Malliavin calculus applied to mathematical finance and a new formulation of the integration-by-parts

Yasushi Ishikawa

Department of Mathematics, Ehime University

1 Introduction

In recent years there appear several papers in finance on jump models and on jump-diffusion models using stochastic calculus, after the success of the Black-Scholes model. Indeed, classical [1] and [16] include chapters on jump-diffusions. Recent examples are [17], [22], [10], [11], and [27]. However, fairly restricted types of jump processes have been treated, due to the technical difficulities. For example, [1] and [16] have treated the diffusion + compound Poisson model. The so-called geometric Lévy model $S_t = S_0 e^{Z_t}$, where Z_t denotes a Lévy process (with infinite jumps), has not been included in the previous typical jump models studied in many papers.

Let S_t denote a jump-diffusion given as a solution to SDE which is driven by a Lévy process. We study here as an application of Malliavin calculus of jump type the sensitivity analysis for asset prices. Basic concept is as follows.

$$price = E^{Q}[(pay-off)].$$

Here price means today's (t = 0) value of some contingent claim (pay-off) with respect to S_t in future (t = T), and Q is a risk neutral probability.

We assume the pay-off depends on some parameter λ . We consider the marginal move of the price with respect to λ by using the integration-by-parts:

$$\frac{\partial}{\partial \lambda}(price)(\lambda) = E^{Q}[(\text{pay-off}).(\text{weight})(\lambda)].$$

The L.H.S. denotes the marginal move of the asset price with respect to λ , hence it serves to measure the stability of the price. Such quantities are called Greeks. Some examples of Greeks are *Delta*, *Vega*, *Gamma*, *Rho* and *Theta*. For the precise definition, see below.

The basic framework of this thoery on the Wiener space has been established in [8]. We study in this paper some functionals on the Wiener-Poisson space, and develop a stochastic calculus of variations to achieve the integration-by-parts formula.

2 Jump-diffusion models in closed form

Let N(dtdz) be a Poisson random measure on $[0,T] \times \mathbf{R}$ with the mean measure $dt \cdot \delta_{\{1\}}$, and W_t be a Wiener process on \mathbf{R} .

Let Z_t be a simple Lévy process given by

$$Z_t = \sigma_1 W_t + \sigma_2 \tilde{N}_t,$$

where $\tilde{N}_t = N_t - t$.

The price process S_t associated to this Z_t is defined by

$$\frac{dS_t}{S_{t-}} = r(t)dt + \sigma_1(t)dW_t + \sigma_2(t)d\tilde{N}_t, S_0 = x.$$

Here $r(t), \sigma_1(t), \sigma_2(t)$ are deterministic functions. Then S_t is represented explicitly in closed form

$$S_t = x \exp[\int_0^t \sigma_1(s) dW_s + \int_0^t (r(t) - \sigma_2(s)) ds - \frac{1}{2} \int_0^t \sigma_2^2(s) ds] \times \Pi_{k=1}^{N_t} (1 + \sigma_2(T_k))$$

where $T_1, T_2, ...$ are jump times of N_t . cf. [1] (3.2).

More generally, assume that X_t is a jump *semimartingale*, such that it is a solution to a SDE driven by a Lévy process. The price process is defined by

$$\frac{dS_t}{S_{t-}} = r(t)dt + \sigma_1(t)dW_t + \sigma_2(t)dX_t, S_0 = x.$$

Then S_t is represented also in closed form by

$$S_{t} = x \exp\left[\int_{0}^{t} \sigma_{1}(s)dW_{s} + \int_{0}^{t} (r(t) - \frac{1}{2}\sigma_{1}^{2}(s))ds + \int_{0}^{t} \sigma_{2}(s)dX_{s} - \frac{1}{2}\int_{0}^{t} \sigma_{2}^{2}(s)d[X, X]_{s}\right] \times \Pi_{s=0}^{t}((1 + \sigma_{2}(s)\Delta X_{s}) \exp(-\sigma_{2}(s)\Delta X_{s} + \frac{1}{2}(\sigma_{2}(s)\Delta X_{s})^{2})).$$

Note that the product is a infinite product in general.

Let, for example, $F = S_T, T > 0$. If we know explicitly the density of F via closed formulae above, then we can estimate E[f(F)] directly. We may then have closed forms for Greeks for "good" f. This way is called the kernel density estimation method [13]. An example of a such density is the variance gamma distribution [18]. However this is not always the case. For example, there is no explicit formula for the price of American option.

3 Greeks

Let λ be some parameter in S_T given above, and let $F = F^{\lambda}$ be a functional of S_t . That is, for example, $F = S_T^{(\lambda)}, T > 0$ or $F = \int_0^T S_t^{(\lambda)} dt$. Let f be a a.e. smooth function taking values on \mathbf{R} . Then f(F) is a random variable. An example of f(x) is $f_0(x) = (x - K).1_{[K,\infty)}$, or its smooth regularization $f = f_0 * \varphi_{\epsilon}$, where φ_{ϵ} is a molifier.

So called *Greeks* associated to f(F) are given as follows.

(1) Delta =
$$\exp\{-\int_0^T r(t)dt\}\frac{\partial}{\partial x}E[f(F)].$$

Delta is the derivative of the price with respect to the parameter $\lambda = x$ (the initial value of S).

