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Abstract

We investigate a logarithmic-link generalized linear model, whose underlying sam-
pling density is in an exponential family distribution with power variance function. The
multiple-strata case is studied with stratum-dependent intercepts and a common slope.
We prove that there exists a conjugate prior density on the intercept parameter, and the
conjugate analysis is discussed. An estimation procedure is given, which includes the op-
timal estimating function of the parameters other than the intercept, and an empirical
Baysian estimation of the hyper-parameters of the prior density. As an example, rainfall
data for Queensland, Australia, is analyzed.
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1 Introduction

The generalized linear model (GLM, McCullagh & Nelder [14]) plays an important role in
data analysis, enjoying wide application in fields such as insurance, climatology, economics
and biostatistics. Their popularity is partially because GLMs are based on the exponen-
tial dispersion model (EpM) family of distributions, which includes common distributions
such as the Normal, binomial, Poisson and gamma distributions as special cases. In ad-
dition, inference for the GLM has a minimax property: an exponential family distribution
minimizes the Fisher information for the mean parameter under a given mean-variance
relationship (Tsubaki [21]; Ohnishi & Tsubaki [15]).

If the response variable Y follows an EDM distribution with mean 4, the variance is
var[Y] = V(u)/r, where 7 > 0 is a precision parameter, and V' (u) is the variance function,
some function of the mean. ’

A special subset of EDMs are the Tweedie distributions, with variance function V() =
p? for some p. Special cases include the Normal (p = 0), Poisson (p = 1 with 7 = 1),
gamma (p = 2) and inverse Gaussian (p = 3) distributions. Tweedie distributions exist
for all p ¢ (0,1).

The Tweedie distributions with p € (1,2) are of interest here. These distributions
have support on the non-negative reals, and are continuous for Y > 0 with a positive
probability P(Y = 0).
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Until recently, Tweedie distributions (apart from the four special cases identified above)
were rarely used since their distributions, and hence likelihood functions, cannot be written
in closed form. Recent advances have produced accurate numerical methods for evaluating
the density functions (Dunn & Smyth [3, 4]).

Although Bayesian analysis for GLMs is well established (for example, see Gelman et
al. [8]), little is known about Bayesian analysis using Tweedie distributions. A conjugate
analysis of a particular Bayesian GLM is addressed in this paper. Chen & Ibrahim [1]
discuss the conjugate analysis of GLMs for both the intercept and slope, using the power
prior [10], but their analysis depends on the covariates.

We assume a conjugate prior density on the intercept parameters, and develop the
conjugate analysis under this prior density. Unlike Chen & Ibrahim [1], our priors are
assumed on the intercept only, and our priors do not depend on the covariates, but use
hyper-parameters. Also, the situation under study assumes the data consist of K strata,
with a common slope of interest, but separate intercepts. The Bayesian approach is
known to perform well when the dimension of the parameter space is high; the James—
Stein estimator [11] is a well-known example (see Efron [5]). In our model K is assumed
to be large, say more than 35.

After first introducing GLMs and EDMs (Sect. 2), and Tweedie EDMs in particular
(Sect. 3), the likelihood function for the scenario under study is developed (Sect. 4), fol-
lowed by a conjugate analysis of the intercept parameter (Sect. 5). The optimal estimating
function is established (Sect. 6) as well as an estimation procedure (Sect. 7). The results
are then demonstrated using an example (Sect. 8).

2 Generalized linear models, the exponential family
and location—dispersion models

The EDM family of distributions have probability functions

f(; u, 7) = exp[r{c(p)y — M(u)}] a(y; ), (1)

where 4 is the mean, and 7 > 0 is the precision parameter. The known function c(u) is the
canonical parameter; the known function M (u), when written in terms of the canonical
parameter, is the cumulant function; a(y; 7) is the supporting measure. The variance of
Y is var[Y] = V(u)/r where the variance function V(u) is

V(p) = {%:)}_1,

which uniquely identifies the distribution in the EDM family (Jgrgensen [12, §2.3.1]). Use
the notation ED(u, ) to denote a random variable Y has the EDM distribution in (1).
As indicated earlier, common distributions such as the Normal, binomial, Poisson and
gamma distributions are in the EDM family. EDMs are important as they are the response
distributions for GLMs.

