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abstract

We show that Non-commutative Specker-Eda number $se_{nc}$ is equal to
Specker-Eda number se. $se_{\mathfrak{n}c}$ is the smallest cardinalty of subgroups of
$x_{n<\omega}\mathbb{Z}_{n}$ which exhibit non-commutative Specker phenomenon. And $\epsilon e$

is the smallest cardinaty of subgroups of $\mathbb{Z}^{\omega}$ which exhibit specker phe-
nomenon.

1 Introduction
In 1950, E.Specker [1] proved that any homomorphism from $\mathbb{Z}^{\omega}$ to $\mathbb{Z}$

factors through $\mathbb{Z}^{n}$ for some $n$ . This theorem is reduced to the following:
$h(e_{n})=0$ for all but finitely many $n$ for any homomorphism to $\mathbb{Z}$ where
$e_{n}$ is the element of $\mathbb{Z}^{\omega}$ whose n-th component is 1 and whose other com-
ponent are all zero. A.Blass [4] named this fact “Specker phenomenon”
in 1994.

E.Specker also established subgroups of $\mathbb{Z}^{\omega}$ which exhibit Specker phe-
nomenon. But these subgroup have the cardinalty of the continuum $2^{\aleph_{0}}$ .
So, the next quetion naturally arises whether the smallest cardinalty of
subgroups which exhibit Specker phenomenon is $2^{N_{0}}$ . In 1983, it was
turned out that this question is undecidable on ZFC by K.Eda [2]. And
in 1986, S.Kamo [3] also considered a related question in Cohen exten-
sion. Then, A.Blass [4] studied the cardinalty and named it Specker-Eda
number se. He pointed out Eda’s proof established that $\mathfrak{p}\leq$ sc $\leq\theta$ .
In 1994, he proved that $\iota_{1}\leq$ se $\leq b$ . Finally, in 1996, J.Brendle and
S.Shelah [5] proved that se $=e_{1}= \min\{e, b\}$ . Now, we consider the non-
commutative case.
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2Definition of the complete free product
Definition 2.1.

Let $G_{i}(i\in I)$ be groups s.t $G_{i}\cap G_{j}=\{e\}$ for any $i\neq j\in I$ . we call
elements of

$\bigcup_{i\in I}G_{i}$
letters. A word $W$ is a function

$W$ :
$\overline{W}arrow\bigcup_{i\in I}G_{i}$

$\overline{W}$ is a linearly ordered set and $\{\alpha\in\overline{W}|W(\alpha)\in$

$G_{i}\}$ is finite for any $i\in I$ . The class of all words is denoted by $\mathcal{W}(G_{i}$ :
$i\in I)$ (abbreviated by $\mathcal{W}$).

Definition 2.2. The identification of words
$U$ and $V$ are isomorphic $(U\equiv V)$ if there exists an order isomorphism
$\varphi$ : $\overline{U}arrow\overline{V}$ s.t $\forall\alpha\in\overline{U}(U(\alpha)=V(\varphi(\alpha))$ .

It is easily seen that $\mathcal{W}$ becomes a set under this identification.

Definition 2.3. The restricted word of $W$

For a subset $X\subseteq I$ , the restricted word $W_{X}$ of $W$ is given by the function

$W_{X}$ : $\overline{W_{X}}$ $arrow$
$\bigcup_{i\in I}G_{i}$

where $\overline{W_{X}}=\{\alpha\in\overline{W}|W(\alpha)\in\bigcup_{i\in X}G_{i}\}$
and

$W_{X}(\alpha)=W(\alpha)$ for all $\alpha\in\overline{W_{X}}$ . Hence $W_{X}\in \mathcal{W}$ . If $X$ is finite, then we
can regard $W_{X}$ as an element of the free product $*i\in XG_{i}$ .

Definition 2.4. The equivalence relation on words
$U$ and $V$ are equivalent $(U\sim V)$ if $U_{F}=V_{F}$ for all $F\subset\subset I$ where we
regard $U_{F}$ and $V_{F}$ as elements of the free product $*i\in FG_{i}$ .
So, “ $U_{F}=V_{F}$

” means that they are equivalent in the sense of the free
product $*G$ .

Let $[W]$ be the equivalent class of a word $W$ . The composition of two
words and the inverse of a word are defined naturally. Thus $\mathcal{W}/\sim=$

$\{[W]|W\in \mathcal{W}\}$ becomes a group.

