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Abstract
In this paper, we first show that Bingham’s assertion on weak convergence under $J_{1^{-}}$

topology of stochastic processes with monotone sample paths is incorrect by giving a counter
example and then remark that his assertion is valid if the limit process is continuous. lbur-
thermore, we give a simple sufficient condition for weak convergence under $J_{1}$-topology of
stochastic processes with monotone sample paths. We apply the result to the weak con-
vergence under $J_{1}$-topology of hitting time processes of l-dimensional generalized diffusion
processes.

1 Introduction
Let $D[0, \infty)$ be the class of functions defined on $[0, \infty)$ to $\mathbb{R}$ which have left limits on $(0, \infty)$

and are right continuous on $[0, \infty)$ . Bingham asserted in [2] that a sequence of random
variables $\{X_{n}\}$ in $D[0, \infty)$ , which has monotone sample paths, converges weakly to an $X_{\infty}\in$

$D|0,$ $\infty)$ in $J_{1}$-topology if $X_{\infty}$ is continuous in probability and $X_{n}$ converges to $X_{\infty}$ in finite
dimensional distributions sense.

In this paper, we remark that his proof contains an error and give an example which
shows that his statement does not hold. We also remark that his conclusion is valid if we
change the continuity in probability assumption for $X_{\infty}$ to continuity of all sample functions.

We, then, give an additional condition so that the conclusion of Bingham’s assertion
holds and apply the result to the weak convergence in $J_{1}$ -topology of additive processes
and sums of independent random variables. The former result is then applied directly to
weak convergences under $J_{1}$-topology of hitting time processes of l-dimensional generalized
diffusion processes to selfsimilar additive processes.

Define

$\Delta(c,X,T)=\sup_{0\leq t-c<t_{1}<t<t_{2}<t+c\leq T}\min(|X(t_{1})-X(t)|, |X(t_{2})-X(t)|)$.

Stone [7] proved the following theorem.

Theorem 1.1 (Stone) If $\{X_{n} : n=1,2, \ldots\}$ are random variables in $D[0, \infty),$ $X_{n}$ con-
verges to a random variable $X_{\infty}$ in $D[0, \infty)$ as $narrow\infty$ weakly under the $J_{1}$ -topology on
$D[0, \infty)$ if and only if
$(a)$ The finite-dimensional distributions of $X_{n}$ converge to those of $X_{\infty}$ as $narrow\infty$

$(b) \lim_{carrow 0}\lim\sup_{narrow\infty}P(\Delta(c,X_{n}, T)>\epsilon)=0$ for each $\epsilon>0$ and each $0<T<\infty$ .
Bingham’s assertion in next section reduces the proof to the above Stone’s theorem.
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2 On Bingham’s assertion
Bingham asserted the following assertion as Theorem 3 in [2].
Bingham’s assertion : Let $\{X_{n}\}_{n\geq 1}$ be a sequence of stochastic processes whose path-
functions lie in $D[0, \infty)$ . If
(i) the finite-dimensional distributions of $X_{n}$ converge to those of $X_{\infty}$ ,
(ii) the process $X_{\infty}$ is continuous in probability and
(iii) the processes $X_{n}$ have monotone path-functions,
then $X_{n}$ converges to $X_{\infty}$ weakly under the $J_{1}$-topology on $D[0, \infty)$

He defines the quantity

$D(k, X, T)= \max\{|X(rT/k)-X((r-1)T/k)| : r=1,2, \ldots, k\}$.

He asserts that, by stochastic continuity of $X_{\infty}$ ,

$P(\Delta(Tk^{-1}, X_{\infty},T)>\epsilon)arrow 0$ as $karrow\infty$ (1)

for each $\epsilon>0$ and $0<T<\infty$ (for this convergence, the stochastic continuity assumption
is not necessary if $X_{\infty}$ is in $D([0, \infty))$ , because $\Delta(Tk^{-1}, X,T)arrow 0$ as $karrow\infty$ for $X\in$

$D([0, \infty))).$ Then he asserts that the inequalities

$\frac{1}{2}\Delta(2Tk^{-1}, X,T)\leq D(k, X,T)\leq\Delta(Tk^{-1}, X,T)$ (2)

holds and using these inequalities, he shows the validity of the condition (b) in Stone’s
theorem. But, the second inequality in (2) does not hold even for the following simple
function:

$x(t)=\{\begin{array}{l}0, 0\leq t<a,1, a\leq t\leq T,\end{array}$

where $0<a<T$ . For this function, $D(k,x,T)=1$ while $\Delta(Tk^{-1},x,T)=0$ for large $k$ . One
may consider, instead of (1),

$P(D(k, X_{\infty}, T)>\epsilon)arrow 0$ as $karrow\infty$ (3)

for each $\epsilon>0$ and $0<T<\infty$ . But this does not hold even for a simple stochastic process.
Let $X(t)$ be a Poisson process with parameter $\lambda$ and choose $\epsilon\in(0,1)$ . Then,

$P(D(k, X_{\infty}, T) \leq\epsilon)=\prod_{r=1}^{k}P(X(rT/k)-X((r-1)T/k)\leq\epsilon)=e^{-\lambda T}$ .

