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Abstract

Academic institutions of most European countries are now in the midst of the
process of overall convergence of studies at university level, the so-called European
Space of Higher Education. This process, bom from Bologna’s declaration, implies
a dramatic change in our way of teaching and learning. This change is specially
challenging in very difficult subjects such as Mathematics and other scientific dis-
ciplines, which typically suffer from high failure rates. It’s author’s opinion that
Computer Algebra Systems are very powerful tools (arguably the best ones) to
face the challenges of this new approach to Higher Education. To support such
claims, some examples of Mathematica packages developed by the author during
the last few years for teaching different subjects in scientific degrees (according
to the principles and regulations of the European Space of Higher Education) are
briefly described.

1 Introduction
Since its signature in 1999, Bologna’s Declaration has epitomized the much-needed,
largely-demanded process of changes umdertaken in most European countries in order
to reform their Higher Education system. This agreement is not only designed for new
curricula and academic regulations; it also accounts for a new approach to teaching and
learning (in author’s opinion, the most important issue of this process). This challenge
is specially important in very difficult subjects such as Mathematics and other scientific
disciplines, which typically suffer from high failure rates. Several academic reports have
pointed out the difficulties our students face when studying (and suffering) mathematical
subjects. Students and professors at university often cite lack of preparation from high
school, poor study habits and the rapid pace of the course as reasons for such low scores.
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Right or not, the truth is Mathematics is very much practice-based. Students may
get a concept in the classroom, but they will certainly lose it if not reinforced by home-
work. For doing so, students need to be provided with good supporting materials so
that they can effectively leam by themselves. High-quality, helpful educational materials
allow underachieving students catching up on belated assignments and get extra time for
successful backtracking. It is at this point where Computer Algebra Systems (CAS on-
wards) can really pave the way, making the most with less. In author’s opinion, CAS are
very powerful tools (arguably the best ones) to face the challenges of this new approach
to Higher Education. This paper aims at supporting such claims by presenting some
examples of Mathematica packages developed by the author during the last few years for
teaching different subjects in scientific degrees according to the principles and regulations
of the European Space of Higher Education.

2 Some Illustrative Examples

2.1 Example 1: Binary Distillation Column
This section is about a Mathematica program for distillation column design described
originally in [7]. This example is intended for students of Chemical Engineering de-
gree who can use a CAS as a useful tool for their symbolic/numerical computations and
graphical output. For the sake of simplicity, we consider the case of continuous distillation
columms for binary mixtures. However, our approach is very general as it can be applied
to any other kind of distillation columns by simply replacing our assumptions by those
of each specific case. In this example, we assume that the colunms are designed through
McCabe-Thiele’s procedure [11, 12]. This is a graphical method which determines the
number of stages required for the desired degree of separatIon and the location of the
feed tray as functions of some parameters of the problem. The program is general enough
to analyze a number of different mixtures under different conditions as well as the role
of many relevant parameters of this process. To this purpose, an adequate combination
of symbolic and numerical calculations is achieved. From these calculations, both nu-
merical and grapluical outputs are obtained. In fact, the graphical output is actually a
Mathematica movie of McCabe-Thiele’s diagram.

The method has been implemented as a Mathematica package, called MTBDC. $m$ , where
this acronym stands for McCabe- Riele Binary Mstillation Column. This section de-
scribes one example of application of this program to a equimolar $(i.e. x_{f}=0.5)$ binary
mixture whose relative volatility is $\alpha=4$ . Our target is to design a distillation column
that obtains a destillate with 85 % of purity $(i.e. x_{d}=0.85)$ and bottoms with 5 % of
purity $(i.e. x_{b}=0.05)$ . The first comand Reflux [xd, xf $l$ alpha] determines three values:
the reflux, and the liquid and vapor compositions of the more volatile component:

In [1] $:=$ Needs $[^{1t}MCBDC$ ‘ $||]$

In [2] $:=$ Reflux [0.85, 0.5,4]
Out[2] $:=\{1.75,0.2,0.5\}$

Then, the command OperatingLines [xd, xf, alpha] is applied to the calculation of
the operating lines of the rectification section and the stripping section, shown in Fig.
l(d). The third step is to apply McCabe-Thiele’s method to determine the number of
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Figure 1: McCabe-Thiele’s method for binary distillation column design: $(a)-(h)$ different
steps of the method (see the body text for details).
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Figure 2: McCabe-Thiele’s method for an equimolar heptane-octane mixture with $x_{d}=$

0.98, $x_{f}=0.5,$ $x_{b}=0.05$ and $\alpha=2.17$: (left) $E_{f}=1$ ; (right) $E_{f}=0.65$ .

trays of the column as well as the location of the feed tray. To this end, we define the
MTPlot command, which accepts five different arguments, namely, $x_{d},$ $x_{f},$ $x_{b},$ $\alpha$ and the
efficiency $E_{f}$ . For example, MTPlot [0.85,0.5,0.05,4,0.6] returns a sequence of 49
frames corresponding to the different steps of McCabe-Thiele’s method. Eight of these
frames are displayed in Figure 1.

One of the most remarkable Mathematica features in this work is the possibility to
generate $Q\dot{m}ckTime^{TM}$ movies. For example, the different images in Figure 1 correspond
to eight frames of a QuickTime movie that reproduces McCabe-Thiele’s method in a
graphical way. The movie is automatically generated from the MTPlot command. Dif-
ferent values of its arguments are associated with different initial mixtures and$/or$ final
products. This option is specially valuable for educational and training purposes, as we
can obtain a virtually unlimited set of distillation columns in a fast and simple way.

McCabe-Thiele’s method does not allow us to determine all relevant distillation col-
umn parameters and thus, some additional equations must also be considered. The
discussion is beyond the scope of this paper and will not be included here. At this time it
is enough to say that a number of different Mathematica commands incorporating these
additional equations have been implemented in the MTBDC. $m$ package. For example, if we
start with an equimolar mixture of heptane-octane with a relative volatility $\alpha=2.17$ and
efficiency $E_{f}=1$ and we wish to obtain a destillate with 98 % of heptme and bottoms
with only a 5% of heptane, the column parameters can be determined as:

In [3] : $r$ ColumnParameters $[0.98,0.05,0.5,2.17,1]$
$Out[3J:=Number$ of trays $=14$ (rebolier included)

Number of Feed $tray=9$
Column height $=8.4$ meters
Distance between trays $=0.6$ meters

Figure 2 shows the McCabe-Thiele’s diagram of the column for total efficiency $E_{f}=1$

(left) and when the efficiency of the process is only a 65 %, that is $E_{f}=0.65$ (right).
In the first case, the column has only 14 trays and its height is 8.4 meters, while in the
second case the number of trays increases up to 22 and the column height is now 13.2
meters.
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2.2 Example 2: Solving Inequalities

Solving inequalities is a very important topic in Mathematics, with outstanding applica-
tions in many areas of theoretical and applied science. Inequalities play a key role because
many problems cannot be completely and accurately described by using only equalities.
However, since there is not a general methodolody for solving inequalities, their sym-
bolic computation is still a challenging problem in computational algebra. Depending on
the kind of functions involved, there are many “specialized” methods such as cylindrical
algebraic decomposition, Gr\"oebner basis, quantifier elimination, etc. [1, 6, 8, 13].

This section uses a nonstandard Mathematica package [9], InequationPlot, for dis-
playing the two-dimensional solution sets of several inequalities. In particular, it extends
Mathematica’s capabilities by providing graphical solutions to many inequalities (such
as those involving trigonometric, exponential and logarithmmic functions) that cannot be
solved by using the standard Mathematica commands and packages [14, 15]. The package
also deals with inequalities involving complex variables by displaying the corresponding
solutions on the complex plane.

