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Abstract
Privacy Preserving Data Mining is the methodology used to discover knowl-

edge of distributed databases with providing guarantees concerning the non-
disclosure of the data. We will propose the Privacy Preserving Independent
Component Analysis (PPICA) in order to conduct ICA in a privacy preserving
manner. The proposed method can compute a separating matrix in order to re-
construct sources from all databases without disclosing the data of each database
to others. Although the issue in PPICA is the significant communication traffic,
the proposed method overcome this and has property equivalent to low communi-
cation traffic. We assume that the database is horizontally partitioned, whereby
each database has the same attributes in common for different samples.

Keywords: Privacy Preserving Data Mining, Independent Component Analysis,
Principal Component Analysis, Cryptographic Communication.

1 Introduction
Data Mining is a technique used to discover useful knowledge from significant amounts
of data. Generally, the larger amount of data we can use, the more informative results
we can obtain. Consider the situation whereby certain databases are distributed at
local sites. If several databases are available for data analysis, the results will be more
informative than analysis using a single database.

However this is usually difficult, especially where the databases are owned by others.
Data in a database cannot be provided in certain cases where there are contractual
restrictions or in others, where the owner prefers to keep the data content secret to
others from operational perspectives.

If there are no restrictions in terms of confidentiality, all the databases are merged
and allowing analysts at local sites to analyze the merged database and obtain the
results. Privacy Preserving Data Mining (PPDM) aims to obtain the same results
discovered using the merged database without leaking the data of each database to
analysts at other sites. The key technique used to achieve these seemingly contradictory
requirements simultaneously is “to embed the cryptographic techniques into the target
data analysis algorithms”. Therefore privacy preserving data-mining algorithms are
algorithm-specific.

In this paper, we will present an efficient Privacy Preserving Independent Compo-
nent Analysis (PPICA) on a horizontally partitioned database setting, whereby each
database has the same attributes in common for different samples. Efficient privacy
preserving algorithms are proposed for major data analysis algorithms such as lin-
ear regressions [2], k-means clustering [7] and Support Vector Machines [8], however,
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the privacy preserving algorithm for Independent Component Analysis (ICA) is never
shown. Independent Component Analysis is a method used to recover “sources“ from
observation data, based on the assumption that observation is a mixture of “inde-
pendent sources”, while Principal Component Analysis (PCA) merely assumes that
observation is a mixture of “uncorrelated sources”. ICA can be viewed as a special
type of factor analysis, which has various application fields such as Image Processing,
Signal Processing and Psychology.

The difficulty in designing an efficient privacy preserving ICA is its high communica-
tion traffic. The majority of ICA algorithms repeatedly involve reconstructing tentative
“sources” from the original data. In the privacy preserving setting, the original data
are saved at each site and they cannot be transferred elsewhere. Therefore the privacy
preserving version of these algorithms must communicate repeatedly with the local
site. This has two major downsides, namely, the high communication costs and the
potentially high risk of leakage of original data. We will solve this issue through a Two
Line ICA, which executes ICA via twice Eigen Value Decomposition. The proposed
PPICA algorithm is one with low communication traffic.

In Section 2, we will explain ICA and PCA which is executed as a preprocessing
algorithm of ICA. In Section 3, the basic cryptographic protocol “Secure Sum” is
introduced and the Privacy Preserving PCA will be explained. In Section 4, the issue
of PPICA is raised and the Two Line ICA and the proposed PPICA algorithm will be
explained. In Section 5, the conclusion and issues for future research are described.

2 PCA and ICA
2.1 Principal Component Analysis
Principal Component Analysis (PCA) [4] is one of the oldest and best known techniques
used for multivariate analysis. To compare with Independent Component Analysis
(ICA), we will view PCA as a method to recover sources from observations based on
the assumption that observations are mixtures of uncorrelated sources with significant
variances.