Moreover, the above assertion does not hold under the assumtions in the threorem. The
followin$g$ is a counter example : Let $T=1$ . Let

$X_{\infty}(t,\omega)$ $=$ $2II_{[\xi(\omega),1]}(t)$ ,
$X_{n}(t,\omega)$ $=$ II $1^{(t)}\xi(\omega)_{n}-A,1]+II_{[\xi(\omega)+_{n},1]}A(t)$ ,

where $\xi(\omega)$ is a random variable uniformly distributed on $[ \frac{1}{3},$ $\frac{2}{3}1\cdot$ Then $X_{\infty}(t)$ and $X_{n}(t)$ are
non-decreasing and right continuous with left limits. Hence, $X_{\infty}$ is stochastically continuous.
$X_{n}(t)$ converges in finite dimensional distributions, but does not converge in $J_{1}$-topology.
The last assertion is immediate from the fact that $\Delta(c, X_{n},T)=1$ for $\frac{1}{n}<c$ . This example
is stated as Problem 12.5 in [1].
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Remark 2.1 Ifwe substitu $te$ the condition ”continuous in probability“ $by$ “continuous with
probability 1 “, then th$e$ above theorem is valid $sin$ce in this case, $D(k, X_{\infty}(\omega), T)arrow 0$ as
$narrow\infty$ with probability 1 and hence (3) holds as $karrow\infty$ for each $\epsilon>0$ and $0<T<\infty$ .
By the assumption (i), $\lim\sup_{narrow\infty}P(D(k, X_{n}, T)>2\epsilon)\leq P(D(k,X_{\infty}, T)>\epsilon)$ . Using this
inequality, the convergence in (3) and th$e$ left inequality in (2), we have the weak $con$vergence
under the $J_{1}$ -topology.

If the above Bingham’s assertion were tme, then the statement would be very useful. In fact,
many papers use Bingham’s “ Theorem 3”. For example, in Corollary 3.5 and Corollary 3.11
in [5] and Corollary 3.4 in [4]. Fortunately, sample paths of the limit processes in Corollary
3.11 in [5] and Corollary 3.4 in [4] are contiouous, the conclusion is valid by the above remark.
In Corollary 3.5 in [5], limit processes are purely discontinuous. Hence the result in Remark
2.1 can not be applied.

$\ln$ the following section, we investigate what additional condition is needed so that weak
convergence under $J_{1}$ -topology holds. The result is described as Theorem 3.1, in the following
section. The conclusion of Corollary 3.5 in [5] is valid by Theorem 3.3, which is an application
of Theorem 3.1.

3 Main results
Lemma 3.1 Let $x\in D[0,1]$ with non-decreasing path. Let

$x_{1}(t)= \sum_{0\leq\epsilon\leq t,x(s)-x(s-)>\epsilon}(x(s)-x(s-))$

and let $x_{2}(t)=x(t)-x_{1}(s)$ . Assume that $x_{1}(t)$ has at most one jump in a sub interval $(r,t]$

in $[0,1]$ . Then, for $r<s<t$ ,

$(x(s)-x(r))\wedge(x(t)-x(s))\leq x_{2}(t)-x_{2}(r)$ .

Proof First assume that there is no jump greater than $\epsilon$ in $(r,t]$ . Then, for $r\leq s\leq t$ ,

$(x(s)-x(r))\wedge(x(t)-x(s))\leq(x(t)-x(r))/2=(x_{2}(t)-x_{2}(r))/2$ .
Next, assume that $r<s_{0}\leq t$ be the jumping point of $x_{1}(t)$ . We devide into three cases.
(1) $x(s_{0}-)< \frac{1}{2}(x(t)-x(r))<x(s_{0})$ ,
(2) $x(s_{0})\leq\tilde{2}1(x(t)-x(r))$ and
(3) $\frac{1}{2}(x(t)-x(r))\leq x(s_{0}-)$ .
If (1) holds, then

