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Suppose the normal linear regression model is used to relate $Y$ to the potential predic-
tors $X_{1},$

$\ldots,$
$X_{p}$ ,

$Y\sim N_{n}(\alpha 1_{n}+X_{F}\beta_{F}, \sigma^{2}I_{n})$ (1)

where $\alpha$ is an unknown intercept parameter, $1_{n}$ is an $n\cross 1$ vector each component of which
is one, $X_{F}=(X_{1}, \ldots, X_{p})$ is an $n\cross p$ design matrix, $\beta_{F}$ is a $p\cross 1$ vector of unknown
regression coefficients, $I_{n}$ is an $n\cross n$ identity matrix and $\sigma^{2}$ is an unknown positive scalar.
We assume that the columns of $X_{F}$ have been standardized so that for $1\leq i\leq p,\overline{X}_{i}=0$

and $X_{i}’X_{i}/n\equiv 1$ . The subscript $F$ of $X_{F}$ and $\beta_{F}$ in (1) means the model (1) is the full
model. We shall be particularly interested in the variable selection problem where we
would like to select an unknown subset of the important predictors. It will be convenient
throughout to index each of these $2^{p}$ possible subset choices by the vector

$\gamma=(\gamma_{1}, \ldots, \gamma_{p})$

where $\gamma_{i}=0$ or 1. We use $q_{\gamma}=\gamma’1_{p}$ to denote the size of the $\gamma th$ subset. The problem
then becomes that of selecting a submodel of (1) which has a density of the form

$p_{y}(Y|\alpha, \beta_{\gamma}, \sigma^{2},\gamma)=\phi_{n}(y;\alpha 1_{n}+X_{\gamma}\beta_{\gamma}, \sigma^{2}I_{n})$ (2)

where $\phi_{n}(y;\mu, \Sigma)$ denotes the n-variate normal density with mean vector $\mu$ and covariance
matrix $\Sigma$ . In (2), $X_{\gamma}$ is the $n\cross q_{\gamma}$ matrix whose columns corresponds to the $\gamma th$ subset
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of $X_{1},$
$\ldots,$

$X_{p},$ $\beta_{\gamma}$ is a $q_{\gamma}\cross 1$ vector of unknown regression coefficients. The rank of $X_{\gamma}$ is
assumed to be

rank $X_{\gamma}= \min(n-1, q_{\gamma})=r_{\gamma}$ . (3)

Let $\mathcal{M}_{\gamma}$ denote the submodel given by (2). In the paper we will omit $\gamma$ if it does not
confuse the readers.

A Bayesian approach to this problem entails the specification of prior distributions on
the models $p_{\gamma}=Pr(\mathcal{M}_{\gamma})$ , and on the parameters $p(\alpha, \beta_{\gamma}, \sigma^{2})$ of each model. For each
such specification, of key interest is the posterior probability of $\mathcal{M}_{\gamma}$ given $y$

$Pr(\mathcal{M}_{\gamma}|y)=\frac{p_{\gamma}m_{\gamma_{\backslash }^{(y)}}}{\sum_{\gamma}p_{\gamma}m_{\gamma}(y)}=\frac{p_{\gamma}BF[\mathcal{M}_{\gamma};\mathcal{M}_{N}]}{\sum_{\gamma}p_{\gamma}BF[\mathcal{M}_{\gamma};\mathcal{M}_{N}]}$ , (4)

where $m_{\gamma}(y)$ is the marginal density of $y$ under $\mathcal{M}_{\gamma}$ . In (4), BF $[\mathcal{M}_{\gamma};\mathcal{M}_{N}]$ is so called
“null-based Bayes factor” for comparing each of $\mathcal{M}_{\gamma}$ to the null model $\mathcal{M}_{N}$ which is
defined as

$BF[\mathcal{M}_{\gamma};\mathcal{M}_{N}]=\frac{m_{\gamma}(y)}{m_{N}(y)}$ ,

where the null model $\mathcal{M}_{N}$ is given by

$Y\sim N_{n}(\alpha 1_{n}, \sigma^{2}I_{n})$ (5)

and $m_{N}(y)$ is the marginal density of $y$ under the null model. In Bayesian model selection,
the Bayes factor is often used as a criterion instead of the marginal density directly. A
popular strategy is to select the model for which $Pr(\mathcal{M}_{\gamma}|y)$ or $p_{\gamma}$BF $[\mathcal{M}_{\gamma};\mathcal{M}_{N}]$ is largest.

Our main focus in this paper is to propose and study specifications for the parameter
prior $p(\alpha, \beta, \sigma^{2})$ . Although we will not dwell on the model prior specffications, we note
in passing that it may be a good idea to avoid a prior which puts equal weights all the
models. A default choice that has emerged is the independent Bemoulli prior

$p_{\gamma}(\gamma|w)=w^{q_{\gamma}}(1-w)^{p-q_{\gamma}}$ ,

which is controlled by a single hyperparameter $w\in(O, 1)$ . Under this prior, each predictor
is independently included in the model with the same probability $w$ . This prior includes
the uniform distribution over models, $w=1/2$ , which is considered by many as the natural
“non-informative” choice. We will observe that such unequal weights model space priors
may play an important role, especially in many predictors case.

We tum to prior density of the unknown parameters of the submodel $\mathcal{M}_{\gamma}$ . In particular,
the joint density we consider has a form

$p( \alpha, \beta, \sigma^{2})=p(\alpha)p(\sigma^{2})p(\beta|\sigma^{2})=p(\alpha)p(\sigma^{2})\int_{0}^{\infty}p(\beta|\sigma^{2}, g)p(g)dg$,
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where $p(\alpha)=1$ and $p(\sigma^{2})=\sigma^{-2}$ . The validness of non-informative but improper priors
for $\alpha$ and $\sigma^{2}$ is clear.

