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1 Introduction
In this paper, wc report a new concept and method of construction of ap-
proxiIriate solutions for linear singular integral equations by using tfle two
tlicories of the Tikhonov regularization and reproducing kernels.

The tbeory of reproducing kernels has been developed and investigated by
many authors. Recently, Saitoh [10] and co-researchers [6] consider appli-
cations of the theory to construction of approxirnatc solutions for bounded
linear operator equations on Hilbert spaces by combining the theory with
the lincar operators. This method can be applied to singular integral equa-
tions since it is well known that singular integral operators on $L^{2}$ space are
bounded linear operators, see [7].

Singular integral cquations are presently encountered in a wide range of
matliematical models, for instance in acoustics, fluid dynamics, elasticity
and fracture mechanics. Particularly, crack problems in elasticity lead to
singular integral equations by the potential theory and [2, 4] showed thc
uniquely existence of solution of the problem by proving the compactness
of the singular intcgral operator. Moreover, about a problein for prediction
of the direction of crack propagation in the elastic plate there only exist
some criteria in engineering sense. Unfortunately, we can not know which
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criterion is true and the best becausc it is very difficult to measure the aiigle
of crack propagation by experimcnt. Althougli the difference among the
criteria has been discussed by many authors, it rcinains an open problem.
One of difficulty comparing the criteria is to calculate the energy release
rate at the crack tip, which is a rate of the energy, pcr unit lengtb along
the crack edge, that is supplied by the elastic energy in the body aiid by
the loading system in creating the new crack surface. Therefore, in order
to evaluate the energy relcasc rate defined by the released potential energy
as the crack increases a unit length we need to construet the solution in
the elastie plate with virtual kinked crack extension. Itou [3] considered
tbe formulation of the kinked crack problem in linearized elastic plate and
introduced the procedure for reducing the problem to a singular integral
equation by employing a conformal rnapping $tccIinique$ (cf. [8]). Then, an
explicit representation of the solution is required for discussing the difference
among the criteria.

As a typical singular integral equation, we shall coiisider the Carleman’s
equatioii over a real interval, for any $L^{2}(-1,1)(\equiv L^{2})$ funetion $g$ and for real
or complex valued contiriuous (or bounded integrable) functions $a$ $rb$

$(Ly)(t) \equiv a(t)y(t)+\frac{b(t)}{\pi i}p.v$ . $/-1+1 \frac{y(\zeta)}{\zeta-t}d\zeta=g(t)$ on $-1<t<1(1.1)$

in the class of the functions of the Paley-Wiener space. We denote by p.v.
the Cauchy’s principal value of the integral. According to [8], the operator
$L$ satisfying a condition $a^{2}(t)-b^{2}(t)\neq 0$ for $-1<t<1$ is called a regular
type operator. It is well known that the equation (1.1) always has an explicit
solution for a regular type operator, see also [7]. However, when $a^{2}(t)-$

$b^{2}(t)=0$ at some points $t\in(-1,1)$ , special treatment is required, see
[1]. Namely, in general it is impossible to represent the solution explicitly.
Actually, the analysis of this case is important for the kinked crack problem.
In [5] we introduced a new approach for (1.1), including the case where
the condition of a regular type operator is violated, by traiisforming the
integral equations to integral equations of Flredholm of tbe second type with
sufficiently smooth coefficients and by using the two t}ieories of the Tikhonov
regularization and reproducing kernels. And we can deal with a general linear
singular integral equation, however, for simplicity, we state the results for this
most typical case (1.1).

A brief outline of this paper is as follows. We shall use the Paley-Wiener
space as the approximate function space and so, in Section 2 we introduee
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their fundainental properties. $I_{l1}$ Section 3 using $t\}_{1}e$ properties, we construct
an approximate solution for $t\}_{1C}$ equation (1.1) based on the Tikhonov reg-
ularization and the theory of reproducing kernels. In Section 4, in order to
guarantee the validity of our niethod wc introduce a concrete analytic repre-
sentation of the approximate solutions for the Carleman’s integral equation
for the case of the whole space and with constant coefficients. In Section 5
we summarize our result.

2 Paley-Wiener space and reproducing ker-
nels

At first we shall fix notations following [10, 11] and at the same time we shall
show the basic relation of the sampling tlieory (sinc method) and the theory
of reproducing kernels.