$(x(s)-x(r))$ A $(x(t)-x(s))\leq(x(s_{0}-)-x(r))\vee(x(t)-x(so))\leq x_{2}(t)-x_{2}(r)$ .
Now, assume that the case (2) or (3). Then

$(x(s)-x(r))$ A $(x(t)-x(s))\leq(x(t)-x(r))/2\leq x_{2}(t)-x_{2}(r)$ .
$\square$

Let $X$ be a random variable in $D[0, \infty)$ . For each $\epsilon>0$ ,

$X^{1,\epsilon}(t)= \sum_{0<\epsilon\leq t,X(s)-X(s-)>\epsilon}(X(s)-X(s-))$

and $X^{2,\epsilon}(t)=X(t)-X^{1}$ ,‘ $(t)$ . Let $\Omega_{\delta}^{\epsilon}(X,T)$ be a set of $\omega$ such that $X(t,\omega)$ has at most one
jump greater than $\epsilon$ in any semi closed interval ($r,r+\delta|$ contained in $(0,T]$ , where $\delta>0$ .
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Theorem 3.1 Suppose that $\{X_{n}\}$ is a sequence of stochastic processes in $D[0, \infty)$ with
$n$on-decreasin$g$ sample pa$ths$ which converges in finite dimensional distributions sense to a
stochastic process $X_{\infty}\in D[0, \infty)$ as $narrow\infty$ . If
(i) for each $\epsilon>0,$ $X_{n}^{2,\epsilon}$ converges to $X_{\infty}^{2_{2}\epsilon}$ as $narrow\infty$ in finite dimensional distributions sense
and
(ii) for each $\epsilon,$ $T>0,$ $\lim_{\delta\downarrow 0}$ lim $supnarrow\infty^{P(\Omega_{\delta}^{\epsilon}(X_{n},T))}=1$ ,
then $X_{n}$ converges to $X_{\infty}$ weakly in $J_{1}$ -topology on $D[0, \infty)$ .

Proof Let $X$ be a random variable in $D[0, \infty)$ and let $\omega\in\Omega_{\tau/k}^{\epsilon}(X, T)$ . If $\frac{2\ell-1}{2k}T\leq s\leq$

$\frac{2\ell+1}{2k}T$ and $s- \frac{T}{2k}<r<s<t<s+\pi T$ for $\ell=1,$
$\ldots,$ $k-1$ , then, by Lemma 3.1,

$(X(t)-X(s)) \wedge(X(s)-X(r)\leq X^{2}(\frac{\ell+1}{k}T)-X^{2}(\frac{\ell-1}{k}T)$ .

Hence
$\Delta(\frac{1}{2k}T, X,T)\leq\max_{1\leq l\leq k-1}\{X^{2}(\frac{\ell+1}{k}T)-X^{2}(\frac{\ell-1}{k}T)\}$ .

Denote the right hand side of the above inequality $E(k,X^{2})$ . We have

$\lim_{narrow}\sup_{\infty}P(E(k, X_{n}^{2,e})>2\epsilon)\leq P(E(k, X_{\infty}^{2\epsilon}\rangle)\geq 2\epsilon)$

by (i). If $k$ is sufficiently large, then $E(k,X_{\infty}^{2,\epsilon}( \omega))<\frac{3}{2}\epsilon$ . Hence

$\lim_{karrow\infty}E(k, X_{\infty}^{2,\epsilon}(\omega))\vee\frac{3}{2}\epsilon-\frac{3}{2}\epsilon=0$ .

Then,

$P(E(k, X_{\infty}^{2,\epsilon})>2\epsilon)$ $\leq$ $P(E(k, X_{\infty}^{2,\epsilon}) \vee\frac{3}{2}\epsilon>2\epsilon)$

$=$ $P(E(k, X_{\infty}^{2_{1}\epsilon}) \vee\frac{3}{2}\epsilon-\frac{3}{2}\epsilon>\frac{1}{2}\epsilon)arrow 0$ as $karrow\infty$ . (4)

This shows that

$P( \Delta(\frac{1}{2k}, X_{n}, T)>2\epsilon)$ $\leq$ $P( \Delta(\frac{1}{2k}, X_{n},T)>2\epsilon:\Omega_{T/k}^{\epsilon}(X_{n}, T))+P((\Omega_{T/k}^{\epsilon}(X_{n},T)^{c})$

$\leq$ $P(E(k, X_{n}^{2,\epsilon})>2\epsilon)+P((\Omega_{T/k}^{\epsilon}(X_{n}, T)^{c})$

By assumption (ii) and (4), we have, for eqch $T>0$ and $\epsilon>0$ ,

$\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P(\Delta(\frac{1}{2k}, X_{n}, T)>2\epsilon)=0$.

