Specker phenomenon in the countable case

Jun Nakamura

Waseda University

abstract

We show that Non-commutative Specker-Eda number \mathfrak{se}_{nc} is equal to Specker-Eda number \mathfrak{se} . \mathfrak{se}_{nc} is the smallest cardinalty of subgroups of $\mathbf{x}_{n<\omega}\mathbb{Z}_n$ which exhibit non-commutative Specker phenomenon. And \mathfrak{se} is the smallest cardinaty of subgroups of \mathbb{Z}^{ω} which exhibit specker phenomenon.

1 Introduction

In 1950, E.Specker [1] proved that any homomorphism from \mathbb{Z}^{ω} to \mathbb{Z} factors through \mathbb{Z}^n for some n. This theorem is reduced to the following: $h(e_n) = 0$ for all but finitely many n for any homomorphism to \mathbb{Z} where e_n is the element of \mathbb{Z}^{ω} whose n-th component is 1 and whose other component are all zero. A.Blass [4] named this fact "Specker phenomenon" in 1994.

E.Specker also established subgroups of \mathbb{Z}^{ω} which exhibit Specker phenomenon. But these subgroup have the cardinalty of the continuum 2^{\aleph_0} . So, the next quetion naturally arises whether the smallest cardinalty of subgroups which exhibit Specker phenomenon is 2^{\aleph_0} . In 1983, it was turned out that this question is undecidable on ZFC by K.Eda [2]. And in 1986, S.Kamo [3] also considered a related question in Cohen extension. Then, A.Blass [4] studied the cardinalty and named it Specker-Eda number \mathfrak{se} . He pointed out Eda's proof established that $\mathfrak{p} \leq \mathfrak{se} \leq \mathfrak{d}$. In 1994, he proved that $\mathfrak{e}_{\mathfrak{l}} \leq \mathfrak{se} \leq \mathfrak{b}$. Finally, in 1996, J.Brendle and S.Shelah [5] proved that $\mathfrak{se} = \mathfrak{e}_{\mathfrak{l}} = \min\{\mathfrak{e}, \mathfrak{b}\}$. Now, we consider the non-commutative case.

2 Definition of the complete free product

Definition 2.1.

Let G_i $(i \in I)$ be groups s.t $G_i \cap G_j = \{e\}$ for any $i \neq j \in I$. we call elements of $\bigcup G_i$ letters. A word W is a function

 $W: \overline{W} \to \bigcup_{i \in I} G_i \quad \overline{W}$ is a linearly ordered set and $\{\alpha \in \overline{W} \mid W(\alpha) \in G_i\}$ is finite for any $i \in I$. The class of all words is denoted by $\mathcal{W}(G_i : i \in I)$ (abbreviated by \mathcal{W}).

Definition 2.2. The identification of words

U and V are isomorphic $(U \equiv V)$ if there exists an order isomorphism $\varphi: \overline{U} \to \overline{V}$ s.t $\forall \alpha \in \overline{U} (U(\alpha) = V(\varphi(\alpha))$.

It is easily seen that \mathcal{W} becomes a set under this identification.

Definition 2.3. The restricted word of W

For a subset $X \subseteq I$, the restricted word W_X of W is given by the function

 $W_X: \overline{W_X} \to \bigcup_{i \in I} G_i$ where $\overline{W_X} = \{ \alpha \in \overline{W} | W(\alpha) \in \bigcup_{i \in X} G_i \}$ and $W_X(\alpha) = W(\alpha)$ for all $\alpha \in \overline{W_X}$. Hence $W_X \in \mathcal{W}$. If X is finite, then we can regard W_X as an element of the free product $*_{i \in X} G_i$.

Definition 2.4. The equivalence relation on words

U and V are equivalent $(U \sim V)$ if $U_F = V_F$ for all $F \subset I$ where we regard U_F and V_F as elements of the free product $*_{i \in F} G_i$.

So, " $U_F = V_F$ " means that they are equivalent in the sense of the free product $*_{i \in F}G_i$.

Let [W] be the equivalent class of a word W. The composition of two words and the inverse of a word are defined naturally. Thus $W/ \sim = \{[W] \mid W \in W\}$ becomes a group.

Definition 2.5. The complete free product $\mathbf{x}_{i \in I} G_i$

 $\mathbf{x}_{i \in I} G_i$ is the group $\mathcal{W}(G_i : i \in I) / \sim$. Clearly, if I is finite, then $\mathbf{x}_{i \in I} G_i$ is isomorphic to the free product $*_{i \in I} G_i$.