Closely related to the EDM family is the location—-dispersion family (Jgrgensen [12]).
Distributions in this family have the form

p(y — p,7) = exp {~7d(y — p) + b(7)}, (2)

for a normalizing constant exp{b(r)}, where 1 and 7 > 0 are the location (but not the

mean) and precision parameters respectively. The function d(t) is called the unit deviance

function, where d(0) = 0, and d(¢) > 0 when t # 0; that is, d(t) is a distance measure.
GLMs consist of two components (McCullagh and Nelder [14]):



1. The response variable, Y;, follows an EDM family distribution, with mean x and
precision parameter T such that Y; ~ ED(u;, Tw;) where w; > 0 are known prior
weights; and

2. The expected values of the Y;, say ui, are related to the covariates x; through a

monotonic, differentiable link function A(-) so that A(u;) = a + xT' 8, where Bisa
vector of unknown regression coefficients, and o represents a constant term.

Often the linear component, or linear predictor, a + xT B is denoted by 7;, when h(y;) =
n = a+x]B.

3 Tweedie distributions

The EDMs with variance function V(i) = u® for some real p are of interest here. For these
EDMs,

f(y; v, 7, p) = exp[r{c(u, p)y — M(u, P)}] a(y; T, p), (3)

V(p) = {Qc—(gjﬂ}_l = P,

These EDM distributions are called the Tweedie distributions by Jgrgensen [12] in honor
of Tweedie [22] . Use the notation ED,(u,7) to denote a random variable Y follows the
Tweedie EDM in (3).

Jorgensen [12] shows distributions exist for all values of p ¢ (0,1). The Tweedie family
includes important distributions, such as the Normal (p = 0), the Poisson (» = 1 with
7 = 1), the gamma (p = 2) and the inverse Gaussian (p = 3) distributions. The binomial
distribution is a notable exception.

When 1 < p < 2, the density (3) can be represented as a Poisson sum of gamma dis-
tributions, and is sometimes called the Poisson-gamma distribution. Suppose N random
variables X; (for i = 1,...,N) are observed, where N follows the Poission distribution
Po(m) with mean (and variance) m. Also, suppose each random variable X; follows a
gamma distribution with shape parameter 6 and scale parameter ) such that the mean is
0 and variance 82, Then the distribution of Eff__l X, where N, Xy, X»,... are mutually
independent, corresponds to an ED,(y, 7) distribution where

“2—17 A= (p - 1),“,,—1

2-p
m-—rz_p, > ,9—p_1.

with

The probabilty function for the Tweedie distribution with a power parameter PpE(1,2)
is

. _ pr e .
f(y,u,r,p)—exp{—f (—l_pv-f-z_p)}a(u,r,p) (4)

for y > 0 (Jergensen [12, Chapter 4]), where

1 ry @R/ E-1Y?
r
1 2—-p\p-1

i mp) = 5; r(@-pi/(p-1)j!

The Tweedie distribution with 1 < p < 2 has the positive probability of zero

()

p>?
P(Y =0) =exp (—72 —p) .

The normalizing constant a(y; 7, p) cannot be written in closed form apart from the four
special cases indicated earlier. To evaluate a(y; 7, p), many authors directly evaluate the
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summation (5), but Dunn & Smyth [3] presented the first rigorous study of the series
expansion, and found it is not possible to accurately evaluate this expansion for all parts of
the parameter space. Dunn & Smyth [4] then developed a method for inverting the simple
form of the moment generating function of the Tweedie densities, producing accurate
computations in the parts of the parameter space where the series is not accuracate.
These algorithms are implemented in the tveedie package (Dunn [2]) for the R statistical
environment [18], and we use these programs to derive our numerical results.

In Tweedie GLMs with p > 1, a logarithm link function is commonly used, since it
ensures u > 0 as required.

For later convenience, write the Tweedie density in (4) as

fy; u, 7, p) = exp [—7{u(p; 2~ p) — yu(p; 1 - p)}] ay; 7, p), (6)
for a(y; 7, p) = exp[~7{-(1 - p) 'y + (2 - p)~'}] a(y; 7, p), where
logt for k =0,
H = { F=1 otherwise ™

In this form, u is continuous in «, and is equivalent to the log-limit form used by Dunn
& Smyth [3]. The function u(t; x) proves crucial later, based on the following properties.
The proof is a straightforward calculation, and is omitted.
Lemma 1 Consider a function u(t; k) as defined in (7).
(i) For any s, t and k, u(st; k) = t"u(s; k) + u(t; k).
(i) Suppose k and v are non-negative and k + v > 0. Then, for anyg>0 andr >0
qu(t; k) — ru(t; —v)
= 6, {u(t/ts; &) — u(t/te; —v)} + qu(ts; &) — ru(ts; —v),

where
t. = (r/q)ﬂ-T and &, = q7torviv,

4 The likelihood function for the Tweedie glm

Although an extension to the vector slope parameter is straightforward, we now focus on
the scalar case for simplicity.