Appealing to Stone’s theorem, we have the conclusion. $\square$

We say that a stochastic process $X$ is an additive process in law if it has independent
increments, $X(0)=0$ a.s. and it is stochastically continuous. Moreover, if the sample paths
are contained in $D[0, \infty)$ with probability one, then we call $X$ simply additive process. See
[3] for detail.

Theorem 3.2 Let $\{X_{n}\}$ be a sequence of additive processes having non-decreasing sample
paths. If $X_{n}$ converges to a stochastically continuous process $X_{\infty}$ in finite dimensional
distributions sense, then there is an additive process $X$ in $D[0,$ $\infty)$ with non-decreasing
sample paths which is equivalent to $X_{\infty}$ and $X_{n}$ converges to $X$ weakly under $J_{1}$ -topology
as $narrow\infty$ .

112



Proof If the finite d\’imensional distributions of $X_{n}$ converge to the finite dimensional dis-
tributions of $X_{\infty}$ , then $X_{\infty}$ is an additive process in law. It has a modification $X$ whose
sample patlis are contained in $[0, \infty)$ and non-decreasing. For the convergence of $X_{n}$ to $X_{\infty}$

in finite dimensional distributions sense, it is necessary and sufficient that for every $t\geq 0$

the distribution of $X_{n}(t)$ converges to the distribution of $X_{\infty}(t)$ . Let

$Ee^{-zX_{n}(t)}=\exp(-\gamma_{n}(t)+/o^{\infty}(e^{-zx}-1)\nu_{n}(t, dx))$

and
$Ee^{-zX_{\infty}(t)}=\exp(-\gamma_{\infty}(t)+/o^{\infty}(e^{-zx}-1)\nu\infty(t, dx))$ .

For the convergence of the distribution of $X_{n}(t)$ to the distribution of $X_{\infty}(t)$ , it is necessary
and sufficient that the L\’evy measure $\nu_{n}(t, A)$ converges to the L\’evy measure $\nu_{\infty}(t, A)$ for
every continuity Borel set $A$ of $\nu_{\infty}$ which is outside of a neighbourhood of $0$ and $t\geq 0$ and
$\gamma_{n}(t)arrow\gamma(t)_{\infty}$ ([3]). This shows that for any $\epsilon>0,$ $X_{n}^{2,\epsilon}$ converges to $X_{\infty}^{2_{\}\epsilon}$ as $narrow\infty$

in finite dimensional distributions sense since $\nu_{\infty}^{2,\epsilon}(t, \cdot)=\nu_{n}(t,$ $\cdot\cap(0, \epsilon|)$ . Let $s \ell=\frac{l}{k}T$ for
$\ell=0,1,$

$\ldots,$
$k$ and $t_{\ell}= \frac{2\ell+1}{2k}T$ for $\ell=0,1,$

$\ldots,$ $k-1$ . If the number of jumps of $X_{n}^{1,\epsilon}(t,\omega)$

contained in each interval $(s\ell, s_{\ell+1}],$ $\ell=0,1,$
$\ldots,$ $k-1$ and $(t_{\ell},$ $t_{\ell+1}|,$ $\ell=0,1,$ $\ldots,$ $k-2$

are atmost one, then $\omega\in\Omega_{T/k}^{\epsilon}(X_{n},T)$ . Probability that the number of jumps of $X_{n^{Z}}^{1\epsilon}(t,\omega)$

contained in each intervals $(ss],$ $\ell=0,1,$
$\ldots,$ $k-1$ are atmost one is

$\prod_{\ell=0}^{k-1}e^{-\nu_{n}((\epsilon_{\ell},s_{\ell+1}],(\epsilon,\infty))}(1+\nu_{n}((s\ell, s_{\ell+1}], (\epsilon, \infty)))$

$=$ $e^{-\nu_{n}((0,T],(\epsilon,\infty))} \prod_{\ell=0}^{k-1}(1+\nu_{n}((S\ell, S\ell+1], (\epsilon, \infty)))$ .

By the convergence of $X_{n}$ to $X_{\infty}$ in finite dimensional distributions sense,

$\lim_{narrow}\inf_{\infty}e^{-\nu_{n}((0,T],(e_{J}\infty))}\prod_{\ell=0}^{k-1}(1+\nu_{n}((s_{\ell}, s_{\ell+1}], (\epsilon, \infty)))$

$\geq$ $e^{-\nu_{\infty}((0,T](\epsilon_{1}\infty))}) \prod_{\ell=0}^{k-1}(1+\nu_{\infty}((s\ell, s_{\ell+1}], (\epsilon, \infty)))$ as $narrow\infty$ .