PCA and ICA assume the basic linear statistical $mo$del

$x=Bs$ , (1)

in which $x\in \mathbb{R}^{d}$ represents the observations, and $s\in \mathbb{R}^{d}$ the sources. For the sake
of convenience, we assume the dimension of observations and sources to be equal and
denoted by $d$ . $B\in \mathbb{R}^{d\cross d}$ , meanwhile, represents ‘mixing matrix’, and its entries $b_{ij}$

indicate the extent to which the jth source component contributes to the ith observa-
tion channel $(1 \leq i, j\leq d)$ , i.e. they determine how the sources are ‘mixed’ in the
observations.

PCA estimates the mixing matrix $B$ and$/or$ the corresponding realizations of the
sources $s$ , given only realizations of the observations $x$ , and under the following as-
sumptions:
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$\bullet$ The components of $s$ are $mutua11y$ uncorrelated, i.e. cov(s) $=D$ is diagonal.

$\bullet$ Sources are zero-mean, i.e. $E(s)=0$ .

Source signals are reconstructed from the observations as follows:

$s=U^{T}$ ( $x$ – $x$ ), (2)

where $\overline{x}$ is the mean of the observations and $U\in \mathbb{R}^{d\cross d}$ is the rotation matrix such that
$UU^{T}=I_{d}$ where $I_{d}$ is a $d\cross d$ identity matrix.

The rotation matrix $U$ is computed by the Eigen Value Decomposition (EVD) of
the covariance matrix of observations $C_{x}\in \mathbb{R}^{dxd}$ as follows:

$C_{x}=UDU^{T}$ . (3)

The mean vector and covariance matrix are computed from the realized observations
matrix $X\in \mathbb{R}^{dxn}$ as follows:

$\overline{x}=\sum_{i=1}^{n}x_{i}/n$ , $C_{x}=(X-\overline{X})(X-\overline{X})^{T}/n$ , (4)

where X $=[\overline{x}.\overline{x}, \ldots,\overline{x}]\in \mathbb{R}^{dxn}$ and $n$ represent the mean matrix and the number of
observations respectively.

2.2 Independent Component Analysis
2.2.1 Problem Setting

In the same way in PCA, ICA estimates the mixing matrix $B$ and $/or$ the corresponding
realizations of the sources $s$ , given only realizations of the observations $x$ , under the
linear model by Equation (1).

However, ICA assumes the following assumptions (cf. Assumption of PCA):

$\bullet$ The components of $s$ are mutually statistically independent.

$\bullet$ Sources are zero-mean and unit variances, i.e. $E(s)=0$ and cov(s) $=I_{d}$ .

The mixing matrix, $B$ , is estimated and the source signals will be constructed from
the observations as follows:

$s=B^{-1}$ ( $x$ – $x$ ), (5)

where $B^{-1}$ is called a separating matrix.
In contrast to PCA, ICA assumes the observations are mixtures of “independent”

sources. It is noted that if data are independent, then they are “uncorrelated“ but not
vice versa. Therefore ICA imposes a stronger assumption than PCA with respect to
independence.
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2.2.2 Outline of Popular ICA Algorithms
In this subsection, we will explain ICA in general terms. The ICA problem is most
often solved by a two stage algorithm consisting of a whitening (PCA) stage and a
finding proper rotation stage. An outline of the procedure is presented in Figure 1.

Whitening Stage

The whitening stage amounts to a principal component analysis (PCA) of the observa-
tions. Briefly, the goal is to transform the observations $x$ into another vector $y$ having
a unit covariance matrix. This involves the multiplication of $y$ with the inverse of the
square root of its covariance matrix $C_{y}\in \mathbb{R}^{d\cross d}$ .