In this paper, interest is in the logarithmic link Tweedie GLM with linear predictor.
Suppose Y; is distributed according to ED,(u:, 7) with logp: = a+ Bz; (1 <1 < n); then
using the expression (6), the density function is given as

f[ f(yi;e>+P= 7, p) = exp [—Tz{u(e"‘*"”‘; 2 - p) — yiu(e*TP™;1 - p)}]

=1 =1
n
x [ a@wi: 7, p). (8)
=1
For use later, use this density function to form the likelihood function, and re-write sepa-
rating a and 3, as shown in the following Proposition.

Proposition 1 The Tweedie likelihood in (8) can be writien as

fI f(yi; €%, 7, p) = exp[—n7 {A(B, p)u(e*; 2 — p) — B(8,p)u(e*;1 - p)}]

i=1

x [] fws; >, 7.p). (9)

i=]1
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where

1 n v 1 n
A == (2—-p)Bz; d - = .e(2—P)Bz;
(B,p) = ~ i§=1: e and B(f,p) = ~ i§=1f vie
As well as noting the separation between a and B, note the symmetry between the two

components involving (1 — p) and (2 ~ p) in (9). This proves useful when the conjugate
analysis of the intercept « is studied in Sect. 5.

Proof Apply Lemma 1(i) to the likelihood function based on the density function in (8);
the summation term in the exponent of the likelihood function becomes

n

> (w42 - p) — (™A= 1 - p)}

i=1

=Y {e@PPoiy(ex;2 - p) - yiet-PBoiy(ea;1 )
=1
+ u(ef™;2 ~ p) ~ yu(ef™,1 - p)}

=n {A(B, p)u(e™; 2 — p) — B(8,p)u(e*; 1~ p)}

+ 3 {u(e®™;2 - p) — gau(eP*;1-p)} .

=1

From (8), the middle expression is equivalent to the summation term in the exponent

of [T f(yi;€°%,7,p); then using the given definitions of A(B,p) and B(B,p), the result
follows.

Now, we consider a specific Tweedie GLM using a logarithmic link function, where the
data consist of K strata with n; observations in stratum k. For each stratum, assume
separate intercepts ax, but common slope 8 for covariate zj; primary interest is in the
slope 3.

The density function is

K

fy; e, B, 7, p) = [[ f(w; o, B, 7, p)
k=1
K ng

= H H F(ynis pris 7, D), (10)

k=1 i=1

where log pix; = aj, + Bz«;. In the above, y = (y1,...,¥x)T with yx = (Ya1,... s Yikna )T
a = (a1,...,ak)T is the intercept parameter vector, 2 is the common slope parameter,
and w48 are the covariates.

To simplify the notation, we define several quantities. We extend A(B, p) and B(5, p)
in Proposition 1 to the multi-strata case as

1 )y - ) 1 ) _ )
A(B )= 3 PP and Bu(B,p) = Y pel o, (1)
i=l1 =]

respectively. We also introduce the following quantities:

B (5,
émr = éme(8, p) = log ZE%%’—%,

Omk = Omx (B, 7, p) = T{Ax(8, P)}pal{B’“(ﬂ’ p)}'bp'
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The former will be shown to be the maximum likelihood estimator (MLE) for a given
(B, p)-

Interestingly, the likelihood function with respect to the intercept parameter o is
similar to that of the location—dispersion family, as shown in the following proposition.

Proposition 2 The likelihood function corresponding to (10) is

k=1

K
f(y7 «, 57 T, p) = f(y; 0, ﬂ’ T, p) €xp [_ ZJMknkL(ak - &Mk; p)]

K
X H exp{_nkck(ﬁ, T, p)}a (12)

k=1

where 0 is the K-dimensional zero vector,

L(t; p) = u(e*; 2 ~ p) — u(e’; 1 - p), (13)
Ck(B, 7, p) = T{ Ar(B, p)u(e®*; 2 — p) — Bi(B, p)u(e®*; 1 —p)}.
Notice the form of (12) is like that of the location—dispersion family (2), where 7 = d, 1

and d(y — u) = L(akx — Gmi; p). Note that L(t; p) > 0 for t # 0, and L(¢; p) =0if t =0,
as required for a deviance function.