We have

$e^{-\nu_{\infty}((0,T],(\epsilon,\infty))} \prod_{\ell=0}^{k-1}(1+\nu_{\infty}((s\ell, s_{\ell+1}], (\epsilon, \infty)))$

$\geq$ $\exp[-\nu_{\infty}((0, T],$ $(\epsilon, \infty))+\nu_{\infty}((0, T],$ $( \epsilon, \infty))(1-0\max\frac{1}{2}\nu_{\infty}((s_{\ell}, s_{\ell+1}|, (\epsilon, \infty)))]$

by the inequality $\log(1+x)\geq x-\frac{1}{2}x^{2}$ for $x\geq 0$ . Since $X_{\infty}$ is stochastically continuous,
$\nu_{\infty}(t, \cdot)$ is continuous in $t$ and hence $\max_{0\leq\ell\leq k-1}\nu_{\infty}((\frac{\ell}{k}T, \frac{\ell+1}{k}T],$ $(\epsilon, \infty))arrow 0$ as $karrow\infty$ .
The right hand side of the above inequality tends to 1 as $karrow\infty$ . Similarly, we have that
the probability that the number of jumps of $X_{n}^{1,\epsilon}(t,\omega)$ contained in each intervals $(t_{\ell}, t_{\ell+1}]$ ,
$P=0,1,$ $\ldots,$ $k-2$ are atmost one tends to 1 as $narrow\infty$ and then $karrow\infty$. Hence

$\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P(\Omega_{T/k}^{\epsilon}(X_{n},T))=1$.

By appealing to Theorem 3.1 we have the weak converge under $J_{1}$-topology of $X_{n}arrow X$ . $\square$
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Skorohod [6] obtains the same result for general L\’evy processes.

Theorem 3.3 Let for each $n\geq 1,$ $\{t_{n,k}\}_{k=1}^{\infty}$ be a stric$tly$ increasing sequence of positive
$t1$umbers such $th at\lim_{karrow\infty}t_{n_{1}k}=\infty$ and $\lim_{narrow\infty}\sup_{k\geq 1}(t_{n,k+1}-t_{nk,\rangle})=0$ . Let for each
$n\geq 1,$ $\{Y_{n,k}\}_{k=1}^{\infty}$ be a sequence of independent $n$onnegative ran$dom$ variables such that for
each $\epsilon>0$ ,

$\lim_{narrow\infty}\max_{1}P(Y_{n,k}k\geq>\epsilon)=0$ .
If there is a measure $\nu(t)$ on $(0, \infty)$ continuous in $t>0$ such that for each $t>0$ ,

$\lim_{narrow\infty}\sum_{t_{n,k}\leq t}P(Y_{n,k}>x)=\nu(t, (x, \infty))$
(5)

at every $con$tinuity point $x>0$ of $\nu(t)$ and

$\lim_{\epsilonarrow 0}\lim\sup_{t}\sum_{\leq t}narrow\infty n,k(\int_{0<x<\epsilon}x^{2}P(Y_{n,k}\in dx)-(/0<x<\epsilon xP(Y_{n_{J}k}\in dx))^{2})$

$=$ $\lim_{\epsilonarrow 0}\lim_{narrow}\inf_{\infty}\sum_{t_{n,k}\leq t}(1_{0<x<\epsilon}^{x^{2}P(Y_{n_{t}k}}\in dx)-(/0<x<\epsilon xP(Y_{n,k}\in dx))^{2})=0$ ,

$\lim_{\epsilonarrow 0}\lim_{narrow\infty}\sum_{t_{n.k}\leq t}\int_{0<x<\epsilon}xP(Y_{n,k}\in dx)=\gamma(t)$ ,

then $X_{n}(t)= \sum_{t_{n.k}\leq t}Y_{n_{t}k}$ converges weakly under $J_{1}$ -topology to an additive process $\{X(t)\}$

with nondecreasing sample paths such that

$E( e^{-\theta X(t)})=\exp(-\gamma(t)+\int_{0}^{\infty}(e^{-\theta x}-1)\nu(t, dx))$

Proof Convergence of finite dimensional distributions of $X_{n}(t)$ to those of $X(t)$ is straight-
forward by the convergence of the distribution of triangular array of independent random
variables to a infinitely divisible distribution. We show weak convergence under $J_{1}$-topology
applying Theorem 3.1. Let $T>0$ and let $s_{\ell}= \frac{\ell}{k}T$ for $\ell=0,1,$ $\ldots,$