Firstly, we observe that the covariance matrix $C_{x}$ takes the form

$C_{x}=BC_{s}B^{T}$ (6)

in which the covariance of $s,$ $C_{s}\in \mathbb{R}^{d\cross d}$ , is diagonal, since, the sources are uncorrelated.
Based on the assumption that the sources have unit variance, we have

$C_{x}=BB^{T}$ . (7)

Substitution of the SVD of the mixing matrix $B=$ UD $1/2v^{\tau}$ shows that the EVD
of the observed covariance (PCA) allows us to estimate the components $U$ and $D$

whilst the rotation matrix $V\in \mathbb{R}^{dxd}$ remains unknown;

$C_{x}=UDU^{T}=(UD^{1/2})(UD^{1/2})^{T}$ . (8)

Hence $U$ and $D$ can be estimated from the second-order statistics of the observations
but the actual mixing matrix remains unknown up to an orthogonal factor.

Based on the inverse of the square root of $D$ and $U$ , a whitened vector $y$ can be
defined as:

$y=D^{-1/2}U^{T_{X}}$ . (9)

Finding the Proper Rotation Stage
If the proper rotation matrix V is decided, we can find the mixing matrix $B=$ UD $1/2v^{\tau}$ .
In general, the proper rotation matrix is estimated iteratively.

First, tentative sources are computed based on a tentative rotation matrix as fol-
lows:

$s=Vy$ . (10)
A certain independence measure of the sources $L(s)$ is evaluated based on tentative
sources and V is updated in the direction in order to improve the independence mea-
sure. This procedure is repeated until $L(s)$ converges.

In popular ICA algorithms, as an independent measure of the sources $L(s)$ . Amari
et.al [1] take Kullback-Leibler divergence, Hyv\"arinen et al (FastICA) [3] take $4- th$

ノ

order
kurtosis and Jutten et al [5] take non-linear cross-correlations.
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Step 1 Whitening Stage (PCA)

(a) Compute the sample mean $\overline{x}=\frac{\Sigma_{=1}^{n}x_{i}}{n}$ from $X=[x_{1}, x_{2}, \ldots, x_{n}]\in \mathbb{R}^{dxn}$ .
(b) Compute the covariance matrix $C_{x}=(X-\overline{X})(X-X)^{T}/n\in \mathbb{R}^{d\cross d}$ , where

$X$ $=[\overline{x},\overline{x}, \ldots,\overline{x}]\in \mathbb{R}^{d\cross n}$ .
(c) Eigen Value Decomposition of $C_{x}$ into UDU$T$ with $U,$ $D\in \mathbb{R}^{dxd}$ .
(d) Whiten observed data $Y=D^{-1/2}U^{T}(X-\overline{X})\in \mathbb{R}^{dxn}$ .

Step 2 Finding the Proper Rotation Stage
Initialize a rotation matrix $V\in \mathbb{R}^{dxd}$ .

Repeat
(a) Reconstruct the source data $S=$ VY where $S\in \mathbb{R}^{dxn}$ .
(b) Compute the independence measure $L(S)$ .
(c) Renew V.

Until $L$ converges

Compute a mixture matrix $B=$ UD $1/2v^{\tau}$ .

Figure 1: Outline of popular ICA Algorithms

3 Privacy Preserving PCA

3.1 Secure Sum
As mentioned in Section 2, ICA must compute the EVD of the observed covariance
during the whitening stage. In order to compute the covariance matrix securely, namely,
where only the covariance matrix can be computed between sites and each of the
observations is secret to the other sites. the use of a technique to compute sums securely
is important.

Secure Sum is a technique used to compute sums securely, which was originally
proposed by Schneier [6]. We will use Secure Sum to compute the covariance matrix
and that which we will use is revised to be strong for collusion.

We will explain the (revised) Secure Sum algorithm. We assume there are $N$ sites
and that the lst site is the master site, which is faithful, conforms to the determined
protocols and does not collude or engage in tapping. Other sites conform to the pro-
tocols but may collude with each other or tap the communication line.

Step 1 Firstly, the master site generates one random number $R_{i}$ for each site $i$ and
sends it to the corresponding site using SSL (secure socket layer) or other secure
cryptographic communication channels.

Step 2 Each site $i$ computes the encrypted value $E_{i}$ by adding its local data $Z$; to the
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received random number $R_{i}$

$E;=Z_{i}+R_{i}$ $mod p$ ,

where $p$ is assumed to be greater than $\sum_{i=1}^{N}Z_{i}$ .