Proof As an application of Proposition 1 to the kth stratum, we have

f(yk; Qk, B, T, p)
= exp [~7nu{ 4 (8, P)u(e™; 2~ p) — Bu(B, P u(e™; 1 - p)}| x
f(yx; 0, B, 7, p). (14)

We apply Lemma 1(ii) to the linear combination of the u(-;-) terms in the exponent.
Recalling the definitions of L(t; p) and Ci(B, 7, p), we see that

Ax (8, p)u(e®*; 2 — p) — Bx(8, p)u(e™*; 1 ~ p)
= 2 {(6wuL(a = Gu; ) + Cu(B, 7, D)} (15)

Combining (14) and (15), the likelihood function for stratum k is

f(¥n; ok, B, 7. D)
= f(yx; 0, B, 7, p) exp{ —bmansL(ar — dmk; P) — naCr(B, 7, D) }, (16)

which completes the proof. O

The function L(¢; p) is used as a loss function in the conjugate analysis discussed in
Sect. 5. Proposition 2 shows that amk (8, p) is the MLE for a given 8 and p.

5 Conjugate analysis of the intercept

Motivated by the result of Proposition 2, assume the following prior density on ax, which
is in the location—dispersion family (2):

1
m(ax — ap; P, 6ny) = K. o0 exp{—6éniL(ak — ao; p)}- (17)



141

Here ao and ¢ > 0 are hyper-parameters, L(; p) is the deviance function defined in (13),
and

(s <]

K(p, t) = / exp{~tL(s; p)} ds (18)

is the normalizing constant. When p = 1 or p = 2, the density (17) is a log-transformed
gamma density.
The prior density (17) may be derived in two different ways.

1. The first is based on the likelihood approach, related to the notion of the power prior
proposed by Ibrahim & Chen [10]. To see this, consider (16) as a likelihood function
of oy, supposing the other parameters are known. Replace ami and vy with the
hyper-parameters ay and &, respectively, and the assumed prior density is obtained.

2. The second is an application of the method in Yanagimoto & Ohnishi [23]. The
Kullback-Leibler divergence between two Tweedie densities is

KL(f(y; p1, 7, P)s F(; pi2, 7, P)) = 702 P L(log p3 — log u1; p).

Thus the Kullback-Leibler divergence from model f(y; o, 8, 7, p) to f(yk; iz, B, 7, D)
is

e
KL(@k1, aka; B, 7, p) = TL(Ck2 = atuy; p) D _ €@ =P ma+hous),
=1
Consider the prior density proportional to exp {—3KL(ao, ag; B, T, p)}. Substitu-
tion of 87 3~ e(®~P)(eo+Bzui) with én, gives the assumed prior density.
Prove the conjugacy of the assumed prior density (17) using Lemma, 1.

Proposition 3 The posterior density corresponding to the prior density (17) under the
sampling density f(yx; ax, B8, 7, p) is 7 (ax — GBx; D, OBknk), where

7Bk (B, p) + de~ (Pl
TAk(B, p) + de~(=P)=o’

&Bk = &Bk(ﬂa T, D, aq, 6) = 108
OBk = JBk(ﬂ, T, p, ap, 5)
—1 2
= {TAI:(,B; p)+ 6e”‘2")°‘°}p {TBk(ﬂ, p)+ ‘56_(1"’)“"} .

Therefore, the prior density (17) is conjugate.

Proof From Lemma 1(i),

L(ax — ag; p) = u(e™ ™% 2 - p) — u(e™~*; 1 - p)
= e~(3-P)aoy(gk; 2 _ p) — g=(1-Plavg(gon, 1 _ p) + L(—ag; p).

This, together with Lemma 1(ii), gives

~{ 44(8, Pu(e™; 2 - p) — Bu(8, p)u(e™; 1~ p)} + 5L (o — au; p)
= {‘rAk(ﬂ, p) + 53“2"’)“°}u(e“"; 2 —-p)
= {7Bu(8, p) + be70-P=0 hu(e%; 1~ p) + 6L(~a0; )
= dpxL(ax — épe; p) + Di(B, 7, p, a0, 6), (19)
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where

Di (B, T, p, a0, )
= {74k(8, ) + 8e=CP20 y(ebmu; 2 — )
- {er (B, p) + fe~(1—P)xo }u(e""”‘; 1= p) + 6L(—ao; p)- (20)
It follows from (14), (17) and (19) that
f(yx; an, B, 7, p) m(cx — a0; p, 614)

= f(yft’;(g: ?r’z:), 2 exp{—éﬂkﬂk[z(ak — GBi; p) ~ nuDw(B, 7, p, 00, 5)}' (21)

Thus, using (18), the posterior density is calculated as

. 1 N
7 (ak — éBi; P, OBrns) = ) exp{—dsaniL(ci — ésx; p)},

which is of the form of the location~dispersion family (2). This completes the proof. O

Other properties of the assumed prior density (17) are given in the following Lemma,
which will be applied in discussing the conjugate analysis.