Definition 2.5. The complete free product $x_{i\in I}G_{i}$

$\chi_{\in I}G_{i}$ is the group $\mathcal{W}(G_{i} : i\in I)/\sim$ . Clearly, if $I$ is finite, then $n_{\in I}G_{i}$

is isomorphic to the free product $*G$ .
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3Non-commutative Specker-Eda number
Theorem 3.1. Non-commutative Specker’s theorem (G.Higman [6], The-
orem 1)
Let $F$ be a free group. For any homomorphism $h$ from $x_{n<\omega}\mathbb{Z}_{n}$ to $F$ ,
there exists a natural number $n$ such that $h$ factors through $*\mathbb{Z}$ .

$x_{n<\omega}\mathbb{Z}_{n}\overline{h}F$

$p_{n}*\mathbb{Z}\ovalbox{\tt\small REJECT}/$

$/\exists\overline{h}//$

$/’$

$h=\overline{h}\circ p_{n}$
$p_{n}$ : projection s.t $p_{n}(W)=W_{n}$

We can regard a word $W$ as an element of the free product $*\mathbb{Z}*$

$x_{n\leq i<\omega}\mathbb{Z}_{i}$ . So, this theorem means that there exists an $n$ such that
$h[x_{n\leq i<\omega}\mathbb{Z}_{i}]=\{e\}$ where $e$ is the identity of $F$ . Similarly to the com-
mutative case, this theorem is reduced the following: $h(\delta_{n})=e$ for all
but finitely $n$ for any homomorphism $h$ to $F$ where $\delta_{n}$ is 1 of $\mathbb{Z}_{n}$ If
$F=\mathbb{Z}$ , we call this non-commutative Specker phenomenon(abbreviated
by nc-Specker phenomenon).

Definition 3.1. Non-commutative Specker-Eda number
It is denoted by se$\mathfrak{n}c$ .

$se_{\mathfrak{n}c}=\min${ $|G|$ : $*_{n<\omega}\mathbb{Z}_{n}\leq G\leq x_{n<\omega}\mathbb{Z}_{n}$ and $G$ exhibits nc-Specker phenomenon.}

Theorem 3.2. $se_{nc}=$ se

Proof.
Firstly, we show that $s\mathfrak{e}\leq se_{\mathfrak{n}\mathfrak{c}}$ . Let $\sigma$ : $x_{n<\omega}\mathbb{Z}_{n}arrow \mathbb{Z}^{\omega}$ be the canonical
homomorphism such that $\sigma(W)(n)=W_{\{n\}}(n<\omega)$ and $G$ be a subgroup
of $x_{n<\omega}\mathbb{Z}_{n}$ which exhibits nc-Specker phenomenon and whose cardinality
is $sc_{\mathfrak{n}\mathfrak{c}}$ . Then $\sigma[G|$ also exhibits Specker phenomenon. Because, let $h$ :
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$\sigma[G]$ $arrow$ $\mathbb{Z}$ be a homomorphism. The composition of $h$ and $\sigma$ is a
homomorphism from $G$ to $\mathbb{Z}$ . Therefore, $h(e_{n})=h\circ\sigma(\delta_{n})=0$ for all but
finitely many $n$ . Then, we get $\mathfrak{S}C\leq|\sigma[G]|\leq|G|=\epsilon e_{\mathfrak{n}c}$ .

Next, we show that $se_{\mathfrak{n}c}\leq se$ . To show this, two lemmas are necessary.

Lemma 3.1. $x,$ $a\in \mathbb{Z}$

$\forall n<\omega(n!|x-\sum_{i=1}^{n-1}i!a)\Rightarrow x=0$ and $a=0$

Proof.
we can prove by induction that $2\leq n$ implies $\sum_{i=1}^{n-1}i!\leq 2(n-1)!$ . There-

fore, we can easily find a natural number $n$ such that $|x- \sum_{i=1}^{n-1}i!a|<n!$

and $|x- \sum_{i=1}^{n}i!a|<(n+1)!$ . It means that $x- \sum_{i=1}^{n-1}i!a=0=x-\sum_{i=1}^{n}i!a\square$

To show the second lemma, we consider the following words$:U_{\infty},$ $U_{n}$ .
For $W\in x_{n<\omega}\mathbb{Z}_{n}$ , let $V_{n}=W_{\omega\backslash n}$ . To define $U_{\infty},$ $U_{n}$ , we consider such
a tree

$T= \langle\bigcup_{n<\omega}(\prod_{1\leq m\leq n+1}m),$

$\subseteq\rangle$ like the binary tree $<2^{<\omega},$ $\subseteq>$ . Then

we order $T$ lexicographically, i.e; If $x,$ $y\in T$ , define $x\triangleleft y$ iff $x(n)<y(n)$

where $n\in$ dom$(x)\cap$ dom$(y)$ is the least natural number such that $x(n)\neq$

$y(n)$ , or dom$(x)<$ dom$(y)$ . Consequently, $T$ is linearly orded by this
lexicographical order. Now, we define $U_{\infty},$ $U_{n}$ as follows.