Inequalities involving trigonometric functions cannot be solved by standard Mathe-
matica commands. For example, let us try to display the solution sets of each of the
inequalities

$sin(x+y)> \frac{1}{2}$ (1)

and
$sin(2x)+cos(3y)<1$ (2)

on the set $[$ -8, $8]\cross[-8,8]$ by using the standard Mathematica commands. In this case,
we must use the command InequalityPlot of the Mathematica package:
In [41 $:=<<Graphi$ cs‘ InequalityGraphics

Unfortunately, since the region defined by inequality (1) on the prescribed domain cannot
be broken down into cylinders, Mathematica fails to give the solution:
In [5] $:=InequalityPlot$ $[$Sin $[x+y]>1/2,$ $\{x,$ $-8,8\},$ $\{y,$ $-8,8\}]$

Out[5]: $=InequalityPlot:$ : region:
The region defined by $sin(x+y)>1/2\wedge-8<=x<=8\wedge-8<=y<=8$ could not be
broken down into cylinders.

On the contrary, the previous inequalities can be solved by loading our package:

In [6] $:=<<$InequationPlot‘
which includes the command
Inequat $i$ onPlot [ineqs, $\{x$ , xmin, xmax}, $\{y$ , ymin, ymax}, opts]

for displaying the two-dimensional region of the set of points satisfying the inequalities
ineqs of real numbers inside the square [xmin, xmax] $\cross[ymin$ , ymax$]$ . For example,
inequalities (1)$-(2)$ can be solved as follows:

In [7] $:=InequationPlot$ [$*,$ $\{x,-8,8\},$ $\{y,-8,8\}$ , AspectRatio-$>Automat$ ic]& /@

$\{Sin[x+y]>1/2$ ,Sin $[$2 $x]+Cos[3y]<1\}$

$Outf7J:=See$ Figure 3
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Figure 3: Some examples of inequality solutions on the square [-8, 8] $\cross[-8,8]$ : (left)
$sin(x+y)> \frac{1}{2}$ ; (right) $sin(2x)+cos(3y)<1$ .

Similarly, Fig. 4 displays the solution sets of the inequalities $F(x)+F(y)=1$ and
$F(x^{2})+F(y^{2})=1$ (where $F$ stands for the floor function) on the squares $[$-4, $4]\cross[-4,4]$

and [-2, 2] $\cross[-2,2]$ , respectively. We would like to remark that the Mathematica com-
mand InequalityPlot does not provide any solution for these inequalities either.

Figure 4: Some examples of inequality solutions: (left) floor$(x)+floor(y)=1$ on the
square $[$-4, $4]\cross[-4,4]$ ; (right) floor$(x^{2})+floor(y^{2})=1$ on the square $[$-2, $2]\cross[-2,2]$ .

The previous command, InequationPlot, can be generalized to inequalities involving
complex numbers. The new command
ComplexInequationPlot [ineqs, $\{z$ , {Rezmin, Rezmax}, {Imzmin, Imzmax}}, opts]

displays the solution sets of the inequalities ineqs of complex numbers inside the square
in the complex plane given by $[$Rezmin, $Rezmax]\cross[Imzmin$ , Imzmax$]$ . In this case, the
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functions appearing within the inequalities need to be real-valued functions of a complex
argument, $e.g$ . $Abs,$ $Re$ and $Im$. For example:

In [8] $:=ComplexInequationPlot$ [$\#,$ $\{z,$ $\{-2,3\},$ $\{-3,3\}\}$ , AspectRatio- $>$Automatic]&

/@ $\{1<Abs[z^{rightarrow}2-z+1]<4,1<Abs[z^{-}2-2z]/$Abs $[z^{\sim}2+3]$ く 4 $\}$

$Out[ 8\int:=See$ Figure 5

Figure 5: Some examples of inequality solutions for $z=a+b\in \mathbb{C}$ such that $a\in[-2,3]$

and $b\in[-3,3]$ : (left) $1<||z^{2}-z+1||<4$ ; (right) $1< \frac{||z^{2}-2z||}{||z^{2}+3||}<4$ .
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Figure 6: Solution sets for the inequality systems: (left) Eq. (3); (right) Eq. (4).