(2) Vega =
$$\exp\{-\int_0^T r(t)dt\}\frac{\partial}{\partial \sigma_1}E[f(F)].$$

More precisely, for $\epsilon > 0$, let

$$\frac{dS_t^{\epsilon}}{S_{t-}^{\epsilon}} = r(t)dt + (\sigma_1(t) + \epsilon \tilde{\sigma}_1(t))dW_t + \sigma_2(t)d\tilde{N}_t, S_0^{\epsilon} = x.$$

We put

$$C_{\epsilon} \equiv \exp\{-\int_{0}^{T} r(t)dt\} E[f(S_{T}^{\epsilon})].$$

Then Vega = $\frac{\partial C_t}{\partial \epsilon}|_{\epsilon=0}$. This is a (Fréchet) derivative of S_t with respect to $\sigma_1(.)$ (coefficient of the Wiener process) in the direction $\tilde{\sigma}_1(.)$.

Other Greeks are, for example,

- (3) Gamma = $\exp\{-\int_0^T r(t)dt\}\frac{\partial^2}{\partial x^2}E[f(F)]$.
- (4) Rho = $\frac{\partial}{\partial r} (\exp\{-\int_0^T r(t)dt\} E[f(F)])$. (The Rho is defined similarly as Vega.)
- (5) Theta = $\frac{\partial}{\partial T} (\exp\{-\int_0^T r(t)dt\} E[f(F)]).$

We remark that these Greeks can be regarded as corresponding (first or second) terms in the asymptotic expansion

$$E[F^{\lambda}] - E[F] = c_1 \lambda + \frac{1}{2} c_2 \lambda^2 + \cdots$$

when $\lambda > 0$ is small.

4 Weights

For the calculation of Greeks we can use Malliavin calculus for jump-diffusion processes. In this section we assume that the 1-dimensional process X_t driving the SDE above is given by $X_t = \sigma_1 W_t + \sigma_2 Z_t$, where Z_t is a Lévy process

$$Z_t = bt + \int_0^t \int_{|z| \le 1} z ilde{N}(dsdz) + \int_0^t \int_{|z| > 1} z N(dsdz)$$

whose Lévy measure is given by $\mu(dz)$. We do not assume $\mu(dz)$ is absolutely continuous with respect to the Lebesgue measure. It can even be a discrete measure. (If $\mu = \delta_{\{1\}}$ then Z_t is a Poisson process N_t .) In this case it is not practical to compute Greeks along the closed form expression in general.

Let $F = F^x$ be as in the previous section $(\lambda = x)$. For a random variable $G^x \in L^2$ depending on x, we have

$$\frac{\partial}{\partial x}E[G^x f(F)] = E[G^x \partial f(F) \partial_x F] + E[\partial_x G^x \cdot f(F)].$$

If we choose $G^x \equiv 1$,

$$\frac{\partial}{\partial x}E[f(F)] = E[\partial f(F).\partial_x F]. \tag{0}$$

We introduce a gradient operator $D_u, u = (t, z)$, on the Poisson space on $[0, T] \times \mathbf{R}$. We assume the chain rule

$$D_{u}f(F) = \partial f(F).D_{u}F \tag{1}$$

and the local operator property

$$D_{u}(XY) = XD_{u}Y + YD_{u}X \tag{2}$$

hold for the operator D_u . By the chain rule for the gradient D_u and by the integration by parts, we have

R.H.S. of (0) =
$$E\left[\frac{D_{u}f(F)}{D_{u}F}.\partial_{x}F\right] = E\left[D_{u}f(F).\frac{\partial_{x}F}{D_{u}F}\right] = E\left[f(F)\delta\left(\frac{\partial_{x}F}{D_{u}F}\right)\right].$$
 (3)

This leads to the calculation for Delta.

Here $\delta(.)$ is the adjoint operator (Skorohod integral) associated to the gradient D_u , and the term $\delta(\cdot \cdot \cdot)$ is called a *weight* provided that it is square integrable. In practical computation it is important to calculate this *Weight*.

We can proceed the calculation (3) above following the formula

$$\delta(vG) = G\delta(v) - \int_0^T \int D_u Gv(u) dt \mu(dz)$$
(4)

(cf. [6] Proposition 1).

To compute Gamma we need to compute the second derivative

$$\frac{\partial^2}{\partial x^2} E[f(F)] = \frac{\partial}{\partial x} E[f(F).\delta(G)] = E[f(F)\frac{\partial}{\partial x}\delta(G)] + E[f(F)\delta(\delta(G)G)],$$

where $G = \frac{\partial_x F}{D_x F}$.

For the precise framework for this calculation on the Wiener-Poisson space, there seems to exist no decisive set-up up to now (e.g., gradient operator, its adjoint, norms, Sobolev spaces, ...). In the section 7 we present a new framework for this.

5 Finite difference operator and gradient operator on Poisson space

Let $Z_t = \tilde{N}_t$ for simplicity. On the Poisson space we introduce two gradients.

Let $U = [0,T] \times \mathbf{R}$. We choose u in U of the form u = (t,1). Let $F = f(T_1,...,T_n)$, where $f = f(x_1,...,x_n)$ is a smooth function and T_k denotes the k-th jump time of N_t . We introduce two gradient of F on U.

We put

$$D_{u}F = -\sum_{N_{t} < k \le n} \partial_{k} f(T_{1}, ..., T_{n}). \tag{5}$$

Here ∂_k denotes $\frac{\partial}{\partial x_k}$. This definition is due to Carlen-Pardeux [4].