$k$ and $t_{\ell}= \frac{2\ell+1}{2k}T$ for
$\ell=0,1,$

$\ldots,$ $k-1$ . If the number of jumps of $X_{n}^{1,\epsilon}(t,\omega)$ contained in each interval $(s\ell, s_{\ell+1}]$ ,
$\ell=0,1,$ $\ldots,$ $k-1$ and $(t_{1},t_{\ell+1}],$ $\ell=0,1,$ $\ldots,$ $k-2$ are atmost one, then $\omega\in\Omega_{T/k}^{\epsilon}(X_{n},T)$ .
The probability that there is no jump of $X_{n}(t)$ greater than $\epsilon$ in the interval $(ss|$ is
$\prod_{s\ell<t_{n,j}}{}_{\leq s_{\ell+\iota)}}P_{nj}([0, \epsilon])$ and the probability that there is one jump of $X_{n}(t)$ in $(s\ell,$ $s_{\ell+1}|$ is

$\sum_{s\ell<t_{\mathfrak{n},j}\leq s\ell+1}P_{n,j}((\epsilon, \infty))x\prod_{1k\neq j,t_{n.k}\in(\epsilon_{\ell},\epsilon p+1}P_{n,k}([0, \epsilon|)$
.

The probability that there is atmost one jump of $X_{n}(t)$ in each $(8\ell, S\ell+1]$ is

$\prod_{\ell=0}^{k-1}(\prod_{\epsilon\ell<t_{n,j}\leq\epsilon\ell+1}(1-P_{n_{2}j}((\epsilon, \infty))))(1+\sum_{\partial\ell<t_{\mathfrak{n},j}\leq s\ell+1}P_{n,j}((\epsilon, \infty))/P_{n,j}([0, \epsilon|))$ . (6)

Now, we use the inequalities $\log(1+x)\geq x-\frac{1}{2}x^{2}$ for $x>0$ and $\log(1-x)\geq-x-x^{2}$ for
$0 \leq x\leq\frac{1}{2}$ . We have
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(6)

$\geq$ $\exp(\sum_{\ell=0}^{k-1}[\sum_{e\ell<t_{n,j}\leq sp+1}\log(1-P_{n,j}((\epsilon, \infty)))$

$+ \log(1+\sum_{s\ell<t_{n,j}\leq s_{\ell+1}}P_{n,j}((\epsilon, \infty))/P_{n,j}([0, \epsilon|))])$

$\geq$
$\exp[\sum_{\ell=0}^{k-1}\{\sum_{s\ell<t_{\mathfrak{n},j}\leq s_{\ell+1}}(-P_{n,j}((\epsilon, \infty))-\{P_{n,j}((\epsilon, \infty))\}^{2})$

$+ \sum_{s\ell<t_{n,j}\leq s_{\ell+\iota}}P_{n,j}((\epsilon, \infty))/P_{n,j}([0_{7}\epsilon])-\frac{1}{2}()$

$\geq$ $\exp[\sum_{\ell=0}^{k-1}\{-\sum_{s\ell<t_{n,j}\leq s\ell+\iota}P_{n,j}((\epsilon, \infty))(1+\max_{i}P_{n,i}((\epsilon, \infty)))$

$+$
$\frac{1}{\max_{i}P_{n,j}([0,\epsilon])}\sum_{s_{\ell}<t_{n,j}\leq s_{\ell+1}}P_{n,j}((\epsilon, \infty))(1-\frac{1}{2\min_{i}P_{n,i}([0,\epsilon])}\sum_{sp<t_{n,l}\leq s_{\ell+1}}P_{n,i}((\epsilon, \infty)))\}]$.

Since $\lim_{narrow\infty}\max_{i}P_{n,i}((\epsilon, \infty))=0$ and $\lim_{narrow\infty}\min_{i}P_{n_{2}i}([0, \epsilon])=1$ by the assumption,
the assumption (5) yields that the inferior limit as $narrow\infty$ of the last term of the above
inequalities is greater than or equal to

$\exp[\sum_{\ell=0}^{k-1}\{\ell,\ell+11-\frac{1}{2}\nu((\ell+1\cdot$

Here $\nu([(s, t], \cdot)=\nu(t, \cdot)-\nu(s, \cdot)$ . By the continuity of $\nu(t, \cdot)$ in $t$ , the above quantity
tends to 1 as $karrow\infty$ . In the same way we have that the probability that $X_{n}(t)$ has
atmost one jump greater than $\epsilon$ in each semiclosed interval $(t_{\ell},$ $t_{\ell+1}|,$ $\ell=0,$ $\ldots,$ $k-2$ ,
tends to 1 as $narrow\infty$ and then $karrow\infty$ . Hence $\lim_{\deltaarrow 0}\lim\sup_{narrow\infty}P(\Omega_{\delta}^{\epsilon}(X_{n},T))$ . Since
$X_{n}^{2,\epsilon}(t)= \sum_{t_{j}\leq t}Y_{n_{l}j}1_{[0,\epsilon]}(Y_{n,j})$ and $P(Y_{n_{i}j}1_{[0,\epsilon]}(Y_{n,j})\in B)=P_{n_{2}j}((\epsilon, \infty))\delta_{0}(B)+P_{n_{2}j}(B\cap$