We consider the integral transform, for $g \in L^{2}(-\frac{\pi}{h},$ $\frac{\pi}{h}),$ $(h>0)$

$f(z)= \frac{1}{2\pi}l_{\frac{\pi}{h}}^{\pi}\pi_{g(t)e^{-izt}dt}$ . (2.1)

In order to identify the image space following the theory of reproducing
kernels $[9|$ , we form the reproducing kernel

$K_{l\iota}(z,\overline{u})$ $=$ $\frac{1}{2\pi}\int_{-\pi/l\iota}^{\pi/l/}e^{-izt}\overline{e^{-iut}}dt$

$=$ $\frac{1}{\pi(z-\overline{u})}$ siii $\frac{\pi}{h}(z-$ Of$)$ . (2.2)

The image space of (2.1) is called the Paley-Wiener space $W( \frac{\pi}{h})(\equiv W_{h})$

comprised of all entire funetions of exponential type satisfying the following
conditions:

$|f(z)| \leq C\exp(\frac{\pi|z|}{h})$

and

$\int_{\mathbb{R}}|f(x)|^{2}dx<\infty$
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for some constant $C$ and as $|z|arrow\infty$ . From the identity we have

$K_{h}(jh,j’h)= \frac{1}{h}\delta(j,j’)$

with the Kronecker’s $\delta$ . Since $\delta(j,j’)$ is the reproducing kernel for the Hilbert
space $p^{2}$ , from the general theory of integral transforms and the Parseval’s
identity $wc$ have the isometric identities in (2.1)

$\frac{1}{2\pi}I_{-\frac{\pi}{h}}^{\pi}\kappa|g(t)|^{2}dt=h\sum_{j}|f(jh)|^{2}=/\mathbb{R}|f(x)|^{2}dx$.

This rneans that the reproducing kerriel Hilbert space $H_{K_{h}}$ with $K_{h}$ ( $z$ , Of)
is characterized as a space eomprising the Paley-Wiener spaee $W_{h}$ with the
norm squares defined above. Here we used the well-known result that $\{jh\}_{j}$

is a unique set for the Paley-Wiener space $W_{h}$ , that is, $f(jh)=0$ for all $j$

implies $f\equiv 0$ . Then, the reproducing property of $K_{h}(z,\overline{u})$ states that

$f(x)$ $=$ $(f(\cdot), K_{h}(\cdot, x))_{H_{K_{h}}}$

$=$
$h \sum_{j}f(jh)K_{h}(jh,x)$

$=$ $/\mathbb{R}f(\xi)K_{h}(\xi, x)d\xi$ ,

in particular, for $x\in \mathbb{R}$ . This representation is the sampling theorem which
represents the whole data $f(x)$ in terms of the discrete data $\{f(jh)\}_{j}$ . Fur-
thermore, refer to [9] for a general result of the sampling theory and error
estimates for some finite points $\{hj\}_{j}$ .

3 Construction of approximate solutions
Note tliat $L$ in (1.1) is a bounded linear operator from $W_{h}$ into $L^{2}$ , as we see
from the Cauchy-Schwarz inequality and a boundedness of the finite Hilbert
transform, see [7]. Tbcn, from [10] and [5] the application of reproducing
kerncls to the Tikhonov regularization is given by the following propositions:
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Proposition 1. For $\lambda>0$ we introdttce the inner $pr\cdot oduct$ in $\nu V_{l\iota}$ and denote
it by $Ti^{\gamma_{l}}|,(L;\lambda)$ as

$(f_{1}, f_{2})_{M^{r_{h}}(L;\lambda)}\equiv\lambda(f_{1}, f_{2})_{W_{h}}+(Lf_{1}, Lf_{2})_{L^{2}}$ ,

then $W_{l\iota}(L;\lambda)$ becomes the $Hilbe7t$ space with the reproducing kemel $K_{\lambda}(p, q)$

and satisfy $ing$ the equation

$K_{h}(\cdot, q)=(\lambda I+L^{*}L)K_{\lambda}(\cdot, q)$ ,

where $L^{*}$ is the adjoint of $L:W_{l\iota}arrow L^{2}$ .