We introduce a finite difference operator \hat{D} by

$$\tilde{D}_{u}F = f(T_{1}, ..., T_{N_{t}}, t, T_{N_{t+1}}, ..., T_{n-1}) - f(T_{1}, ..., T_{n})$$
(6)

if $N_t < n$. The above is equivalent to

$$\tilde{D}_{u}F = f(T_{1}, ..., T_{k}, t, T_{k+1}, ..., T_{n-1}) - f(T_{1}, ..., T_{n})$$
(7)

if $T_k < t \le T_{k+1}$. This definition is due to Nualart-Vives [21] (see also Picard [23]).

The operator D_u satisfies the properties (1), (2) in Sect. 4, whereas \tilde{D}_u does not. Instead we have by the mean value theorem when φ is differentiable:

$$\tilde{D}_{u}\varphi(F) = \int_{0}^{1} \partial\varphi(F + \theta\tilde{D}_{u}F)d\theta.\tilde{D}_{u}F. \tag{8}$$

And also

$$\tilde{D}_{u}(FG) = F \cdot \tilde{D}_{u}G + G \cdot \tilde{D}_{u}F + \tilde{D}_{u}F\tilde{D}_{u}G \tag{9}$$

(cf. [21] Lemma 6.1).

The gradient D_u is closable (in $L^2(\Omega, L^2([0,T]))$), and its adjoint is given by

$$\delta(v) = \int_0^T v(t)d\tilde{N}_t - \int_0^T D_u v(t)dt.$$

Further we have

$$E[\int_0^T D_u F \ v \ dt] = E[F\delta(v)]$$

([26] Propositions 7, 8, [19] p.104).

The formula (4) then reads

$$\delta(vG) = G\delta(v) - (v, D_uG) = G\delta(v) + \int_0^T v(t) (\sum_{N_t < k < n} \partial_k g(T_1, ..., T_n)) dt$$

if $G = g(T_1, ..., T_n)$. Hence, the formula (3) reads

$$\delta(\frac{\partial_x F}{D_u F}) = \partial_x F \delta(\frac{1}{D_u F}) - (\frac{1}{D_u F}, D_u(\partial_x F)).$$

Although, due to (9), \tilde{D}_u does not satisfy the chain rule, we can show the property below between \tilde{D}_u and D_u for which the chain rule holds.

Let $p_n(t) = P(N_t = n) = \frac{t^n}{n!}e^{-t}$ be the density function of T_n . We have then

$$p'_n(t) = p_{n-1}(t) - p_n(t), \ t > 0.$$

Let $T = \infty$. In view of this formula, the formula

$$rac{d}{du}\int_t^u g(s,u)ds = g(u,u) + \int_t^u rac{\partial}{\partial u} g(s,u)ds,$$

and due to the fact that the jump times of a Poisson process are uniformly distributed given the number of jumps, we have the following Proposition.

Proposition Let $F = f(T_1, ..., T_n)$ and $G = g(T_1, ..., T_n) = \varphi(F)$. That is, $g = \varphi \circ f$. Then

$$E[D_uG/\mathcal{F}_t] = E[\tilde{D}_uG/\mathcal{F}_t].$$

The proof is due to N. Privault. It also follows from the Kabanov formula (cf. [21] Theorem. 6.2). We state the direct proof below in case n = 5. Proof for the general case is easy.

Example

Let $G = g(T_n)$. We have the equality directly as follows.

$$\begin{split} E[D_{u}g(T_{n})/\mathcal{F}_{t}] &= -1_{\{N_{t} < n\}} E[g'(T_{n})/\mathcal{F}_{t}] \\ &= -\int_{t}^{\infty} g'(x) p_{n-1-N_{t}}(x-t) dx = g(t) p_{n-1-N_{t}}(0) + \int_{t}^{\infty} g(x) p'_{n-1-N_{t}}(x-t) dx \\ &= g(t) 1_{\{T_{n-1} \le t < T_{n}\}} + \int_{t}^{\infty} g(x) p'_{n-1-N_{t}}(x-t) dx \\ &= g(t) 1_{\{T_{n-1} \le t < T_{n}\}} + \int_{t}^{\infty} (p_{n-2-N_{t}}(x-t) - p_{n-1-N_{t}}(x-t)) g(x) dx \\ &= g(t) 1_{\{T_{n-1} \le t < T_{n}\}} + E[1_{\{T_{n-1} > t\}} g(T_{n-1}) - 1_{\{T_{n} > t\}} g(T_{n})/\mathcal{F}_{t}] \\ &= E[1_{\{T_{n-1} > t\}} g(T_{n-1}) + 1_{\{T_{n-1} \le t < T_{n}\}} g(t) - 1_{\{T_{n} > t\}} g(T_{n})/\mathcal{F}_{t}] \\ &= E[1_{\{N_{t} < n-1\}} (g(T_{n-1}) - g(T_{n})) + 1_{\{N_{t} = n-1\}} (g(t) - g(T_{n}))/\mathcal{F}_{t}] \\ &= E[\tilde{D}_{u}g(T_{n})/\mathcal{F}_{t}]. \end{split}$$

It is natural that they coincide with each other by the uniqueness of the Clark-Ocone formula for G, as they are the conditional expectation terms (integrands) in the 1-st stochastic integral in the Clark-Ocone expression. Cf. [28]. However we can see it directly in this case.