$[0, \epsilon])$ , convergence of $X_{n}^{2,\epsilon}$ to $X^{2,\epsilon}$ for eqach $\epsilon>0$ in finite dimensional distributions sense
is automatic from the convergence in finite distributions sense of $X_{n}$ to $X$ .
The above theorem guarantees the validity of Corollary 3.5 in [5].

Theorem 3.4 Let for each $n\geq 1,$ $\{Y_{n,i}\}_{i\geq 1}$ is a sequence of independent nonnegative
random variables and let

$Y_{n}(t)=k$ if $\sum_{j<k}Y_{n,j}<t\leq\sum_{j\leq k}Y_{n_{J}j}$ .

If $\{X_{n}(t)=c(n)Y_{n}(nt)\}$ converges to $\{$ X$(t)\}$ in finite dimensional distributions sense with
$c(n)$ satisfying $\lim_{narrow\infty}c(n)=0$ , then $X_{n}$ converges to $X$ weakly under $J_{1}$ -topology as
$narrow\infty$ .

Proof Since $X_{n}^{2,\epsilon}(t)=X_{n}(t)$ for $\epsilon>c(n)$ , the processes $\{X_{n}\}$ satisfies the condition (i) of
Theorem 3.1 and hence there is no jump greater than $\epsilon$ . This means that the condition (ii)
is also satisfied. Hence $X_{n}$ converges weakly under $J_{1}$ -topology.
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4 Limit theorems for hitting times of generalized diffu-
sions
Let $m$ be a non-decreasing, right continuous function defined on $[-\infty, \infty]$ to $[-\infty, \infty]$ , which
has left limit on $(0, \infty)$ , satis$\Phi ingm(-\infty)=-$ oo $m(\infty)=\infty,$ $m(O-)=0$ . We set

$\ell_{1}$ $=$ $\sup\{x<0:m(x)=-oo\}$
$\ell_{2}$ $=$ $\inf\{x>0:m(x)=\infty\}$

We denote by $E_{m}$ the support of the measure induced by $m$ restricted to $(\ell_{1},p_{2})$ . There
naturally corresponds a strong Markov process $\{X_{t}\}$ , called l-dimensional generalized dif-
fusion process on $E_{m}$ , whose formal infinitesimal generator is $\frac{d}{dm}\frac{d}{dx}$ , to $m$ by changing the
time of the Brownian motion (see [8]). The measure $m(dx)$ is called the speed measure of
$\{X_{t}\}$ . Denote the hitting time of $x$ for $\{X_{t}\}$ by $\tau_{x}$ . The hitting time $\tau_{x}$ can be regarded as a
stochastic process with time parameter $x\in E_{m}$ with independent increments. Moreover, this
process can be extended to $x\in(\ell_{1}, \ell_{2})$ . This extended process is called generalized hitting
time process in [8]. In [8], limit distribution of $\tau_{x}$ when the process starts at the origin and
$x$ tends to $\ell_{2}$ . Some of results in [8] are concemed with convergence of $i\overline{m}ite$ dimensional
distributions. Since generalized hitting time process has non-decreasing sample paths, by
Theorem 3.2, finite dimensional distributions leads to $J_{1}$-convergence.

Following [8], we introduce assumptions for asymptotics of $m$ .
$(C_{\gamma})(0\leq\gamma<1):\ell_{2}=\infty$ and $m(x)\sim x^{\gamma/(1-\gamma)}L(x)/(1-\gamma)$ as $xarrow\infty$ with a function $L$

slowly varying at $\infty$ .
$(C_{1})\ell_{2}=\infty$ and there is a function $s(x)$ regularly varying at $\infty$ and differentiable for large
$x$ such that the derivative $s’(s)$ is positive and monotone and

$m(s(x))\sim e^{x}L(e^{x})$ as $xarrow\infty$

with a function $L$ slowly varying at $\infty$ .
$(C_{\gamma})(1<\gamma<\infty):\ell_{2}<\infty$ and $m(x)\sim(\ell_{2}-x)^{\gamma/(1-\gamma)}K(\ell_{2}-x)/(\gamma-1)$ as $xarrow\ell_{2}$ with a
hmction $K$ slowly varying at $0$ .
$(C_{\infty})$ : $\ell_{2}<\infty$ and $m(x)\sim(\ell_{2}-x)^{-1}K(\ell_{2}-x)^{-1}$ as $xarrow\ell_{2}$ with a function $K$ slowly
varying at $0$ .