The most tractable prior distribution of $\beta$ is normal conjugate since we consider the
normal linear regression model. Among a class of normal conjugate priors, so-called
Zellner’s (1986) g-prior

$p(\beta|\sigma^{2}, g)=N_{q}(0,g\sigma^{2}(X’X)^{-1})$ , (6)

is often used (George and Foster (2000), Femandez et.al. (2001), Liang et.al. (2008)).
Since (6) includes the inverse of $X’X$ , it is applicable only for the traditional situation
$p\leq n-1$ , which means $q\leq n-1$ for any submodel. George and Foster (2000) show that
the marginal density of $y$ given $g$ and $\sigma^{2}$ under $\mathcal{M}_{\gamma}$ , which is denoted by $m_{\gamma}(y|g, \sigma^{2})$ , is
given by

$m_{\gamma}(y|g, \sigma^{2})\propto\exp(\frac{g}{g+1}\{\max_{\alpha,\beta}\log p(Y|\alpha, \beta, \sigma^{2})-qH(g)\})$ (7)

where $H(g)=(2g)^{-1}(g+1)\log(g+1)$ under the priors $p(\alpha)=1$ and (6). Hence if the
variance $\sigma^{2}$ is known and we choose $g$ independently of $y$ which satisfies $H(g)=2$ or $\log n$

the Bayesian strategy using (7) exactly corresponds to AIC by Akaike (1974) or BIC by
Schwarz (1978). (See George and Foster (2000) and Liang et.al. (2008) for the detail of a
wide variety of related choices for penalty term $H(g).)$ This equivalence is the essential
reason that g-prior of $\beta$ is considered useful for selecting the best model in the Bayesian
framework. Another point of the g-prior is that it makes the marginal density or the
Bayes factor as a function of the important statistics from the frequentist point of view,
like the maximum $\log$ likelihood or the residual sum of squares (RSS).

However there are some unsatisfactory points in the last paragraph. When the maxi-
mization of (7) is considered, the variance $\sigma^{2}$ is assumed to be known whereas it is usually
unknown in the real situations. George and Foster (2000) insert the unbiased estimator
of variance based on the full model given by (1) or the submodel $\mathcal{M}_{\gamma}$ after deriving the
criterion (7). In rigorous Bayesian point of view, however, if the variance is unknown,
the prior distribution should be given. Furthermore we would like to assume the prior
distribution of $g$ instead of estimating a fixed $g$ by empirical Bayes method. In such full
Bayes methods, even if inverse-gamma conjugate prior for $\sigma^{2}$ are also used, there still
remains an integral with respect to a hyperparameter $g$ , which is usually calculated by
MCMC or the Laplace approximation. We believe that a more analytical result in full
Bayes setting is desirable for the theoretical and practical point of view. This is one of
our motivation of this paper.

Additionally, in modern statistics, treating (very) many predictors case $(p\geq n)$ becomes
more and more important. Note that since RSS is zero in the case where $q\geq n-1$ , neither
naive AIC nor BIC methods do work. Since the covariance matrix in Zellner’s g-pr.ior does
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not exist for $q\geq n$ , no Bayesian criteria based on the original g-prior including George
and Foster (2000) and Liang et.al. (2008) is available. If we use not the original g-prior
but a typical prior $\beta\sim N(O, \lambda\sigma^{2}I_{q})$ , the Bayes factor is well-defined in many predictors
case. However, it is no longer a function of important statistics from the viewpoint of
frequentist unlike the Bayes factor with the g-prior. We would like to extend the goodness
of the g-prior to the many predictors case naturally, which is also our motivation in this
paper.

In this paper, we find a special variant of Zellner’s g-prior which enables us to not
only calculate the marginal density based on full Bayes method analytically but also treat
many predictors case. Eventually we propose a following analytical Full Bayes Factor
(FBF) which is a function of fundamental aggregated information of data:

FBF $[\mathcal{M}_{\gamma}]$ (8)

$=\{$

$\frac{t_{\min.sv[X]\}^{q}}^{\overline{sv}[X]\cross\Vert}}{\overline{sv}[X]^{q}}\{1-R^{2}+\hat{\beta}_{LSE}^{MP}\Vert\}^{-n+1}\{\min.sv[X]\}^{2}\Vert\hat{\beta}_{LSE}\Vert^{2}\}^{-1/4-q/2}$

if $q\geq n-1$ ,

$\cross(1-R^{2})^{-(n-q)/2+3/4}\frac{B(q/2+1/4,(n-q)/2-3/4)}{B(1/4,(n-q)/2-3/4)}$

if $q\leq n-2$ .

In (8), $\Vert$ . I denotes the Euclid norm, $R^{2}$ is the R-squares under $\mathcal{M}_{\gamma},$ $\overline{sv}[X]$ and min.sv$[X]$

are the geometric average and minimum value of the singular values of $X$ , respectively.
Also $\hat{\beta}_{LSE}$ for $q\leq n-2$ is the usual least squares estimator, $\hat{\beta}_{LSE}^{MP}$ for $q\geq n-1$ is
the least squares estimator using the Moore-Pennrose inverse matrix, where the response
variable is standardized as $(y-\overline{y}1_{n})/\Vert y-\overline{y}1_{n}\Vert$ . Our criterion FBF $[\mathcal{M}_{\gamma}]$ has a reasonable
interpretation.
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