Proof.

Let
$$G = q(T_1, T_2, ..., T_5)$$
.

$$\begin{split} E[D_uG/\mathcal{F}_t] &= -\sum_{N_t < k \leq 5} E[\partial_k g(T_1, ..., T_5)/\mathcal{F}_t] \\ &= -\sum_{N_t < k \leq 5} \int_0^\infty e^{-(s_5 - t)} \int_t^{s_5} \cdots \int_t^{s_{N_t + 2}} \partial_k g(T_1, ..., T_{N_t}, s_{N_t + 1}, ..., s_5) ds_{N_t + 1} ... ds_5 \\ &= -\sum_{k = N_t + 2}^5 \int_t^\infty e^{-(s_5 - t)} \int_t^{s_5} \cdots \frac{\partial}{\partial s_k} \int_t^{s_k} \cdots \int_t^{s_{N_t + 2}} g(T_1, ..., T_{N_t}, s_{N_t + 1}, ..., s_5) ds_{N_t + 1} ... ds_5 \\ &+ \sum_{k = N_t + 2}^5 \int_t^\infty e^{-(s_5 - t)} \int_t^{s_5} \cdots \int_t^{s_k} \cdots \int_t^{s_{N_t + 2}} g(T_1, ..., T_{N_t}, s_{N_t + 1}, s_k, s_k, s_{k + 1}, ..., s_5) ds_{N_t + 1} ... ds_5 \\ &- 1_{\{N_t < 5\}} \int_t^\infty e^{-(s_5 - t)} \int_t^{s_5} \cdots \int_t^{s_{N_t + 2}} \frac{\partial}{\partial s_{N_t + 1}} g(T_1, ..., T_{N_t}, s_{N_t + 1}, ..., s_5) ds_{N_t + 1} ... ds_5 \\ &= - 1_{\{N_t < 4\}} \int_t^\infty e^{-(s_5 - t)} \int_t^{s_5} \cdots \int_t^{s_{N_t + 2}} \frac{\partial}{\partial s_5} g(T_1, ..., T_{N_t}, s_{N_t + 1}, ..., s_5) ds_{N_t + 1} ... ds_5 \end{split}$$

$$\begin{split} &-\sum_{k=N_t+2}^{8}\int_{t}^{\infty}e^{-(s_5-t)}\int_{t}^{s_5}\dots\int_{t}^{s_{k+1}}\frac{\partial}{\partial s_k}\int_{t}^{s_k}\dots\int_{t}^{s_{N_t+2}}g(T_1,...,T_{N_t},s_{N_t+1},...,s_5)ds_{N_t+1}...ds_5\\ &+\sum_{k=N_t+2}^{5}\int_{t}^{\infty}e^{-(s_5-t)}\int_{t}^{s_5}\dots\int_{t}^{s_k}\dots\int_{t}^{s_{N_t+2}}g(T_1,...,T_{N_t},s_{N_t+1},s_k,s_k,s_{k+1},...,s_5)ds_{N_t+1}...ds_5\\ &-1_{\{N_t<5\}}\int_{t}^{\infty}e^{-(s_5-t)}\int_{t}^{s_5}\dots\int_{t}^{s_{N_t+2}}\frac{\partial}{\partial s_{N_t+1}}g(T_1,...,T_{N_t},s_{N_t+1},...,s_5)ds_{N_t+1}...ds_5\\ &=-1_{\{N_t<4\}}\int_{t}^{\infty}e^{-(s_5-t)}\int_{t}^{s_5}\int_{t}^{s_5}\int_{t}^{s_{N_t+2}}g(T_1,...,T_{N_t},s_{N_t+1},...,s_{h+1},...,s_{h+1},...,s_{h+1})ds_{h+1}...ds_5\\ &-\sum_{k=N_t+2}^{5}\int_{t}^{\infty}e^{-(s_5-t)}\int_{t}^{s_5}\int_{t}^{s_5}\int_{t}^{s_{N_t+2}}g(T_1,...,T_{N_t},s_{N_t+1},s_k,s_k,s_{h+1},...,s_{h+1},...,s_{h+1}...ds_{h+1}$$

The operators D_u and δ can be extended to the case

$$Z_t = \sum_{k=1}^m \tilde{N}_k(t),$$

where N_k 's are independent Poisson processes, by composing a direct sum of independent Poisson spaces (cf. [19] p.103). On the other hand, for the adjoint of \tilde{D}_u , see the section 7.

6 Integration-by-parts setting by Bismut

In this section we state the integration-by-parts formula by using Bismut perturbation. We sketch the idea below in case d=1. We assume in this section that $\mu(dz)=g(z)dz$, where g(z) is a smooth function on R having compact support.