Step 3 Site 1 sends its encrypted value $E_{1}$ to the next site 2. After Site 1, site $i$ sends
the sum of the received data and its encrypted value, $\sum_{j=1}^{i-1}E_{j}+E_{i}mod p$ , to the
next site $N-1i+1$ . The last site sends the sum of the received data and its encrypted
value, $\sum_{j=1}E_{j}+E_{N}mod p$ , to the master site 1.

Step 4 The value received at site 1 is the sum of the local values and the random
numbers $\sum_{i=1}^{N}Z_{i}+\sum_{i=1}^{N}R_{i}mod p$ . The sum of random numbers is known to
the master. Therefore, the sum of the local values can be obtained by subtracting
the sum of the random numbers.

The figure in the case of $N=4$ is shown in Figure 2.

Vaiue
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Va$\ovalbox{\tt\small REJECT} ue$

$Z_{3}$

$arrow$ Cryptographic Communication (SSL)

Step 1 Distnibution of Random Number

Site l
$\ovalbox{\tt\small REJECT}$

$z_{\iota^{+R_{1}}}$

$E-$

Site2

Step 3 Computation of Encrypted Sum

Sitel Encryptod SIte4 Enc$rypt\epsilon d$

$\Xi\square$ $\frac{\underline{Va1ue}Z_{1}+R_{1}}{}$ $\underline{H\fbox{ }}$
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$\infty z_{s^{+R_{4}}}$
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Site3 $\vee a\ovalbox{\tt\small REJECT} uo$
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Step 4 Computation of Sum

Figure 2: Secure Sum
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Safety of the Secure Sum

As mentioned in the assumption of Secure Sum, if the master site conforms to the
protocol and properly manages the encryption key $R_{i}$ , this means local data are secure
from tapping and colluding. This is because even if both of the received and sent data
of the local site $i$ are known to someone, he or she will only be able to recover the
encrypted value of site $i$ ,

$\sum_{j=1}^{t}Z_{j}+R_{j}-\sum_{j=1}^{i-1}Z_{j}+R_{j}=Z_{i}+R_{i}$ ,

since $R_{i}$ is the random number only known to Site $i$ and the master site.

3.2 Privacy Preserving PCA
In this Section, we will explain how to ensure PCA privacy is preserved, in a horizontally
partitioned setting. We assume that each site $i$ has an observation matrix $X_{i}\in \mathbb{R}^{dxn_{t}}$ .
Using the Secure Sum mentioned in Section 3.1, each sites can whiten the local data
with local data unknown to other sites. The procedure of privacy preserving PCA is
as follows:

Step 1 Each site $i$ computes the local number of observations, $n_{i}$ , weighted local mean,
$n_{i}\overline{x}_{i}\in \mathbb{R}^{d}$ and the weighted local covariance matrix, $n_{i}C_{i}\in \mathbb{R}^{dxd}$ .

Step 2 Using Secure Sum, Site 1 computes the total number of observations, $n_{m}=$

$\sum_{i=1}^{N}n_{i}$ , the merged mean $\overline{x}_{m}=\sum_{i=1}^{N}n;\overline{x}_{i}/n_{m}$ and the merged covariance matrix
$C_{m}=\sum_{i=1}^{N}n_{i}C_{i}/n_{m}\in \mathbb{R}^{d\cross d}$ .

Step 3 Site 1 computes an Eigen Value Decomposition of $C_{m}=UDU^{T}$ and the
whitening matrix $W=D^{-1/2}U^{T}$ and sends $W\in \mathbb{R}^{dxd},\overline{x}_{m}\in \mathbb{R}^{d}$ to other sites.

Step 4 Each site $i$ whitens local data $Y_{i}=W(X_{i}-\overline{X}_{m})\in \mathbb{R}^{dxn}$” where X$m=$
$[\overline{x}_{mt}x_{m}, . . , , \overline{x}_{m}]\in \mathbb{R}^{d\cross n}$ denotes the merged mean matrix.