3 Non-commutative Specker-Eda number

Theorem 3.1. Non-commutative Specker's theorem (G.Higman [6], Theorem 1)

Let F be a free group. For any homomorphism h from $\mathbf{x}_{n < \omega} \mathbb{Z}_n$ to F, there exists a natural number n such that h factors through $*_{i < n} \mathbb{Z}_i$.



 $h = \overline{h} \circ p_n$ p_n : projection s.t $p_n(W) = W_n$

We can regard a word W as an element of the free product $*_{i < n} \mathbb{Z}_i * \mathbf{x}_{n \leq i < \omega} \mathbb{Z}_i$. So, this theorem means that there exists an n such that $h[\mathbf{x}_{n \leq i < \omega} \mathbb{Z}_i] = \{e\}$ where e is the identity of F. Similarly to the commutative case, this theorem is reduced the following: $h(\delta_n) = e$ for all but finitely n for any homomorphism h to F where δ_n is 1 of \mathbb{Z}_n . If $F = \mathbb{Z}$, we call this non-commutative Specker phenomenon(abbreviated by nc-Specker phenomenon).

Definition 3.1. Non-commutative Specker-Eda number It is denoted by \mathfrak{se}_{nc} .

 $\mathfrak{se}_{\mathfrak{nc}} = \min\{|G| \ : \ \ast_{n < \omega} \mathbb{Z}_n \leq G \leq \mathbf{x}_{n < \omega} \mathbb{Z}_n \text{ and } G \text{ exhibits nc-Specker phenomenon.} \}$

Theorem 3.2. $\mathfrak{se}_{\mathfrak{nc}} = \mathfrak{se}$

Proof.

Firstly, we show that $\mathfrak{se} \leq \mathfrak{se}_{nc}$. Let $\sigma : \mathbf{x}_{n < \omega} \mathbb{Z}_n \to \mathbb{Z}^{\omega}$ be the canonical homomorphism such that $\sigma(W)(n) = W_{\{n\}}$ $(n < \omega)$ and G be a subgroup of $\mathbf{x}_{n < \omega} \mathbb{Z}_n$ which exhibits nc-Specker phenomenon and whose cardinality is \mathfrak{se}_{nc} . Then $\sigma[G]$ also exhibits Specker phenomenon. Because, let h:

 $\sigma[G] \to \mathbb{Z}$ be a homomorphism. The composition of h and σ is a homomorphism from G to \mathbb{Z} . Therefore, $h(e_n) = h \circ \sigma(\delta_n) = 0$ for all but finitely many n. Then, we get $\mathfrak{se} \leq |\sigma[G]| \leq |G| = \mathfrak{se}_{nc}$.

Next, we show that $\mathfrak{se}_{\mathfrak{nc}} \leq \mathfrak{se}$. To show this, two lemmas are necessary.

Lemma 3.1.
$$x, a \in \mathbb{Z}$$

 $\forall n < \omega \left(n! \mid x - \sum_{i=1}^{n-1} i! a \right) \Rightarrow x = 0 \text{ and } a = 0$
Proof.

we can prove by induction that $2 \le n$ implies $\sum_{i=1}^{n-1} i! \le 2(n-1)!$. Therefore, we can easily find a natural number n such that $|x - \sum_{i=1}^{n-1} i!a| < n!$ and $|x - \sum_{i=1}^{n} i!a| < (n+1)!$. It means that $x - \sum_{i=1}^{n-1} i!a = 0 = x - \sum_{i=1}^{n} i!a$ \Box

To show the second lemma, we consider the following words: U_{∞} , U_n . For $W \in \mathbf{x}_{n < \omega} \mathbb{Z}_n$, let $V_n = W_{\omega \setminus n}$. To define U_{∞} , U_n , we consider such a tree $T = \langle \bigcup_{n < \omega} (\prod_{1 \le m \le n+1} m), \subseteq \rangle$ like the binary tree $< 2^{<\omega}, \subseteq >$. Then we order T lexicographically, i.e; If $x, y \in T$, define $x \triangleleft y$ iff x(n) < y(n) where $n \in \operatorname{dom}(x) \cap \operatorname{dom}(y)$ is the least natural number such that $x(n) \neq y(n)$, or $\operatorname{dom}(x) < \operatorname{dom}(y)$. Consequently, T is linearly orded by this lexicographical order. Now, we define U_{∞}, U_n as follows.

$$\overline{U_{\infty}} = T, U_{\infty}(x) = V_n \quad (x \in \operatorname{Lev}_n(T) = \prod_{1 \le m \le n+1} m)$$

 $\overline{U_n} = \{y_n\} \cup \bigcup_{n+1 \le k < \omega} \operatorname{Lev}_k(T) \text{ where } y_n \text{ is an arbitary element of } \operatorname{Lev}_n(T),$
 $U_n(x) = V_k \quad (x \in \operatorname{Lev}_k(T))$