Let v be a bounded predictable process on $[0, +\infty)$ to \mathbf{R} . We consider the perturbation

$$\theta^{\lambda}: z \mapsto z + \lambda \nu(z)v, \quad \lambda \in \mathbf{R}.$$

Here $\nu(z)$ is a smooth function which is $O(z^2)$ near z=0. Let $N^{\lambda}(dsdz)$ be the Poisson random measure defined by

$$\int_0^t \int \phi(z) N^{\lambda}(dsdz) = \int_0^t \int \phi(\theta^{\lambda}(z)) N(dsdz), \phi \in C_0^{\infty}(\mathbf{R}).$$

We put $Z_s^{\lambda}=\int_0^t\int zN^{\lambda}(dudz)$, and denote by P^{λ} its law . Set $\Lambda^{\lambda}(z)=\{1+\lambda\nu'(z)v\}\frac{g(\theta^{\lambda}(z))}{g(z)}$, and

$$U_t^{\lambda} = \exp[\{\int_0^t \int \log \Lambda^{\lambda}(z) N(dsdz_j) - \int_0^t ds \int (\Lambda^{\lambda}(z) - 1) g(z) dz].$$

Then Z_t^{λ} is a martingale, and P^{λ} has the derivative

$$\frac{dP^{\lambda}}{dP} = U_t^{\lambda} \quad on \quad \mathcal{F}_t.$$

where \mathcal{F}_t denotes the σ -field generated by Z_t (cf. [2] Theorem 6-16, Bismut [3], (2.34)).

Consider the perturbed process F_s^{λ} which is defined by a SDE driven by Z^{λ} in place of Z. Then $E^P[f(F_t)] = E^{P^{\lambda}}[f(F_t^{\lambda})] = E^P[f(F_t^{\lambda})U_t^{\lambda}]$, and we have $0 = \frac{\partial}{\partial \lambda}E^P[f(F_t^{\lambda})U_t^{\lambda}]$, $f \in C_0^{\infty}(\mathbb{R})$. By the chain rule, for $|\lambda|$ small, we have

$$\frac{\partial f}{\partial \lambda}(F_t^{\lambda}) = D_x f(F_t^{\lambda}) \cdot \frac{\partial F_t^{\lambda}}{\partial \lambda}, \quad f \in C_0^{\infty}(\mathbf{R}).$$

We have for $\lambda = 0$

$$E^{P}[D_{x}f(F_{t})\cdot\frac{\partial F_{t}^{\lambda}}{\partial\lambda}|_{\lambda=0}] = -E^{P}[f(F_{t})\frac{\partial}{\partial\lambda}U_{t}^{\lambda}|_{\lambda=0}].$$

By Corollary 6-17 of [2], we may differentiate U_t^{λ} with respect to λ , to obtain

$$R_t \equiv \frac{\partial}{\partial \lambda} U_t^{\lambda}|_{\lambda=0} = \int_0^t \int \frac{\operatorname{div} \{g(\cdot)v\nu(\cdot)\}(z)}{g(z)} \{N(dsdz) - dsg(z)dz\}.$$

Next we compute $H_t^{\lambda} \equiv \frac{\partial F_t^{\lambda}}{\partial \lambda}$. F_t^{λ} is differentiable a.s. for $|\lambda|$ small, and its derivative at $\lambda = 0$, $H_t = H_t^0$ is obtained explicitly as the solution of a SDE (cf. [2] Theorem 6-24). We put $DH_t = \frac{\partial}{\partial \lambda} H_t^{\lambda}|_{\lambda=0}$, where $\frac{\partial}{\partial \lambda} H_t^{\lambda}$ is the second Fréchet derivative of F_t^{λ} defined as in [2] Theorem 6-44. Then $\frac{\partial}{\partial \lambda} H_t^{\lambda,-1}|_{\lambda=0} = -H_t^{-1} D H_t H_t^{-1}$. Here $\frac{\partial}{\partial \lambda} H_t^{\lambda,-1}$ is defined by $<\frac{\partial}{\partial \lambda} H_t^{\lambda,-1}$, e>= trace $[e'\mapsto <-H_t^{\lambda,-1}(\frac{\partial}{\partial \lambda} H_t^{\lambda}\cdot e')H_t^{\lambda,-1}, e>], e\in \mathbf{R}$.

We carry out the integration-by-parts procedure for $G_t^{\lambda}=f(F_t^{\lambda})H_t^{\lambda,-1}$. Recall we have $E[G_t^0]=E[G_t^{\lambda}\cdot U_t^{\lambda}]$. Taking the Fréchet derivation $\frac{\partial}{\partial \lambda}|_{\lambda=0}$ for both sides yields

$$0 = E[D_x f(F_t) H_t^{-1} H_t] + E[f(F_t) \frac{\partial}{\partial \lambda} H_t^{\lambda, -1}|_{\lambda = 0}] + E[f(F_t) H_t^{-1} \cdot R_t].$$

This yields

$$E[D_x f(F_t)] = E[f(F_t) \mathcal{A}_t^{(1)}]$$

where

$$\mathcal{A}_t^{(1)} = \{ H_t^{-1} D H_t H_t^{-1} - H_t^{-1} R_t \}.$$

This is the integration-by-parts formula in Bismut setting. We can calculte $H_t^{-1}DH_tH_t^{-1}$ explicitly.

7 New integration-by-parts setting for jump diffusion

This is a joint work with Prof. H. Kunita. [12]

From the gradient-adjoint formula to the integration-by-parts formula for f(F), there are several attempts. Here we recall one which is based on Picard's method.

In this section, let N(dtdz) be a Poisson random measure on $[0,T] \times \mathbb{R}^m$ and W_t be a Wiener process on \mathbb{R}^m , $m \ge 1$.