Lemma 2 Set§(p,t) =1—-(2-p)(p—1) (8/8¢t)log K(p, t).
(i) Both the following are true:
E. [6(2—1’)0:.] = £(p, Ony)e®~Plo
E, [e(l—p)au] = &(p, Sny)et—Plao

where E.[-] denotes the expectation with respect to the prior density (17).
(#) The Kullback-Leibler separator from m(ax — ao1; p, 6ni) to m(ax — ao2; p, 6nx) is
KL(m(ax — ao1; p, 0na), m(ax — aoa; p, nk)) = 6neé(p, dni)L(aor — o).

Proof

(1) The required result is obvious when p = 1 or p = 2 since the density (17) is a log-
transformed gamma density, so suppose 1 < p < 2. Differentiating both sides of the
equality

oo

K(p, t) = [ exp[~tL(ax ~ ao; p)] da

— 00

with respect to ag and ¢ gives
/— : (=P en=a0) _ e1-ren=20)} exp[—tL(ax — ao; p)] dak = O,
[_: L(aw — ao; p) exp[~tL(ax — ao; p)] day = —;%K(P, t).
Multiplying both sides of the latter equality with (2 — p)(p — 1) and using (18),
K(p, )= 2= p)p - 1) 5K (7, 1

o0
—00



Replace t with dn,. Then the above two equalities form a set of linear equations
E, [6(2—11)(%—&0)} =E, [e(l—P)(ak—~ao)] ,
(p—1E, [e‘z”“’)“"’"“"‘“’] + (2~ p)Ex [e““’"("‘"""“)] = €(p, 6nx).

The results are the solution to this set of equations.
(ii) From Lemma 1(i),

L(ax — aoz; p) = L(ok - am; p)
= e(2~P)(ah—a01)u(eam—am; 2—p)— el1—P)(an —-aox)u(eaox-am; 1-p).

The definition of the Kullback-Leibler divergence, together with (i), yields the re-
quired result.

O

Now we discuss the conjugate analysis for a) assuming on a temporary basis that 3,
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ap and & are known. As stated in Sect. 4, the loss function L(ay — é&x; p) is adopted.

This is a Kullback-Leibler loss function, which follows from Lemma 2(ii). The conjugate
analysis of a, is summarized in the following proposition.

Proposition 4 A modified Pythagorean relationship
Epo.t[L(ak — Gx; p) — L(ax — éga; p) — £(p, Oeni)L(Gr — Gi; P)] =0

holds for any estimator &, where Eyo[-] stands for the posterior expectation. Therefore,
the estimator Gpy is optimal under the loss function Loy — éu; p).

Proof Consider the Kullback-Leibler divergence from the posterior density 7r(a;, -
&Bk; Py OBk7k) to another density 7 (ax ~ &x; p, 0gkns). The latter is obtained by sub-
stituting agx with an arbitrary estimator &,. Note that the two densities have the same
normalizing constant. It follows from (17) that

KL(W(ak — &Bk; Py OBk ), w(ak — Gx; P, OBknk) )
= 0pknkEpost [L(ak — &g; p) — L(ax — dsk; p) ]
Apply Lemma 2(ii) to the left-hand side of this equality. [

Note that &g, and dp, (in the Bayesian context) coincide with &y and &y (in the
maximum likelihood context) respectively in Proposition 2 when § is zero.

The family of distributions to which the conjugate prior density (17) belongs was first
derived by Ohnishi & Yanagimoto [16] in the context of seeking members of the location—
dispersion family having a conjugate prior. They sought location—dispersion densities
f(y — p) with a conjugate prior density of the form x(x — m; 6) o {f(m — u)}®. This
requisition also yields the Normal and the von Mises distributions.

6 The optimal estimating function

We now investigate the following estimating equation of (8, 7, p):

Epoat[Vl(y; a, B, T, p)] =0 (22)
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where I(y; a, 8, 7, p) = log f(y; a, B, 7, p) and V = (8/88, 8/8r, 8/8p)T. This esti-
mating equation is proved to be optimal under a certain Bayesian criterion. The hyper-
parameters ap and § are assumed to be known in this Section.

The following proposition gives another expression of the estimating function (22).
The proof is straightforward and is omitted.