Proposition 2. For any $\lambda>0$ and $g\in L^{2}$ , the extremal function $f_{\lambda_{2}g}^{*}$ of th$e$

following problem

$f\in W_{h}ii_{i}f(\lambda\Vert f\Vert_{W_{h}}^{2}+\Vert Lf-g\Vert_{L^{2}}^{2})$ (3.1)

extsts uniquely and $f_{\lambda,q}^{*}$ is represented by

$f_{\lambda g}^{*}(p)=(g, LK_{\lambda}(.,p))_{L^{2}})$
$(3.2_{\grave{J}}$

which is the rnember of $W_{h}$ attaining the infimum in (3.1).

In (3.2), when $g$ contains errors or noises, we need its error estimation. For
this we can obtain tfie general result, see [5].

Proposition 3. In (3.2), we obtain the estimate

$|f_{\lambda_{2}g}^{*}(p)| \leq\frac{1}{\sqrt{\lambda}}\sqrt{K(p,p)}\Vert g\Vert_{L^{2}}$ .

For the properties and error estimates we ean take the limit

$\lambdaarrow 0)1i_{I}nf_{\lambda g}^{*}(p)$ .

In particular, if there exists the Moore-Penrose generalized solution for the
operator equation

$Lf=g$
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in thc sense of (3.2), then the limit converges uniformly to the Moore-Perirose
generalized solution.

From Proposition 1 the reproducing kernel $K_{\lambda}(t, t’)$ is calculated by solving
the following iritegral equation of $R^{*}ed$liolm of the second kind:

$\frac{1}{\lambda}I\zeta_{f_{l}(t,t’)}=K_{\lambda}(t, t^{l})+\frac{1}{\lambda}(LK_{\lambda}(\cdot, t’)(p), (LK_{l\iota}(\cdot, t))(p))_{L^{2}}$ . (3.3)

Then, it follows frorn Proposition 2 the extreinal function $f_{\lambda_{\partial}g}^{*}$ in (3.1) is given
by

$f_{\lambda g}^{*})(t)=(g, LK_{\lambda}(\cdot, t))_{L^{2}}$ . (3.4)

By applying the operator $L$ to (3.3) with respect to functions of $t(3.3)$ is
reduced to

$\frac{1}{\lambda}L_{t}K,_{l},(t, t’)=L_{t}K_{\lambda}(t, t’)+\frac{1}{\lambda}L_{t}(LK_{\lambda}(\cdot, t’)(p), (LK_{l\iota}(\cdot, t))(p))_{L^{2}}$ . (3.5)

Therefore, $LK_{\lambda}(\cdot, t)$ is given as the solution of the integral equation of Red-
holm of the second kind (3.5) for each fixed $t$ . Note that functions in (3.5)
$L_{t}K_{h}(t, t’)$ and $L_{t}LK_{h}(\cdot, t)$ arc calculated by using Fourier’s integral and the
forrnula. Now we denote the Fourier transform by $\mathcal{F}$

$\mathcal{F}[f](\xi)=/-\infty\infty f(t)e^{-i\xi t}dt$

and the Hilbert transform by $\mathcal{H}$

$[ \mathcal{H}y](t)=\frac{1}{\pi}$ p.v. $/- \infty\infty\frac{y(\zeta)}{\zeta-t}d\zeta$.

Then it is well known that

$\mathcal{H}f=\mathcal{F}^{-1}(-isgn\xi(\mathcal{F}f)(\xi))$

and the Hilbert transform of the function
$\sin(ax)$

$(a>0)$
$x$

is

$\frac{\cos^{\backslash }(ax)-1}{x}$ .
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4Example (Carleman’s equation for the case
of the whole line and with complex con-
stant coefficients)

In this scction as a typical example of applying our method we consider
approximate solutions for Carleman’s equation for the case of the whole line
and with complex eonstant coefficients $a,$ $b\in \mathbb{C}$

$( \tilde{L}y)(t)\equiv ay(t)+\frac{b}{\pi i}$ p.v. $\int_{-\infty}^{\infty}\frac{y(\zeta)}{\zeta-t}d\zeta=g(t)$ on $-\infty<t<\infty$ . (4.1)

In the same way as (3.5), we obtain

$\frac{1}{\lambda}\tilde{L}_{t}K_{h}(t, t’)=\tilde{L}_{t}K_{\lambda}(t, t’)+\frac{1}{\lambda}\tilde{L}_{t}(\tilde{L}K_{\lambda}(\cdot, t’))(p),$ $(\tilde{L}K_{h}(\cdot, t))(p))_{L^{2}}$ . (4.2)

If we can find the solution $\tilde{L}K_{\lambda}(t, t^{l})$ in (4.2), then we ean obtain the approx-
imate solution of (4.1) expressed by (3.4) as the extremal function of (3.1)
by virtue of Propositions in Section 3.