The figure in the case of $N=4$ is shown in Figure 3. By this, each site can get $W$ and
its local data $Y_{i}$ .

4 Privacy Preserving ICA

4.1 Issue of Privacy Preserving ICA

In this Section, we will introduce the general outline of Privacy Preserving ICA (PPICA)
and describe an issue of PPICA. The PPICA procedure based on popular ICA algo-
rithms is shown as follows:

Step 1 Whiten local data $Y_{i}=D^{-1/2}U^{T}(X_{i}-\overline{X}_{m})\in \mathbb{R}^{dxn}i$ (Privacy Preserving
PCA)
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Step 3 Computation of Whitening Matnix Step 4 Whitening of Observed Data

Figure 3: Privacy Preserving PCA

Step 2 Site 1 initializes $V\in \mathbb{R}^{dxd}$ , where, $V^{T}V=I_{d}$ and sends it to other sites.

Step 3 Repeat

$\langle a)$ Each site $i$ reconstructs the tentative sources $S_{i}=VY_{j}\in \mathbb{R}^{d\cross n}\cdot$ .
(b) Using Secure Sum, Site 1 computes a certain independence measure $L(S_{i})$

of sources in all sites.
(c) Site 1 renews V, and sends it to other sites.

Until $L$ converges

Step 4 Each site computes the separating matrix $B^{-1}=$ VD$-1/2U^{\tau}$ .

After whitening by Privacy Preserving PCA, the procedure for finding proper ro-
tation matrix is repeatedly executed until some independence measure $L$ converges.
In computing an independence measure $L(S_{i})$ of sources in all sites, the execution of
Secure Sum is repeatedly required. This incurs a considerable communication cost and
could also involve the potential risk of observations being leaked.
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4.2 Two Line ICA
In order to avoid repetition when finding a proper rotation matrix, we use the Two Line
ICA algorithm. The Two Line ICA is originally proposed by Weiss et al [9], because
of its compactness. However its practical advantage has been never exploited.

Similarly to popular ICA algorithms, the Two Line ICA needs to whiten obser-
vations by PCA as preprocessing. The Two Line ICA algorithm can find a proper
rotation matrix via once Eigen Value Decomposition. In total, the Two Line ICA can
be executed by twice Eigen Value Decomposition without repeated evaluation of the
independence measure $L$ .

We extract three sources $s_{i_{1}},$ $s_{i_{2}},$ $s_{t}3$ ’ from $d$ independent sources $s_{1},$ $s_{2},$ $\ldots$ , $s_{d}$ with
replacement and assume that $E[s_{i}]=0,$ $E[s_{i}^{2}]=1,$ $i=1,$ $\ldots,$

$d$ . We also consider a
moment matrix for the extracted three sources as follows:

$M_{i_{1}i_{2}}= \sum_{i_{3}}E[s_{i}\iota s_{t}2s_{i_{3}}^{2}|$
for $i_{1},$ $i_{2}=1,$

$\ldots,$
$d$ (11)

It is noted that, if $d$ sources are independent, then a moment matrix $M_{i_{1}i_{2}}$ is a diagonal
matrix. By replacing the expectation with the sample mean, a moment matrix for
sources is as follows:

$M(S)=Sdiag^{-1}diag(S^{T}S)S^{T}/n$ , (12)
where $S\in \mathbb{R}^{dxn}$ represents the corresponding realizations of sources, given the obser-
vations. diag(A) returns the column vector of diagonal elements of A and diag$-1(v)$
return the matrix whose diagonals are the elements of $v$ .
By substituting $S$ for VY, we can find $M(S)$ has a relation with $M(Y)$ as follows:

$M(S)=VM(Y)V^{T}$ , (13)

where $V\in \mathbb{R}^{d\cross d}$ is a rotation matrix and $Y\in \mathbb{R}^{dxn}$ is a whiten data matrix. We can
obtain the rotation matrix V, by Eigen Value Decomposition

$M(Y)=V^{T}M(S)V$ , (14)

since we assume the sources to be independent and $M(S)$ to be diagonal. In total, we
can obtain the rotation matrix V by twice Eigen Value Decomposition.