Proposition 5 It holds that

V 10g fmarg(¥; B, T, P, @0, 6) = Epont [Vi(y; @, 8, 7, P) ],

where fmarg(¥; B, T, P, o, 6) is the marginal density.

An optimality of the estimating function (22) is shown in the following proposition.
The criterion function in the proposition was adopted by Ferreira [6], which is an extended
version of the one in Godambe & Kale [9] adapted to the Bayesian framework.

Proposition 8 Suppose ag and & are known, and consider an estimating function g(y; 8, 7, p)
which is unbiased in the sense that

E.[Es[g(w; B, 7, p)]] =0, (23)

where E¢[-] denotes the expectation with respect to the sampling density. Then, the esti-
mating function in (22) is optimal with respect to the criterion

M(g]=Tr (B"*A(BT)™) (24)
where A = E.[E;[gg”]] and B = E.[E;[VgT]].

Proof Since g(y; 3, 7, p) does not depend on «, write the unbiasedness condition (23)
as

Emng[g(y; B, T, p)] =0,

where Emarg[+] is the expectation with respect to the marginal density. Similarly, the
matrices A and B in the criterion function (24) can be expressed as A = Emucg [997 ]
and B = Enag[VgT]. Using criterion (ii) in Godambe & Kale [9, Section 1.7], the
optimal estimating function is V 10g fmarg(¥; B, 7» P, g, 6), which Proposition 5 proves
to be equivalent to the estimating function in (22). O

An interesting relationship holds between the first element of the above optimal es-
timating function and the optimal estimator derived in Sect. 5. The optimal estimating
function of 3 is expressed in terms of the optimal estimator &g,. The score function of 5
is expressed as Ig(y; a, 8, 7, p) = 3 lxa(Ys; ak, B, T, p) where

lkﬂ(yk; Qe ﬁ’ T, p)

N g
= —7 {6(2-—?)0”. Z mk‘,e('&’—ﬂﬁzu - e(l-P)au. Z ml“_y‘"_e(l—p)ﬁau,.i} ) (25)
i=1 $==1

This is shown by noting that

ny,
log f(yx; ak, B, 7, p) = -—TZ{u (eau+ﬁwu; 2 —p) - Ynitt (eakﬂ%u; 1 _.p)} + Fy,

=1

where F is the term constant in 5.
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Proposition 7 For any k € {1,...,K},

Epost [lkﬁ(yk; g, ﬂ’ Ty p)] = g(p’ JBknk) lkﬁ (yk; aBka ﬁ’ T, p)‘

Therefore, the optimum estimating function is

K
Epolt [lﬁ(y; «, Ba T, p)] = Zf(]’, 5Bk'nk)lkﬁ (yk; C‘iBln ﬂ’ ) P)
k=1

Proof Proposition 3 and Lemma 2 yield that
Epor: [P | = £(p, Spunn)e®-P)eer,
Epost [e(l-P)ak] = &(p, JBknk)e(l"p)&”".

This, together with (25), completes the proof. [

7 Estimation procedure

We propose to estimate 3, 7, p and § by maximizing the marginal likelihood function,
although these parameters are assumed to be known in Sects. 4 and 5. Here set ag = 0
for simplicity.

Proposition 8 The marginal likelihood function with ag = 0 is

fmsrg(y; B, 7, p, 0, §)

K
= f(y; Ov /3, T, p) H [W exp{"nka(ﬂ’ Ty Dy O» 6)}] 3
k=1 ’

where 6px = dpr(B, 7, p, 0, ) and Dr(B, T, p, ag, 8) is defined by (20).
Proof Using the expression (21) with ap = 0 and (18),

f f(ye; ak, B, 7, p) m(ax; p, 6ni) dak

K(p, dxnyi)

= f(yx; 0, B, 7, D) K (p, ong)

exp{-—n;,Dk(ﬂ, 7, D 0, 6)}’
which completes the proof. O

Our estimation procedure consists of the following two steps:

Step 1. Maximize the marginal likelihood fmarg(¥; 8, 7, P, 0, §) with respect to 3, 7, p
and 4.

Step 2. Estimate aj by plugging the estimates in Step 1 into égx (8, 7, p, 0, ) in Propo-
sition 3.

In practice, the marginal likelihood for given values of p is maximized and the maximizer
p is found through a cubic spline curve computed over a suitable range.