Let find the solution of (4.2).
Firstly, (4.2) can be rewritten as

$\frac{1}{\lambda}\overline{L}_{t}If_{h}(t, t’)=\tilde{L}_{t}K_{\lambda}(t, t’)+\frac{1}{\lambda}\int_{\mathbb{R}}\tilde{L}_{I^{J}}K_{\lambda}(\cdot, t’)(p)\overline{L}_{t}\overline{\tilde{L}_{p}K_{h}(\cdot,t)(p)}dp$. (4.3)

Froni (2.2) the left-hand side of (4.3) becomes

$\frac{1}{\lambda}\tilde{L}_{t}K_{h}(t, t’)=\frac{1}{\lambda}(a\frac{\sin\frac{\pi}{(th}(t-t’)}{\pi-t’)}+\frac{b}{i}\frac{c\cdot os\frac{\pi}{l\prime\pi}(t-t’)-1}{(t-t)})$ .

And the kernel of $t1_{1}e$ integral on the right-hand side of (4.3) beeomes

$\tilde{L}_{t’}\tilde{L}_{t}K_{h}(t, t’)$

$=$ $\tilde{L}_{t’}(\overline{a}\frac{\sin\frac{\pi}{(tl\iota}(t-t’)}{\pi-t’)}-\overline{\frac{b}{i}}\frac{\cos\frac{\pi}{h\pi}(t-t’)-1}{(t-t)})$

$=$ $(|a|^{2}+|b|^{2}) \frac{\sin\frac{\pi}{(th}(t-t^{l})}{\pi-t’)}-(a\overline{b}+\overline{a}b)i\frac{\cos\frac{\pi}{h\pi}(t-t’)-1}{(t-t’)}$ .
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Notc tliat

$\mathcal{F}[\frac{\sin\frac{\pi t}{/\iota}}{\pi t}](\xi)\equiv p(\xi)=\{\begin{array}{l}1 if |\xi|<\frac{\pi}{h},\frac{1}{2} if |\xi|=\frac{\pi}{h},0 if |\xi|>\frac{\pi}{h},\end{array}$ (4.4)

$\mathcal{F}[\frac{1}{\pi t}](\xi)\equiv q_{1}(\xi)=\{\begin{array}{ll}i if \xi<0,-i if \xi\geq 0,\end{array}$

$\mathcal{F}[\frac{\cos\frac{\pi t}{l\iota}}{\pi t}](\xi)\equiv q_{2}(\xi)=\{\begin{array}{l}i if \xi<-\frac{\pi}{h},0 if -\frac{\pi}{h}<\xi<\frac{\pi}{h},-i if \xi>\frac{\pi}{l\iota},\end{array}$

$\mathcal{F}[\frac{c\cdot os\frac{\pi t}{\pi h}-1}{t}](\xi)\equiv q(\xi)=\{\begin{array}{l}0 if |\xi|>\frac{\pi}{h},-i if -\frac{\pi}{l\iota}<\xi<0,i if 0<\xi<\frac{\pi}{h}.\end{array}$ (4.5)

Secondly, we suppose $\tilde{L}_{t}K_{\lambda}(t, t’)\equiv\varphi(t-t’)$ . Then, by applying the Fourier
transforin to both sides of (4.3) with respect to $t$ and using the eonvolution
$tIieorcrn$ we have

$\frac{e^{-i\xi t’}}{\lambda}(ap(\xi)-biq(\xi))$

$=$ $e^{-i\xi t’} \mathcal{F}[\varphi](\xi)+\frac{e^{-i\xi t’}}{\lambda}(|a|^{2}+|b|^{2})p(\xi)-(a\overline{b}+\overline{a}b)iq(\xi))\mathcal{F}[\varphi](\xi)$

and so,

$\mathcal{F}[\varphi](\xi)=\frac{ap(\xi)-Mq(\xi)}{\lambda+(|a|^{2}+|b|^{2})p(\xi)-(a\overline{b}+\overline{a}b)iq(\xi)}$ . (4.6)