Let T_0 be a positive number and let $T = [0, T_0]$. Let Ω_1 be the set of all continuous maps $\omega_1 : T \to \mathbf{R}^m$ such that $\omega_1(0) = 0$ and let \mathcal{F}_1 be the smallest σ -field of Ω_1 with respect to which $\{w_1(t), t \in [0, T]\}$ are measurable. Let P_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$ such that $W(t) := \omega_1(t)$ is a standard 1-dimensional Brownian motion.

Set

$$\varphi(\rho) = \int_{|z| \le \rho} |z|^2 \mu(dz). \tag{10}$$

We say that the measure μ satisfies an order condition if there exists $0 < \alpha < 2$ such that

$$\lim_{\rho \to 0} \inf \frac{\varphi(\rho)}{\rho^{\alpha}} > 0.$$
(11)

Note that Lévy measures with finite mass do not satisfy the order condition, because $\liminf_{\rho\to 0} \frac{\varphi(\rho)}{\rho^{\alpha}} = 0$ holds for any $\alpha \in (0,2)$ then. On the other hand, Lévy measures of stable laws with exponent β satisfies the order condition with $\alpha = 2 - \beta$.

Let T_0 be a positive number and let $T = [0, T_0]$. Let Ω_1 be the set of all continuous maps $\omega_1 : T \to \mathbb{R}^m$ such that $\omega_1(0) = 0$ and let \mathcal{F}_1 be the smallest σ -field of Ω_1 with

respect to which $\{w_1(t), t \in [0, T]\}$ are measurable. Let P_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$ such that $W(t) := \omega_1(t)$ is a standard 1-dimensional Brownian motion.

Let Ω_2 be the set of all integer valued measures on $U = T \times \mathbf{R}^m$ such that $\omega_2(T \times \{0\}) = 0$ and let \mathcal{F}_2 be the smallest σ -field of Ω_2 with respect to which $\{w_2(E); E \text{ are Borel sets in } U\}$ are measurable. Let P_2 be a probability measure on $(\Omega_2, \mathcal{F}_2)$ such that $N(dtdz) := \omega_2(dtdz)$ is a Poisson random measure with intensity measure $\hat{N}(dtdz) := dt\mu(dz)$, where μ is a Lévy measure.

Let $H = L^2(T; \mathbf{R}^m)$. For $h_l \in H$, we set

$$W(h_l) = \int_T h_l(s) dW_s.$$

We denote by S_1 the collection of random variables X written as

$$X = f(W(h_1), \cdots, W(h_{n_1})),$$

where $f(x_1,...,x_{n_1})$ is bounded $\mathcal{B}(\mathbf{R}^{n_1})$ measurable, smooth in $(x_1,...,x_{n_1})$, $n_1 \in \mathbf{N}$. The Malliavin-Shigekawa's derivative of X (with respect to the first variable ω_1) is an 1-dimensional row vector stochastic process given by

$$D_t X = \sum_{l} \frac{\partial f}{\partial x_l}(W(h_1), ..., W(h_n)) h_l(t).$$
 (12)

Next, we shall introduce difference operators $\tilde{D}_u, u \in U$, acting on the Poisson space. For each $u=(t,z)=(t,z_1)\in U$, we define a map $\varepsilon_u^-:\Omega_2\to\Omega_2$ by $\varepsilon_u^-\omega_2(A)=\omega_2(A\cap\{u\}^c)$, and $\varepsilon_u^+:\Omega_2\to\Omega_2$ by $\varepsilon_u^+\omega_2(A)=\omega_2(A\cap\{u\}^c)+1_A(u)$. (These are extended to Ω by setting $\varepsilon_u^\pm(\omega_1,\omega_2)=(\omega_1,\varepsilon_u^\pm\omega_2)$) It holds $\varepsilon_u^-\omega=\omega$ a.s. P for any u since $\omega_2(\{u\})=0$ holds for almost all ω_2 for any u. The difference operators \tilde{D}_u for a \mathcal{F}_2 -measurable random variable X is defined after Picard [23] by

$$\tilde{D}_{u}X = X \circ \varepsilon_{u}^{+} - X. \tag{13}$$

Let $\mathbf{u}=(u^1,...,u^k)=((t_1,z^1),...,(t_k,z^k))=(\mathbf{t},\mathbf{z}).$ We set $|\mathbf{u}|=|\mathbf{z}|=\max_{1\leq i\leq k}|z^i|$ and $\gamma(\mathbf{u})=|z^1|\cdots|z^k|.$ We define $\varepsilon^+_{\mathbf{u}}=\varepsilon^+_{\mathbf{u}_1}\circ\cdots\circ\varepsilon^+_{\mathbf{u}_k}$ and $\tilde{D}_{\mathbf{u}}=\tilde{D}^k_{\mathbf{u}}=\tilde{D}_{\mathbf{u}_1}\cdots\tilde{D}_{\mathbf{u}_k}.$ Further for $\mathbf{z}=(z^1,...,z^k)$ where $z^i\in\mathbf{R}^m$, we set $\partial_{\mathbf{z}}g=\partial_{z^1}\cdots\partial_{z^k}g.$ It is an k-vector function.

Let S_2 be the collection of random variables X written as

$$X = f(N(\varphi_1), \cdots, N(\varphi_{n_2})),$$

where $f(x_1,...,x_{n_2})$ is bounded $\mathcal{B}(\mathbf{R}^{n_2})$ measurable, smooth in $(x_1,...,x_{n_2}), n_2 \in \mathbf{N}$.

