = (f(')’Kh('aw))HKh

= k) fGRK(ih,z)

- /R FE) K€, z) e,

in particular, for x € R. This representation is the sampling theorem which
represents the whole data f(z) in terms of the discrete data {f(jh)};. Fur-
thermore, refer to [9] for a general result of the sampling theory and error
estimates for some finite points {hj};.

3 Construction of approximate solutions

Note that L in (1.1) is a bounded linear operator from W}, into L?, as we see
from the Cauchy-Schwarz inequality and a boundedness of the finite Hilbert
transform, see [7]. Then, from [10] and [5] the application of reproducing
kernels to the Tikhonov regularization is given by the following propositions:
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Proposition 1. For A > 0 we introduce the inner product in Wy, and denote
it by Wy, (L; X) as

(f1, 2wy = A(f1, f2)w,, + (Lf1, Lf2)re,

then Wy, (L; \) becornes the Hilbert space with the reproducing kernel Kx(p, q)
and satisfying the equation

Kh('a Q) = ()‘I + L*L)K,\(-, Q)a

where L* is the adjoint of L : W), — L2.

Proposition 2. For any A > 0 and g € L?, the extremal function fxg of the
following problem

. 2 T ‘
nf (XS, + ILF = gllEs) (3.1)
exists uniquely and f3 , is represented by

f;,g(p) = (97 LK/\(-ap))Iﬁ (32)

which is the member of W}, attaining the infimum in (3.1).

In (3.2), when g contains errors or noises, we need its error estimation. For
this we can obtain the general result, see [5].

Proposition 3. In (3.2), we obtain the estirnate

@) < \/%\/K@,p“')ngnm.

For the properties and crror estimates we can take the limit
im fx ,(p).
lim 3, (p)

In particular, if there exists the Moore-Penrose generalized solution for the
operator cquation

Lf=g
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in the sense of (3.2), then the limit converges uniformly to the Moore-Penrose
generalized solution. :

From Proposition 1 the reproducing kernel K, (¢,t’) is calculated by solving
the following integral equation of Fredholm of the second kind:

SEUEE) = Ka(t,8) + TR0, LG )@ (33)

Then, it follows from Proposition 2 the extremal function f} / in (3.1) is given
by ‘

f)f,g(t) = (g’ LKA(') t))Lz' (34)
By applying the operator L to (3.3) with respect to functions of ¢ (3.3) is
reduced to

1 ; 1 .

XLtI&;,,(t,t’) = L K(t,t) + XLt(LK)\(-,t’)(p), (LKw(-1))(p))rz.  (3.5)
Therefore, LK, (+,t) is given as the solution of the integral equation of Fred-
holm of the second kind (3.5) for each fixed ¢. Note that functions in (3.5)
LK} (t,t") and L, LKp(-,t) are calculated by using Fourier’s integral and the
formula. Now we denote the Fourier transform by F

FIAIE) = f " fteie ab

and the Hilbert transform by H

[(Hyl(t) = % p.v. /_oo -g(j% d¢.

Then it is well known that

Hf = F~ (—isgné(Ff)(E))
and the Hilbert transform of the function
sin(ax) (a > 0)
is
cos(ar) — 1
= )



166

4 Example (Carleman’s equation for the case
of the whole line and with complex con-
stant coeflicients)

In this scction as a typical example of applying our method we consider
approximate solutions for Carleman’s equation for the case of the whole line
and with complex constant cocfficients a, b € C

(Ly)(t) = ay(t) + —7% p.v. / éj(o d{ =g(t) on —oco<t<oo. (4.1)

In the same way as (3.5), we obtain

1- ~ 1. - -

LB ) = LK) + S Le(LEA( 1)) (), (LEA(- 1) ()2 (4-2)
If we can find the solution LK, (¢,¢') in (4.2), then we can obtain the approx-
imate solution of (4.1) expressed by (3.4) as the extremal function of (3.1)
by virtue of Propositions in Section 3.