4.3 Privacy Preserving ICA
We propose PPICA based on Two Line ICA. PPICA based on popular ICA algorithms
usually take more than twice the use of the Secure Sum. However the number of
Secure Sums in the proposed PPICA is only twice. Therefore the proposed PPICA
is the protocol with little communication traffic. The concrete procedure for privacy
preserving ICA is as follows:

Step 1 Each site $i$ computes a local number of observations, $n_{j}$ a weighted local mean,
$n_{i}\overline{x}_{i}\in \mathbb{R}^{d}$ and a weighted local covariance matrix, $n_{i}C_{i}\in \mathbb{R}^{d\cross d}$ .

170



Step 2 Using Secure Sum. Site 1 computes the total number of observations, $n_{m}=$
$\sum_{?=1}^{N}n_{i}$ , the merged mean $\overline{x}_{m}=\sum_{i=1}^{N}n_{i}\overline{x}_{i}/n_{m}\in \mathbb{R}^{d}$ aiid the merged covariance
matrix $C_{m}=\sum_{i=1}^{N}n_{i}C_{j}/n_{m}\in \mathbb{R}^{d\cross d}$ .

Step 3 Site 1 computes an Eigen Value Decomposition of $C_{m}=UDU^{T}$ and the
whitening matrix $W=D^{-1/2}U^{T}$ and sends $W\in \mathbb{R}^{d\cross d},\overline{x}_{m}\in \mathbb{R}^{d}$ to other sites.

Step
$[^{\frac{4}{X}}\overline{x}Each$

,
site

$x_{m}$ ]
$\in \mathbb{R}^{d\cross n}iwhitensth.e$

local data $Y_{i}=W(X_{i}-X_{m})\in \mathbb{R}^{dxn}i$ , where X$m=$

Step 5 Each site $i$ computes a local moment matrix, $M_{i}=Y_{i}diag^{-1}$diag$(Y_{i}^{T}Y_{i})Y^{T}\in$
$\mathbb{R}^{dxd}$ , where $Y_{i}\in \mathbb{R}^{d}$’ $ni$ is a local whiten data matrix.

$\iota$

Step
$\in \mathbb{R}^{dxd}6Using$

Secure Sum, site 1 computes the merged moment matrix, $M_{m}=\sum_{i=1}^{N}M_{i}$

Step 7 Site 1 computes the Eigen Value Decomposition of $M_{m}=V^{T}HV$ and theseparating matrix $B^{-1}=$ VW and sends $B^{-1}\in \mathbb{R}^{d\cross d}$ to other sites.
Step 8 Each site $i$ computes and the local source matrix $S=B^{-1}(X_{i}-\overline{X}_{i})\in \mathbb{R}^{d\cross n}i$ ,where X$i=[\overline{x}_{i},\overline{x}_{i}, \ldots,\overline{x}_{i}]\in \mathbb{R}^{dxn}i$ .

The procedure from Steps 1 to Step 4 is the whitening stage, while the same pro-cedure as PPPCA and Secure Sum is used in Step 2. The procedure from Steps 5 toStep 8 is the finding proper rotation matrix stage, while a Secure Sum is used in Step6. We can find that the total use of the Secure Sum is only twice. The figure in thecase of $N=4$ is shown in Figure 4.

5 Conclusion
We have proposed a new PPICA based on Two Line ICA. Two Line ICA was originallyproposed due to its compactness, however, its practical advantage has never beenexploited. In this paper, its practical advantage has been shown for the first time. Theproposed Secure Sum is revised to withstand collusion by assuming strong faith on oneof the sites. Therefore the proposed PPICA features low communication traffic andthe ability to withstand collusion.

Communication experiments of the proposed PPICA protocol are an issue for futureresearch.
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