These definition is not exact because V_n may not be a letter. But we can naturally regard them as the composition of infinitary many words, since V_n does not contain letters δ_i for i < n. And we find that they realy

become a word.

$$V_3 \quad \cdots \\ V_3 \quad \cdots \\ V_3 \quad \cdots \\ V_3 \quad \cdots \\ V_3 \quad \cdots \\ V_2 \quad V_3 \quad \cdots \\ V_2 \quad \cdots \\ V_1 \quad V_2 \quad \cdots \\ V_2 \quad V_3 \quad \cdots \\ V_{n+2} \quad \cdots \\ \vdots \\ U_n = V_n \quad \vdots \\ V_{n+2} \quad \cdots \\ \\ v_$$

Now, we mention the second lemma.

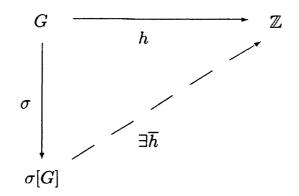
Lemma 3.2. Let G be a subgroup of $\mathbf{x}_{n < \omega} \mathbb{Z}_n$ containing all δ_n . If, for every $W \in \ker(\sigma) \cap G$, G contains U_{∞} and all U_n coressponding to W,

 V_{n+1} :

 V_{n+2} ...

• • •

then any homomorphism h from G to \mathbb{Z} factors thorough $\sigma[G]$.



 $h = \overline{h} \circ \sigma$ σ :canonical homomorphism *Proof.*

It is sufficient to show that $\ker(\sigma) \cap G \subseteq \ker(h)$. Let G' be a commutator subgroup of G and [W] be a element of G/G'. Let $W \in \ker(\sigma) \cap G$. Then $[W] = [V_n]$ for all n because G/G' is an abelian group. By the figure of U_{∞} , U_n , we have

$$[U_{\infty}] = \sum_{i=1}^{n-1} i! [V_{i-1}] + n! [U_{n-1}]$$
$$= \sum_{i=1}^{n-1} i! [W] + n! [U_{n-1}]$$

And there exists a homomorphism $h_0 : G' \to \mathbb{Z}$ s.t $h(x) = h_0([x])$ for any $x \in G$ by the homomorphism theorem because $G' \subseteq \ker(h)$. Therefore, we get

$$n! \mid h_0([U_\infty]) - \sum_{i=1}^{n-1} i! h_0([W]) \quad ext{for all } n$$

So, we have $h(W) = h_0([W]) = 0$ by Lemma 3.1. \Box

Now, we return to the proof of $\mathfrak{se}_{nc} \leq \mathfrak{se}$. Our goal is getting a subgroup of $\mathbf{x}_{n<\omega}\mathbb{Z}_n$ whose cardinality is \mathfrak{se} and which exhibits nc-Specker phenomenon. In the diagram of Lemma 3.2, if $\sigma[G]$ exhibits Specker phenomenon, then G also exhibits nc-Specker phenomenon because $h(\delta_n) = \overline{h}(e_n)$. So, we take a subgroup H of \mathbb{Z}^{ω} whose cardinality is \mathfrak{se} and which exhibits Specker phenomenon. $\sigma^{-1}[H]$ also exhibits nc-Specker phenomenon, but, unfortunately, the cardinality of ker(σ) is 2^{\aleph_0} . Let Xbe a set such that $\sigma[X] = H$ and $|X| = \mathfrak{se}$. Then let G be the smallest subgroup which contains X and satisfies the clause of Lemma 3.2. Obviously, the size of G is \mathfrak{se} . And $\sigma[G]$ contains H, so $\sigma[G]$ also exhibits Specker phenomenon. Therefore, G is the desired subgroup. \Box

4 Acknowledment

I would like to thank Katuya Eda. The ideas of proofs are almost due to him. I could not finish this work without his supporting.

5 References

- 1 E.Specker "Additive Grupen von Folgen ganzer Zahlen" Portugal.Math.9(1950)131-140
- 2 K.Eda "On a Boolean power of a torsion-free abelian group." J.Algebra 82(1983)84-93
- **3** S.Kamo "On the slender property of certain Boolean algebras." J.Math.Soc.38(1986) 493-500
- 4 A.Blass "Cardinal characteristic and the product of countably many infinite cyclic groups." J.Algebra 169(1994)512-540
- 5 J.Brendle and S.Shelah "Evasion and Prediction." J.London Math.Soc.53(1996)19-27
- 6 G.Higman "Unrestricted free pruducts and varieties of topological groups." J.London Math.Soc.27(1952)73-81
- 7 K.Eda "Free σ -products and noncommutatively slender groups." J.Algebra 148(1992)243-263