Let find the solution of (4.2).
Firstly, (4.2) can be rewritten as

1

- 3 1 [ - . =
B"Ltl{h(t’t') = LiK,\(t,t) + 3 / LyK(, ) (p) Le Ly K (-, ) (p) dp- (4.3)
R

From (2.2) the left-hand side of (4.3) becomes

, sinf(t—1%) beosi(t—1t)—1
sl =3 (S )

And the kernel of the integral on the right-hand side of (4.3) becomes

itlitKh(t t)
_sinF(t—t) beoskE(t—t)—1
Ltl a -_—
w(t —t') i w(t —t)
sin £(t —t') cosF(t—t')—1
w(t —t') — (b +ab)i w(t — ')

= (la* + [o%)
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Note that

Lif | <7,

sin Zt L. .
Flem-@©=p&) =9 5 if [£l=7 (4.4)

0 if &> 2

AEIGEAS { HEsh
mt| TSIV 8 e

i if E< -1,

cos 7t _ i .

F 7 )=qlE=4q 0 if -T<é<i,
—i if E>1,

0 if  Kl>%
cos 3t —1
f["’T’nT’"] &) =q@)=< —i if —-F<&<0, (4.5)
i if 0<€&<?.

Secondly, we suppose L; Ky (t,t') = p(t—t'). Then, by applying the Fourier
transform to both sides of (4.3) with respect to ¢ and using the convolution
theorem we have

—igt!

5 (ap(€) — big(€))

= EEE) +

e

—itt!

A

€

(lal* + 16]*)p(€) — (ab + ab)iq(€)) Flel(€)
and so,

_ ap(§) — biq(§)
FUl&) = S ar + oP)p@) = (ab T abjia() (4.6)

From (4.4) and (4.5) one can sce that (4.6) is rewritten as
o if  [[>3F
Flel(§) = .«\+Ta——bb|2 if ~§<&<0, (4.7)
wagp i 0<€<i.
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Taking the inverse Fourier transform

10 =5 [ Ff©e g

to (4.7) yields the solution of (4.3)

- a — b 1 . Y
LK) = 37 la — b2 2mi(t —t/) (1 - R tv))
a + b 1 i ’
eE@-t) _
N T et bR 2mi(t = 1) (eh 1)'

Therefore, the reproducing kernel K, (¢,t') is represented as follows:

1 1 f° lpgt
N e o= —#(t-t') 4
Kt t) A+ la+b22r /_,r/h ¢ ¢

N 1 1 /~1r/h. e—if(t—t') d€
A+ |a—=b%227 J, '

Theorem 1. In (4.1) for any function g € L? the best approzimate solution
fxng is represented by

1 [*> (a +b) / ° in(§—t)
% _ — N - 19 ’ d
Sxng(t) o /;oog(ﬁ) [)\ +la+ b2 J_./m ) !

(a____ b) /W/h (e
IR Sl A in(€-t) 4 )
A+ ]a—b2 J, € U

Moreover, if we take g as Lf = g for a function f € W), then we obtain the
result

}\u_g f;,h,g(t) = f(t)

and this convergence is uniformly.



169

Note that in the regular type case, that is, a? — b # 0, we can take \ = 0.
- Hence, we do not need the Tikhonov regularization in our problem. It is a
trivial case. Furthermore, since it follows from Theorem 1 that

bi’z 0 )
I _ L @ + / (=0
t.f,\ h,g / [/\+ |a+ b|2 —a/h n

|a — bJ /W/h in(§—t)
- ] d
Sraoee/, ¢ 919

one can see that for the cases A = 0 and a? — b2 £ 0
,lim Ltf(;‘,h,g(t) = g(t)
—0

at points ¢ where g is continuous.

Now we will confirm the validity of Theorem 1. For this we consider the
following examples.

Example 1 (the Hilbert transform (¢ = 0 and b = ©)).
For the extremal problem

nf {IPf - gli32},

the extremal function f3,, . attaining the infimum exists uniquely and it is
given by

f?f(,h,,g(t) = %[-w g(‘f)f .

Moreover, we have

; [cos zhr-(E —t) — 1] d¢.

[Hf;l,h,g] (t) = (97 Klz.('at))L2a

that is, [’H f';(,h,g] is the orthogonal projection of g onto the Paley- Wiener
space W,

Example 1 also means to give an approximate Hilbert transform for any L?
function g by an ordinary integral

o0

jim ~ [ 0@z [1 - eos (6 - 0)] a2 = 51 9

h—0 T
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at the points t where g is continuous.
In the case of regular operators (a® — b? # 0) it is obvious to derive the
exact solution. Indeed, in this case (4.1) becomes

(Ly)(t) = ay(t) + %’Hy(t) =g(t) on —o0<t<oo.
Applying H to both sides of this yields
aHy(t) + T H(HY)(t) = Hg().
Since
HHy = —
one knows that
aHy(t) - Ju(t) = Ha(d)