From (4.4) and (4.5) one can see that (4.6) is rewritten as

$\mathcal{F}[\varphi](\xi)=\{\begin{array}{ll}0 if |\xi|>\frac{\pi}{h},\frac{a-b}{\lambda+|a-b|^{2}} if -\frac{\pi}{\dagger\iota}<\xi<0,\frac{a+b}{\lambda+|a+b|^{2}} if 0<\xi<\frac{\pi}{h}.\end{array}$ (4.7)
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Taking the inverse Fourier transform

$f(t)= \frac{1}{2\pi}/-\infty\infty \mathcal{F}[f](\xi)e^{i\xi t}d\xi$

to (4.7) yields the solution of (4.3)

$\tilde{L}_{t}K_{\lambda}(t, t’)$ $=$ $\frac{a-b}{\lambda+|a-b|^{2}}\frac{1}{2\pi i(t-t’)}$ . $(1-e^{-\dot{\tau}^{\pi}}(t-t’))$

$+ \frac{a+b}{\lambda+|a+b|^{2}}\frac{1}{2\pi i(t-t^{l})}$ . $(e^{\frac{i\pi}{h}(t-t’)}-1)$ .

Therefore, the reproducing kernel $K_{\lambda}(t, t’)$ is represented as follows:

$K_{\lambda}(t, t^{l})$ $=$ $\frac{1}{\lambda+|a+b|^{2}}\frac{1}{2\pi}/-\pi/h^{e^{-i\xi(t-t’)}d\xi}0$

$+ \frac{1}{\lambda+|a-b|^{2}}\frac{1}{2\pi}/0^{\pi/h_{e^{-i\xi(t-t’)}d\xi}}$.

Theorem 1. In (4.1) for any function $g\in L^{2}$ the best approxirnate solution
$f_{\lambda,h_{y}g}^{*}$ is represented by

$f_{\lambda,l\iota,g}^{*}(t)$ $=$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}g(\xi)[\frac{\overline{(a+b)}}{\lambda+|a+b|^{2}}\int_{-\pi/h}^{0}e^{i\eta(\xi-t)}d\eta$

$+ \frac{\overline{(a-b)}}{\lambda+|a-b|^{2}}\int_{0}^{\pi/h}e^{i\eta(\xi-t)}d\eta$ $d\xi$ .

$\Lambda f_{07}eover\cdot$, if we take $g$ as $\tilde{L}f=g$ for a function $f\in W_{l\iota}$ , then we obtain the
result

$\lambdaarrow 01i_{I11}f_{\lambda,’\iota_{2}g}^{*}(t)=f(t)$

and this convergence is uniforrnly.
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Notc that in tlie regular type case, that is, $a^{2}-b^{2}\neq 0$ , we can take $\lambda=0$ .
Hence, we do not need the Tikhoiiov regularization in our problem. It is a
trivial case. Furthcrrnore, since it follows from Theorem 1 that

$\tilde{L}_{t}f_{\lambda,h_{2}g}^{*}(t)$ $=$ $\frac{1}{2\pi}/-\infty\infty g(\xi)[\frac{|a+b|^{2}}{\lambda+|a+b|^{2}}\int_{-\pi/h}^{0}e^{i\eta(\xi-t)}d\eta$

$+ \frac{|a-b|^{2}}{\lambda+|a-b|^{2}}/0^{\pi/h_{e^{i\eta(\xi-t)}d\eta}}$ $d\xi$ .

one can see that for $t\}_{1e}$ cases $\lambda=0$ and $a^{2}-b^{2}\neq 0$

$;_{\iotaarrow 0}^{1i_{l}n\overline{L}_{t}f_{0,’\iota,g}^{*}(t)}=g(t)$

at points $t$ where $g$ is continuous.

Now we will confirm the validity of Theorem 1. For this we consider the
following examples.

Example 1 (the Hilbert transform ($a=0$ and $b=i$)).
For the extremal problem

$f\in W_{h}i_{I1}f\{\Vert \mathcal{H}f-g\Vert_{L^{2}}^{2}\}$ ,

the extremal function $f_{\mathcal{H},hg}^{*}$

)
attaining the $ir\iota fimu7n$ er.ists uniquely and it is

given by

$f_{\mathcal{H},l,g}^{*}(t)= \frac{1}{\pi}/-\infty\infty g(\xi)\frac{1}{\xi-t}[\cos\frac{\pi}{h}(\xi-t)-1]d\xi$.