Define $a(x)= \int_{0}^{x}m(y)dy$ .

Theorem 4.1 Assume that $\ell_{1}=-\infty,$ $(C_{\gamma})$ holds for some $0\leq\gamma<1$ and

$m(-x)/m(x)arrow c\in[0, \infty)$ as $xarrow\infty$ .

Then, the normalized generalized hitting time process $\{\tau_{tx}/a(x)\}$ with any starting point
converges weakly under $J_{1}$ -topology on $D[0, \infty)$ to a selfsimilar additive process $\{\tau_{t}^{0}\}$ with
exponent $(1-\gamma)^{-1}$ as $xarrow\infty$ . The process $\{\tau_{t}^{0}\}$ is the hitting time process of the generalized
diffusion process with speed measure

$m^{0}(x)=\{\begin{array}{ll}x^{\gamma/(1-\gamma)}/(1-\gamma), x\geq 0,-c|x|^{\gamma/(1-\gamma)}/(1-\gamma), x<0.\end{array}$

starting at the origin
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Theorem 4.2 Assume that $p_{1}=-\infty$ . Let $\tilde{m}(x)=-m((-x)+)+m(0)$ and $\overline{a}(x)=$

$\int_{0}^{x}|m(-y)|dy$ . Assume that $\tilde{m}$ satisfies $(C_{\gamma})$ for some $0\leq\gamma<1$ and

$a(x)/\tilde{a}(x)arrow 0$ as $xarrow\infty$ .

Then, the normalized generalized hitting time process $\{\tau_{tx}/\tilde{a}(x)\}$ with any starting point
converges weakly under $J_{1}$ -topology on $D[0, \infty)$ to a selfsimilar additi $r\prime e$ process $\{\tau_{t}^{0}\}$ with
exponent $(1-\gamma)^{-1}$ as $narrow\infty$ . The process $\{\tau_{t}^{0}\}$ is the hitting $time$ process of the generalized
diffusion process with speed measure

$m^{0}(x)=\{$ $0-c|x|^{\gamma/(1-\gamma)}/(1-\gamma)$
, $x<0$ ,

$x\geq 0$ ,

starting at the origin

Theorem 4.3 Assume that $\ell_{1}=-$ oo, $(C_{1})$ holds and

$x|m(-tx)|/a(x)arrow 0$ as $xarrow\infty$ .
Then, the normalized generaJized hitting time process $\{\tau_{s(t+x)}/a(s(x))\}$ with any starting
point converges weakly under $J_{1}$ -topology on $D[0, \infty)$ to a process $\{\tau_{t}^{0}\}$ as $xarrow\infty$ . The pro-
cess $\{\tau_{t}^{0}\}$ is the hitting $time$ process of th$e$ generalized diffusion process with speed measure
$m^{0}(t)=e^{t},$ $t\in \mathbb{R}$ and starting $point-\infty$ . $\{\tau_{\log t}^{0}\}_{t\geq 0}$ is a selfsimilar additive process with
exponent 1.

Theorem 4.4 Assume that $\ell_{1}=-$oo, $(C_{\gamma})$ holds for some $1<\gamma<\infty$ . Then, the normal-
ized generalized hitting time process $\{\tau_{\ell_{2}-y|t|}/a(\ell_{2}-y)\}_{t<0}$ with any starting point converges
weakly under $J_{1}$ -topology on $D[0, \infty)$ to a process $\{\tau_{t}^{0}\}$ as $y\downarrow 0$ . The process $\{\tau_{t}^{0}\}$ is the
hitting time process of the generalized diffusion process with speed measure

$m^{0}(x)=\{$ $\infty|x|^{\gamma/(1-\gamma)}/(\gamma-1)$
,

$x>0x<0$
,

and starting poin$t-\infty$ . $\{\tau_{t}^{0_{-1}}\}_{t\geq 0}$ is a selfSimilar additive process with exponent $(\gamma-1)^{-1}$ .

Theorem 4.1 corresponds to Theorem 2, Theorem 4.2 corresponds to Theorem 3, Theorem
4.3 corresponds to Theorem 4 and Theorem 4.4 corresponds to Theorem 6 in [8], respectively.
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