Hence, we obtain an explicit solution

1 b
t) = gz {aatt) - Fra) }. (48)
On the other hand, it follows from Theorem 1 and Example 1
el = 2 () / e L [Fenen aq) ag
fO,h,,g( ) - o g a+b _% a_b o n

9(5) asinz};—(ﬁ —t)+ b (1 - COS%(E —t)>] d¢

- 7r(a2 ) /

= a2 [a(g,Kh( ) = bifin,(®)] -

Consequently, as h — 0,

fina® = v(0) = 5z { a0t - SHa(0)}

which is cquivalent to (4.8).
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Next, for the irregular cases, a®? — b? = 0, the integral equations have the
solutions only for very special functions g.
For example, we consider a casc of a = b = %, that is,

(Ly)(t) = %y(t) + %’Hy(t) =g(t) on —oo<t< oo (4.9)

This equation implies that g(¢) is the boundary value of an analytic function
in the upper half-plane of C.
Since H(Hy) = —y, we see that

. 1 1
ig(t) = 571.1/ — 5y = Hg.

Therefore, we know that the solvability condition for (4.9) is

~59(t) — SHg(t) =0,

see, pp. 270 [1] for the details. And then it can be easily seen that solutions
of (4.9) can be described by

y(t) = g(t) + H_(1), (4.10)

where H_ is the boundary value of any analytic function in the lower half-
plane of C.

Example 2 (an irregular case (a = b= 3)).
From Theorem 1 and Example 1 we obtain the extremal function related with

(4.9) as follows ;
fiong(®)

I

}‘1_136 f:\k,h,g (t)

- 517?/_ g(é)i(il—t) [1 - e RE0] dg

= % [Z.f’)"-‘t,h,g(t) + (9, Kh('at))Lz] :

Furthermore, if the condition Hg = ig for ezistence of the solutions is ful-
filled, then

,llif(‘) fiongt) = % [i{(—Hg(t)) + g] = g(2),

s 1 1
lim L, flong(t) = 59(t) + 5-Hg(t) = 9(£)

at the points t where g(t) is continuous. This result coincides with (4.10).
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Similarly, in a case of a = —b = 1, that is,

(Ly)(t) = %y(t) - %'Hy(t) =g(t) on —o0o0o<t<oo. (4.11)

It implies that g(t) is the boundary value of an analytic function in the lower

half-plane of C. Then, since H(Hy) = —y, the solvability condition for (4.11)
Is

1 i
—§g(t) + -2-Hg(t) = 0.
Therefore, solutions of (4.11) can be given by

y(t) = g(t) + H. (1), (4.12)

where H, is the boundary value of any analytic function in the upper half-
plane of C.

Example 3 (an irregular case (a = —b = 3)).
From Theorem 1 and Example 1 we obtain the extremal function related with
(4.11) as follows ;

Pano®) = 5 [ 9@z [HE -1 ¢
1

i€ —1)
= 5 [=ifene(®) + (9, Kl )2]

Furthermore, if the condition Hg = —ig for existence of the solutions is
satisfied, then

1

m f1o,4(t) = 5[=i(=Hg(®)) +g]=g(),

F e 1 1
im Lo flong(t) = 39() — 5-Hg(t) = g(¢)
at the points t where g(t) is continuous. This result coincides with (4.12).

Therefore, in Theorem 1 we obtain the explicit representations of the ap-
proximate solutions of (4.1) even in the irregular cases. Surprisingly enough,
we can obtain the explicit representations of the ”solutions” for any L? func-
tion g. In [5] we gave also a new algorithm with error estimates in order to
escape the Fredholm’s integral equation and derive an effective discretization.
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5 Conclusion

In this paper we gave a new method for construction of approximate solu-
tions of Carleman’s Equation (1.1) which is deeply related to the problem for
determining the direction of crack propagation in the elastic plate mentioned
in Section 1. By employing the theory of the Reproducing Kernel we con-
sidered the approximate solutions as the extremal function of that problem
(3.1). Then, finding the function is reduced to solve the Fredholm integral
equation of the 2nd kind (3.5).

Lastly, in Section 4 we considered a concrete example of Carleman’s Equa-
tion in the whole line with complex constant coefficients and compared our
result with exact solutions. As a result we saw that they coincide in some
examples including both cases of regular and irregular type operators.
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