Moreover, we have

$[\mathcal{H}f_{H,h,g}^{*}](t)=(g, K_{h}(\cdot, t))_{L^{2}}$ ,

that is, $[\mathcal{H}f_{\mathcal{H},h_{t}g}^{*}]$ is the orthogonal projection of $g$ onto the Paley- Wiener
space $W_{h}$ .
Example 1 also means to give an approximate Hilbert transform for any $L^{2}$

function $g$ by an ordinary integral

$\lim_{harrow 0}\frac{1}{\pi}\int_{-\infty}^{\infty}g(\xi)\frac{1}{\xi-t}[1-\cos\frac{\pi}{h}(\xi-t)]d\xi=[\mathcal{H}g](t)$
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at the points $t$ where $g$ is continuous.
In the case of regular operators $(a^{2}-b^{2}\neq 0)$ it is obvious to derive the

exact solution. Indeed, in this case (4.1) becomes

$( \tilde{L}y)(t)=ay(t)+\frac{b}{i}\mathcal{H}y(t)=g(t)$ on $-\infty<t<\infty$ .

Applying $\mathcal{H}$ to both sides of this yields

$a \mathcal{H}y(t)+\frac{b}{i}\mathcal{H}(\mathcal{H}y)(t)=\mathcal{H}g(t)$ .

Since

$\mathcal{H}\mathcal{H}y=-y$ ,

one knows that

$a \mathcal{H}y(t)-\frac{b}{i}y(t)=\mathcal{H}g(t)$ .

Hencc, we obtain an explicit solution

$y(t)= \frac{1}{a^{2}-b^{2}}\{ag(t)-\frac{b}{i}\mathcal{H}g(t)\}$ . (4.8)

$()n$ the other hand, it follows from Theorem 1 and Example 1

$f_{0,l\iota,g}^{*}(t)$ $=$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}g(\xi)[\frac{1}{a+b}\int_{-\frac{n}{h}}^{0}e^{i_{7\prime}(\xi-t)}d\eta+\frac{1}{a-b}\int_{0^{\hslash}}^{\pi}e^{i\eta(\xi-t)}d\eta]d\xi$

$=$ $\frac{1}{\pi(a^{2}-b^{2})}\int_{-\infty}^{\infty}\frac{g(\xi)}{\xi-t}[a\sin\frac{\pi}{h}(\xi-t)+M(1-\cos\frac{\pi}{h}(\xi-t))]d\xi$

$=$ $\frac{1}{a^{2}-b^{2}}[a(g, K_{h}(\cdot, t))_{L^{2}}-bif_{\mathcal{H},l\iota_{r}g}^{*}(t)]$ .

Consequently, as $harrow 0$ ,

$f_{0,’\iota,g}^{*}(t) arrow y(t)=\frac{1}{a^{2}-b^{2}}\{ag(t)-\frac{b}{i}\mathcal{H}g(t)\}$

wliich is equivalent to (4.8).
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Next, for the irregular $CR\grave{>}Ci^{\gamma},,$ $a^{2}-b^{2}=0$ , the iiitegral equations }$iave$ the
solutions only for very special functions $g$ .

For example, we consider a case of $a=b= \frac{1}{2}$ , that is,

$( \tilde{L}y)(t)=\frac{1}{2}y(t)+\frac{1}{2i}\mathcal{H}y(t)=g(t)$ on $-\infty<t<\infty$ . (4.9)

This equation implies that $g(t)$ is the boundary value of an analytic function
in the upper half-plane of $\mathbb{C}$ .

Since $\mathcal{H}(\mathcal{H}y)=-y$ , we see that

$ig(t)= \frac{1}{2}\mathcal{H}y-\frac{1}{2i}y=\mathcal{H}g$ .

Therefore, we know that the solvability condition for (4.9) is

$- \frac{1}{2}g(t)-\frac{i}{2}\mathcal{H}g(t)=0$ ,

see, pp. 270 [1] for the details. And then it can be easily seen that solutions
of (4.9) can be described by

$y(t)=g(t)+H_{-}(t)$ , (4.10)

where $H_{-}$ is the boundary value of any analytic function in the lower half-
plane of $\mathbb{C}$ .
Example 2 (an irregular case $(a=b= \frac{1}{2})$ ).
From Theorem 1 and Example 1 we obtain the extremal function related with
(4.9) as follows;

$f_{+0,h,g}^{*}(t)$ $\equiv$
$\lambdaarrow 0lin1f_{\lambda,;_{\iota_{1}g}}^{*}(t)$

$=$ $\frac{1}{2\pi}/-\infty\infty g(\xi)\frac{1}{i(\xi-t)}[1-e^{-i\not\in(\xi-t)}]d\xi$

$=$ $\frac{1}{2}[if_{\mathcal{H},l\prime,g}^{*}’(t)+(g, K_{l\iota}(\cdot, t))_{L^{2}}]$ .