Let $S = S_1 \otimes S_2$. Spaces S_1, S_2 are identified with $S_1 \otimes 1, 1 \otimes S_2$ respectively. The space S is the linear span of functionals X such that

$$X = \sum_{i+j=k} X_1^{(i)} X_2^{(j)}, k \in \mathbf{N},$$

where $X_1^{(i)} = f_1^{(i)}(W(h_1), ..., W(h_i))$ and $X_2^{(j)} = f_2^{(j)}(N(\varphi_1), ..., N(\varphi_j))$. Here $f_1^{(i)}$ and $f_2^{(j)}$ are bounded $\mathcal{B}(\mathbf{R}^i)$ ($\mathcal{B}(\mathbf{R}^j)$) measurable, smooth functions of i (j) variables, respectively.

The adjoint $\tilde{\delta}$ of the operators $\tilde{D}=(\tilde{D}_u)_{u\in U}$ is defined as follows. Let $Z_u=Z_{t,z}$ be an \mathcal{F} -measurable random field, integrable with respect to $\tilde{N}=N-\hat{N}$, i.e.,

$$E[\int_{U}|Z_{u}\circ\varepsilon_{u}^{-}|(N+\hat{N})(du)]<\infty.$$

We set

$$\tilde{\delta}(Z) = \int_{U} Z_{u} \circ \varepsilon_{u}^{-} \tilde{N}(du). \tag{14}$$

It is known that this operator satisfies the adjoint property:

$$E[X\tilde{\delta}(Z)] = E\left[\int_{U} \tilde{D}_{u} X Z_{u} \hat{N}(du)\right], \tag{15}$$

for any bounded \mathcal{F} -measurable random variable X. ([23], Lemma 1.4).

We shall next introduce linear maps Q and \tilde{Q}_{ρ} by

$$QY = \int_{T} (D_t F) D_t Y dt, \qquad (16)$$

$$\tilde{Q}_{\rho}Y = \frac{1}{\varphi(\rho)} \int_{A(\rho)} (\tilde{D}_{u}F) \tilde{D}_{u}Y \hat{N}(du). \tag{17}$$

Lemma The adjoints of Q and \tilde{Q}_{ρ} exist and are equal to

$$Q^*X = \delta((DF)^TX), \tag{18}$$

$$\tilde{Q}_{\rho}^* X = \tilde{\delta}_{\rho}((\tilde{D}F)^T X), \tag{19}$$

respectively, where

$$\tilde{\delta}_{\rho}(Z) = \frac{1}{\varphi(\rho)}\tilde{\delta}(Z1_{A(\rho)}) = \frac{1}{\varphi(\rho)} \int_{A(\rho)} Z_u \circ \varepsilon_u^- \tilde{N}(du). \tag{20}$$

Let f(x) be a C^2 -function with bounded derivatives. We claim a modified formula of integration by parts. Note that $D_t(f(F)) = f(F)D_tF = (D_tF)\partial f(F)$. Then we get

$$Qf(F) = \int_{T} (D_t F) D_t(f(F)) dt = R \partial f(F).$$
 (21)

Concerning the difference operator \tilde{D}_u , we have by the mean value theorem,

$$\tilde{D}_{u}(f(G)) = (\tilde{D}_{u}G)^{T} \int_{0}^{1} \partial f(G + \theta \tilde{D}_{u}G) d\theta, \tag{22}$$

for a random variable G on the Poisson space. This implies

$$\tilde{Q}_{\rho}f(F) = \tilde{R}_{\rho}\partial f(F)
+ \frac{1}{\varphi(\rho)} \int_{A(\rho)} \tilde{D}_{u}F(\tilde{D}_{u}F)^{T} \left(\int_{0}^{1} \{\partial f(F + \theta \tilde{D}_{u}F) - \partial f(F)\} d\theta \right) \hat{N}(du).$$
(23)

Here

$$\tilde{R}_{
ho} = rac{1}{arphi(
ho)} \int_{A(
ho)} \tilde{D}_{u} F (\tilde{D}_{u} F)^{T} \hat{N}(du).$$

Sum up (21) and (23) and then take the inner product of this with $S_{\rho}X$. Its expectation yields the following.

Proposition [12] (Analogue of the formula of integration by parts) For any X we have

$$E[(X,\partial f(F))] = E[(Q + \tilde{Q}_{\rho})^*(S_{\rho}X)f(F)]$$
(24)

$$-\frac{1}{\varphi(\rho)}E\left[\left(X,S_{\rho}\int_{A(\rho)}\tilde{D}_{u}F(\tilde{D}_{u}F)^{T}\left(\int_{0}^{1}\{\partial f(F+\theta\tilde{D}_{u}F)-\partial f(F)\}d\theta\right)\hat{N}(du)\right)\right].$$

Here $S_{\rho} = (R + \tilde{R}_{\rho})^{-1}$.