$\overline{U_{\infty}}=T,$

$U_{\infty}(x)=V_{n}(x \in Lev_{n}(T)=\prod_{1\leq m\leq n+1}m)$

$\overline{U_{n}}=\{y_{n}\}\cup\bigcup_{n+1\leq k<\omega}$
Lev$k(T)$ where $y_{n}$ is an arbitary element of $Lev_{n}(T)$ ,

$U_{n}(x)=V_{k}(x\in$ Lev$k(T))$

These definition is not exact because $V_{n}$ may not be a letter. But we
can naturally regard them as the composition of infinitary many words,

since $V_{n}$ does not contain letters $\delta_{i}$ for $i<n$ . And we find that they realy
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become a word.

$V_{3}$ .. .
$V_{3}$

$V_{3}$ . . .
$V_{2}$ $V_{3}$

$V_{1}$ $V_{2}$ .. .
$V_{2}$

$..$ .
$U_{\infty}=V_{0}$

$V_{2}$ . ..
$V_{1}$ $V_{2}$ . . .

$V_{2}$ $V_{3}$ . . .
$V_{3}$

$V_{3}$ . . .
$V_{3}$ . . . . . ....
$V_{n+2}$ . ....

$V_{n+1}$ :.
$V_{n+2}$ . . ....

$U_{n}=V_{n}$
.

$V_{n+2}$ . .....
$V_{n+1}$ :

$V_{n+2}$ . . ....
Now, we mention the second lemma.

Lemma 3.2. Let $G$ be a subgroup of $x_{n<\omega}\mathbb{Z}_{n}$ containing all $\delta_{n}$ .
If, for every $W\in ker(\sigma)\cap G,$ $G$ contains $U_{\infty}$ and all $U_{n}$ coressponding to $W$ ,
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then any homomorphism $h$ from $G$ to $\mathbb{Z}$ factors thorough $\sigma[G|$ .

$\sigma^{c_{\ovalbox{\tt\small REJECT}}}$ $\overline{\nearrow/_{\exists\overline{h}}h_{/}//}’\mathbb{Z}$

$\sigma[G]$

$h=\overline{h}\circ\sigma$
$\sigma$ :canonical homomorphism

Proof.
It is sufficient to show that $ker(\sigma)\cap G\subseteq ker(h)$ . Let $G’$ be a commutator
subgroup of $G$ and $[W|$ be a element of $G/G’$ . Let $W\in ker(\sigma)\cap G$ . Then
$[W]=[V_{n}]$ for all $n$ because $G/G’$ is an abelian group. By the figure of
$U_{\infty},$ $U_{n}$ , we have

$[U_{\infty}]$ $=$ $\sum_{i=1}^{n-1}i![V_{i-1}]+n![U_{n-1}]$

$=$ $\sum_{i=1}^{n-1}i![W]+n![U_{n-1}]$

And there exists a homomorphism $h_{0}$ : $G’arrow \mathbb{Z}$ s.t $h(x)=h_{0}([x])$

for any $x\in G$ by the homomorphism theorem because $G’\subseteq ker(h)$ .
Therefore, we get

$n!|h_{0}([U_{\infty}])- \sum_{i=1}^{n-1}i!h_{0}([W])$ for all $n$

So, we have $h(W)=h_{0}([W|)=0$ by Lemma 3.1.

Now, we return to the proof of $\mathfrak{s}e_{\mathfrak{n}c}\leq se$ . Our goal is getting a sub-
group of $x_{n<\omega}\mathbb{Z}_{n}$ whose cardinality is $sc$ and which exhibits nc-Specker
phenomenon. In the diagram of Lemma 3.2, if $\sigma[G]$ exhibits Specker phe-
nomenon, then $G$ also exhibits nc-Specker phenomenon because $h(\delta_{n})=$

$\overline{h}(e_{n})$ . So, we take a subgroup $H$ of $\mathbb{Z}^{\omega}$ whose cardinality is se and
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which exhibits Specker phenomenon. $\sigma^{-1}[H]$ also exhibits nc-Specker
phenomenon, but, unfortunately, the cardinality of $ker(\sigma)$ is $2^{\aleph_{0}}$ . Let $X$

be a set such that $\sigma[X]=H$ and $|X|=\mathfrak{s}e$ . Then let $G$ be the smallest
subgroup which contains $X$ and satisfies the clause oLemma 3.2. Ob-
viously, the size of $G$ is se. And $\sigma[G]$ contains $H$ , so $\sigma[G|$ also exhibits
Specker phenomenon. Therefore, $G$ is the desired subgroup. 口
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