Furthermore, if the condition $\mathcal{H}g=ig$ for existence of the solutions is $fulrightarrow$

filled, then

$\lim_{harrow 0}f_{+0,h,g}^{*}(t)$ $=$ $\frac{1}{2}[i(-\mathcal{H}g(t))+g]=g(t)$ ,

$i\iotaarrow 01i_{I}n\tilde{L}_{t}f_{+0,h,g}^{*}(t)$ $=$ $\frac{1}{2}g(t)+\frac{1}{2i}\mathcal{H}g(t)=g(t)$

at the points $t$ where $g(t)$ is continuous. This result coincides with (4.10).
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Similarly, in a case of $a=-b= \frac{1}{2}$ , that is,

$( \tilde{L}y)(t)=\frac{1}{2}y(t)-\frac{1}{2i}\mathcal{H}y(t)=g(t)$ on $-\infty<t<\infty$ . (4.11)

It implies that $g(t)$ is the boundary value of an analytic function in tlie lower
lialf-plane of $\mathbb{C}$ . $T$}$ien$ , since $\mathcal{H}(\mathcal{H}y)=-y$ , the solvability condition for (4.11)
is

$- \frac{1}{2}g(t)+\frac{i}{2}\mathcal{H}g(t)=0$.

Therefore, solutions of (4.11) can be given by

$y(t)=g(t)+H_{+}(t)$ , (4.12)

where $H_{+}$ is $tI_{1}c$ boundary value of any analytic function in the upper half-
plane of $\mathbb{C}$ .

Example 3 (an irregular case $(a=-b= \frac{1}{2})$ ).
Fkom Theorem 1 and Example 1 we obtain the extremal function related with
(4.11) as follows ;

$f_{+0,h,g}^{*}(t)$ $=$ $\frac{1}{2\pi}/-\infty\infty g(\xi)\frac{1}{i(\xi-t)}[e^{i_{F}^{\pi}(\xi-t)}-1]d\xi$

$=$ $\frac{1}{2}[-if_{\mathcal{H},l\prime,,g}^{*}(t)+(g, K_{h}(\cdot, t))_{L^{2}}]$ .

Furthermore, if the condition $\mathcal{H}g=-ig$ for existence of the solutions is
$\backslash \cdot atisfied_{j}$ then

$l\iotaarrow 01i\iota nf_{+0,’\prime,,g}^{*}(t)$
$=$ $\frac{1}{2}[-i(-\mathcal{H}g(t))+g]=g(t)$ ,

$\lim_{/\iotaarrow 0}\tilde{L}_{t}f_{+0,h,g}^{*}(t)$ $=$ $\frac{1}{2}g(t)-\frac{1}{2i}\mathcal{H}g(t)=g(t)$

at the points $t$ where $g(t)$ is continuous. This result coincides with (4.12).

Therefore, in Theorem 1 we obtain the explicit representations of the ap-
proximate solutions of (4.1) even in the irregular cases. Surprisingly enough,
we can obtain the explicit representations of the “ solutions” for any $L^{2}$ func-
tion $g$ . In [5] wc gave also a new algorithm witli error estimates in order to
escape the Fredholm’s integral equation and derive all effeetive discretization.
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5 Conclusion
In this paper we gave a new inethod for construction of approximate solu-
tions of Carlernan’s Equation (1.1) which is deeply related to the problein for
determining the direction of crack propagation in the elastic plate mentioned
in Section 1. By ernploying the theory of the Reproducing Kernel we con-
sidered the approximate solutions as the extremal function of that problem
(3.1). Theii, finding the function is reduced to solve the Fredholm integral
equation of tlie 2nd kind (3.5).

Lastly, in Section 4 we considered a coiicrete example of Carleman‘s Equa-
tion in the whole line with complex constant coefficients and compared our
result with exact solutions. As a result we saw that they coincide in some
examples including both cases of regular and irregular type operators.
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