It is interesting to compare the Bayesian estimation procedure with the maximum
likelihood (ML) procedure. It follows from Proposition 2 that the ML procedure maximizes

K
f(y; D’ ﬂ, T, p) H exp{—n;.Ck(ﬂ, Ty p)}

k=1
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with respect to (3, 7, p). Although lims_,40 Dx(B, 7, p, 0, 8) = Ci(B, T, p), a positive
estimate for ¢ results since K (p, dn) tends to infinity as 6 approaches to zero. Thus, our
Bayesian procedure is different from the ML procedure.

An R function is available, on request, for fitting the models proposed in this paper.
Evaluation of the Tweedie density function f(y; 0, 8, 7, p) in the marginal likelihood
function given in Proposition 8 is performed using numerical algorithms (Dunn & Smyth [3,
4]) as implemented in the tweedie package (Dunn [2]). Evaluation of the K (p, -) functions,
defined in Eq. (18), in the marginal likelihood, is performed using the integrate function
in R, which is based on QUADPACK routines (Piessens [17]); these programs routinely
accommodate infinite limits of integration. The optimization in Step 1. is performed
using constrained multivariate minimization as found in the R function nlminb, based on
the PORT routines http://netlib.bell-labs.com/netlib/port/.

8 Example

Forty-five stations were selected for this study (Fig. 1), all in the same climatic region as
identified by the Australian Bureau of Meteorology at http://www.bom.gov.au/cgi~bin/
climate/cgi bin scripts/climclassification.cgi (based on Gaffney [7]). All sta-
tions are considered subtropical (Cfa in the classification of Képpen [13]).

The total July rainfall from 1970 to 2006 (37 observations per station) is used here
(Table 1). A plot of the rainfall at selected stations (Fig 2) shows the extreme skewness
of the distributions. Also recorded, but not shown, is the average monthly southern oscil-
lation index, or SOI [20], for the corresponding months. The SOI is defined as difference
between Tahiti and Darwin air pressures, and has been linked to Australian rainfall (Stone
& Auliciems [19]).

We consider a Tweedie GLM with a logarithmic link function such that h(us) =
log uxi = aix + Bzwi, where x4; = z; represents the SOIL In this example, the inter-
cepts a; represent specific features of the observation stations and the slope 8 represents
the common effect of the SOI in the region. Thus our primary interest is placed on the
common slope; that is, the effect of the SOI on rainfall. The intercepts are parameters of
secondary interest.

After initially using a coarse grid to determine p, the final model was fitted to the data
considering a finer grid of values from p = 1.66 to p = 1.73 in steps of 0.01. A smooth
cubic spline interpolation may be fitted through these computed points for a more accurate
estimate. A nominal confidence interval for p is found using that 2 [log L($) — log L(py)]
has, asymptotically, a x? distribution, where po is the true parameter value. The profile
likelihood plot (Fig. 3) indicates an estimate of =~ 1.69, with a nominal 95% confidence
interval from 1.663 to 1.719 approximately. In practice, any value of p in the (say) 95%
confidence interval produces very similar estimates, models and residual plots. At this
empirical Bayesian estimate of p, compute 3 = 0.0372, # = 0.376 and & = 0.00173.

For each candidate value of p, numerical methods are used to maximize the log-
likelihood over the (3, d) space, then the optimum value of 7 found for each (8,48) combi-
nation. The procedure iterates until convergence, and the entire process repeated for the
next value of p under consideration. :

In particular, the value of 3 is of interest. The profile likelihood plot for 8 (Fig. 4) shows
a nominal 95% confidence interval for 3, computed similarly to that for p, is from 0.032
to 0.0427 approximately. This interval certainly does not contain zero, so the effect of
SOI is statistically significant, though the value is small so may not be of any practical
significance. In this case, the maximum likelihood estimates are very similar to those
computed using the empirical Bayesian approach (Table 2); this is expected since & is
small.
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Figure 2: Boxplots of total July rainfall for selected stations
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Figure 3: The profile likelihood plot for p. The points represent the actual log-likelihoods
computed at the given values of p. The thick solid line is a cubic spline smooth through
the computed points. The dotted horizontal line represents the height of the nominal 95%
confidence interval. The vertical line is the location of the empirical Bayesian estimate of p.
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Figure 4: The profile likelihood plot for 8. The thick solid line is the log-likelihood. The
dotted horizontal line represents the height of the nominal 95% confidence interval. The
vertical line is the location of the empirical Bayesian estimate of p.