Remark. If there is no Poisson part in (15), then the formula is written as

$$E[(X, \partial f(F))] = E[Q^*(R^{-1}X)f(F)] = E[\delta((R^{-1}X, DF))f(F)].$$
 (25)

On the other hand, if R_{ρ} is not zero or equivalently \tilde{Q}_{ρ} is not zero, we have a remaining term (the last term of (15)). We have this term even if Z_t is a simple Poisson process N_t or its sums. However, if we take $f(x) = e^{i(w,x)}, w \in \mathbb{R}^d \setminus \{0\}$, we have $\partial f(x) = ie^{i(w,x)}w$ and

$$e^{i(w,F+\theta \tilde{D}_u F)} - e^{i(w,F)} = e^{i(1-\theta)(w,F)} \tilde{D}_u(e^{i(w,\theta F)}).$$

Hence we have an expression of the integration-by-parts for the functional

$$E[(X, w)\partial_x(e^{i(w,F)})] = E[(Q^* + \tilde{Q}_\rho^* + R_{\rho,w}^*)S_\rho X \cdot e^{i(w,F)}], \quad \forall w.$$
 (26)

Here

$$R_{\rho,w}^*Y = -\frac{i}{\varphi(\rho)} \int_0^1 \left(\tilde{\delta}(e^{i(1-\theta)(w,F)} \chi_\rho \tilde{D}F(\tilde{D}F)^T Y), e^{i(\theta-1)(w,F)} w \right) d\theta.$$

References

- [1] K. Aase, Contingent claims valuation when the security price is a combination of an Ito process and a random point process, Stochastic Process. Appl. 28 (1988), no. 2, 185–220.
- [2] K. Bichteler, J.B. Gravereaux, J. Jacod, Malliavin calculus for processes with jumps. Stochastic Monographs, vol.2, M. Davis, ed., London, Gordon and Breach 1987.
- [3] J.M. Bismut, Calcul des variations stochastique et processus de sauts. Z. Wahrsch. Verw. Gebiete 63, 147-235 (1983).
- [4] E. Carlen and E. Pardoux, Differential calculus and integration by parts on Poisson space, Stochastics, algebra and analysis in classical and quantum dynamics (Marseille, 1998), 63–73, Kluwer, Dordorecht, 1990.

- [5] M. Davis and M-P. Johansson, Malliavin Monte Carlo Greeks for jump difusions, Stoch. Proc. Appl. 116 (2006), 101–129.
- [6] Y. El-Khatib, and N. Privault, Computations of Greeks in a market with jumps via the Malliavin calculus, Finance Stoch. 8 (2004), no. 2, 161–179.
- [7] Y. El-Khatib, and N. Privault, Hedging in complete markets driven by normal martingales, Appl. Math. (Warsaw) 30 (2003), no. 2, 147-172.
- [8] E. Fournié, J.M. Lasry, J. Lebuchoux, P.L. Lions, and N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch. 3 (1999), no. 4, 391–412.
- [9] B. Guillaume, E. Gobet and A. Kohatsu-Higa, Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options, Math. Finance, 13 (2003), 99–113.
- [10] V. Henderson and D. Hobson, Coupling and option price comparisons in a jump-diffusion model, Stoch. Stoch. Rep. 75 (2003), no. 3, 79–101.
- [11] H.D. In-Suk, Convergence of jump-diffusion models to the Black-Scholes model, Stochastic Anal. Appl. 21 (2003), no. 1, 141–160.
- [12] Y. Ishikawa and H. Kunita, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps, Stoch. Proc. Appl. 116 (2006), 1743–1769.
- [13] A. Kohatsu-Higa and M. Montero, Malliavin calculus in finance, Handbook of computational and numerical methods in finance, 111–174, Birkhäuser, Boston, 2004.
- [14] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Univ. Press, 1990.
- [15] M. Jeanblanc and N. Privault, A complete market model with Poisson and Brownian components, Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), 189–204, Progr. Probab., 52, Birkhäuser, Basel, 2002.
- [16] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance, Translated from the 1991 French original by Nicolas Rabeau and Francois Mantion, Chapman & Hall, London, 1996.
- [17] J. A. Leon., J.L. Sole, F. Utzet and J. Vives, On Lévy processes, Malliavin calculus and market models with jumps, Finance Stoch. 6 (2002), no. 2, 197–225.
- [18] D. Madan, P. Carr and E. Chang, The variance Gamma process and option pricing, European Finance Review 2 (1998), 79–105.
- [19] P. Malliavin and A. Thalmaier, Stochastic calculus of variations in mathematical finance, Springer, Berlin, 2006.
- [20] D. Nualart, The Malliavin calculus and related topics, Springer, 1995.
- [21] D. Nualart and J. Vives, Anticipative calculus for the Poisson process based on the Fock space, Séminaire de Probabilités XXIV, Lecture Notes in Math. vol. 1426, pp. 154-165, Springer, Berlin, 1990.

- [22] B. Oksendal, Bernt and A. Sulem, Applied stochastic control of esjump diffusions. Universitext, Springer-Verlag, Berlin, 2005.
- [23] J. Picard, On the existence of smooth densities for jump processes, PTRF 105, 481-511 (1996).
- [24] N. Privault, Connections and curvature in the Riemannian geometry of configration spaces, JFA 185, 367–403 (2001).
- [25] N. Privault, A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris 327, 677-682 (1998).
- [26] N. Privault, Chaotic and variational culculus in discrete and continuous time for the Poisson process, Stochastics and Stochastics Report, 51, 83-109, (1994).
- [27] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004.
- [28] A.Ju. Sevljakov, Clark's formula for discontinuous processes, In Behavior of systems in random media (Russian), 55-59, Akad. Nauk Ukrain. SSR Inst. Kibernet., Kiev, 1976.