Table 1: Summaries of the total July rainfall (in millimetres) at each station

151

5% 95% Std Percent
Station Min quantile Median Mean quantile Max dev IQR  zeros
40014 14 2.8 34.0 36.8 96.8 138.8 31.2 35.2 0.0
40024 0.0 0.0 29.8 35.7 99.9 159.6 35.0 39.8 8.0
40047 0.1 5.1 50.1 72.4 178.6 520.2 90.4 54.6 0.0
40075 0.0 1.6 30.7 37.7 118.3 226.6 42.8 23.9 5.0
40079 0.0 0.0 27.7 35.3 94.8 268.0 45.7 25.3 8.0
40082 0.0 0.8 29.9 36.8 89.6 306.4 524 28.0 3.0
40083 0.0 0.9 28.2 35.3 99.4 224.2 419 29.7 3.0
40094 0.8 2.1 34.5 35.2 90.2 150.8 29.7 278 0.0
40096 0.0 0.3 26.2 33.8 107.4 142.5 33.7 35.1 3.0
40104 0.0 0.0 34.8 35.5 107.9 137.7 33.5 324 8.0
40110 0.0 1.7 23.1 43.6 112.9 365.4 64.7 34.3 3.0
40117 1.0 4.0 55.4 84.9 228.4 879.9 145.5 42.7 0.0
40120 0.8 3.1 27.8 36.1 101.0 243.7 433 24.0 0.0
40124 0.0 0.0 24.5 34.5 114.2 204.8 40.3 29.1 10.0
40157 0.0 1.1 53.4 90.9 245.2 835.4 142.6 54.8 5.0
40158 0.0 2.1 32.2 42.8 134.1 273.3 504 25.7 5.0
40160 1.2 5.5 50.5 66.8 178.5 367.3 67.8 61.8 0.0
40171 0.0 2.3 32.3 53.9 137.6 481.7 80.7 32.6 3.0
40184 0.8 1.4 29.0 37.9 104.8 228.1 420 38.5 0.0
40190 1.0 3.5 58.8 72.7 153.9 406.2 71.1 62.0 0.0
40196 0.7 3.8 54.2 71.8 178.3 363.4 71.2 69.0 0.0
40197 3.8 4.2 54.0 69.4 184.7 4273 79.3 444 0.0
40224 0.1 2.6 32.4 51.9 149.2 404.0 72.0 27.8 0.0
40229 0.2 14 28.0 48.6 162.2 329.6 64.3 28.6 0.0
40231 0.0 3.5 36.1 54.9 153.56 435.6 77.0 44.0 3.0
40237 2.0 6.0 30.0 54.1 161.8 430.2 76.2 28.2 0.0
40242 04 3.4 31.5 51.0 142.9 423.0 719 277 0.0
40244 0.2 4.9 31.2 52.5 159.4 378.8 68.8 27.3 0.0
40245 0.2 3.8 29.8 48.5 154.5 318.8 60.8 28.4 0.0
40257 1.2 5.5 58.9 88.7 234.5 867.1 145.6 51.6 0.0
40382 0.0 1.8 40.2 41.2 109.0 212.1 41.1 34.2 3.0
41001 0.0 0.1 30.4 38.8 107.0 122.8 33.6 424 5.0
41011 0.0 04 30.8 31.9 75.7 128.5 28.3 304 3.0
41018 04 0.8 31.0 34.9 87.4 115.0 28.6 37.8 0.0
41022 2.3 4.3 45.2 49.3 141.3 158.3 40.2 48.6 0.0
41063 0.0 0.0 21.1 31.5 83.3 138.4 29.8 35.8 8.0
41056 1.6 2.6 31.6 39.2 104.3 184.3 38.9 41.8 0.0
41063 0.0 0.5 30.8 37.7 93.0 131.4 31.6 399 3.0
41072 0.0 0.0 25.0 33.3 76.1 130.9 29.2 45.3 8.0
41082 0.0 1.2 31.2 36.1 98.6 1374 32.6 36.2 5.0
41083 0.0 0.6 31.0 40.1 104.2 1249 33.6 47.6 5.0
41095 1.3 1.8 39.7 45.2 128.3 143.8 36.4 39.7 0.0
41103 0.2 1.3 39.0 45.7 121.7 1568.7 39.3 53.2 0.0
41116 2.0 3.1 34.4 45.0 112.9 144.1 344 434 0.0
41126 0.0 0.0 30.2 33.2 78.9 122.2 28.7 37.1 10.0
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Table 2: Empirical Bayesian estimates and the maximum likelihood estimates for fitting the
model to July rainfall

Empirical Bayesian Maximum likelihood

Parameter estimate estimate
p 1.69 1.68
B 0.0372 0.0371
T 0.376 0.369
é 0.00173