The last example shows how complicated the inequality systems can be: in addition
to include exponential, logarithmic and trigonometric fimctions, combinations and even
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compositions of these (and other) functions can also be considered. In Figure 6 the
solutions sets of the inequality systems:

$e^{y} \geq 1\wedge log(x)y\geq 1\wedge x\sqrt{y}<4\wedge x-y>\frac{1}{2}$ (3)

$log(y)\geq_{\tilde{2}}^{1}\wedge sin(x)y\geq x\wedge cos(e^{x-y})\geq 0\wedge sin(x^{2}+y^{2})>0$ (4)

on $[1, 10]\cross[0,10]$ and $[0,3]\cross[1,5]$ respectively are displayed.

2.3 Example 3: Gauss Map of Surfaces
This section focuses on a classical topic in the field of Differential Geometry: the vi-
sualization of the Gauss map of a surface. Roughly speaking, the Gauss map projects
surface normals onto a unit sphere, providing a powerful visualization of the geometry of
a graphical object. On the other hand, dynamic visualization of the Gauss map speeds
understanding of complex surface properties. This section applies a Mathematica pack-
age described in [10], GaussMap, for computing and displaying the tangent and normal
vector fields and the Gauss map of surfaces described symbolically in either implicit or
parametric form. Firstly, we load the package:
In [9] $:=<$く DifferentialGeometry‘GaussMap

2.3.1 Implicit Surfaces

The ImplicitNormalField command calculates the normal vector field of any implicit
surface in the form $f(x, y, z)=0$ and retums a graphical output comprised of the surface
and such a normal vector field. The first example is given by the paraboloid $x^{2}+y^{2}-z=0$ :

In [10] $:=ImplicitNormalField[x^{-}2+y^{\sim}2-z,$ $\{x, -2,2\},$ $\{y, -2,2\},$ $\{z,$ $-1,2\}$ ,
Surface-$>Tme$ , PlotPointsSurface-$>\{4,7\}$ , VectorHead- $>Polygon$]

$Out[10]:=See$ Figure 7

Figure 7: The paraboloid $x^{2}+y^{2}-z=0$ and its vector normal field.

121



The ImplicitGaussMap command of an implicit surface returns the original surface
and its Gauss map on the unit sphere:

In [11] $:=ImplicitGaussMap[x^{\sim}2+y^{\sim}2-z,$ $\{x,$ $-2,2\},$ $\{y,$ $-2,2\},$ $\{z,$ $-1,2\}$ ,
PlotPoints- $>\{4,7\}]$

Out $[$ ll $]$ $:=See$ Figure 8

Figure 8: (left) Implicit surface $x^{2}+y^{2}-z=0$ ; (right) its Gauss map.

Next example calculates the normal vector field of the surface $z-x^{2}+y^{2}=0$ :
In [12] $:=ImplicitNormalField[z-x^{-}2+y^{\sim}2,$ $\{x, -2,2\},$ $\{y, -2,2\},$ $\{z,$ $-2,2\}$ ,

Surface- $>True$ , PlotPointsSurface- $>\{4,6\}$ , VectorHead-$>Polygon$ ,

PlotPointsNormalField- $>\{3,4\}]$

Out[12]: $=See$ Figure 9

Figure 9: The surface $z-x^{2}+y^{2}=0$ and its vector normal field.

The Gauss map image of such a surface is obtatned as:
In [13] $:=ImplicitGaussMap[z-x^{arrow}2+y^{arrow}2,$ $\{x,-2,2\},$ $\{y, -2,2\},$ $\{z,-2,2\}$ ,

PlotPoints-$>\{4,6\}]$

Out[13]: $=See$ Figure 10
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Figure 10: (left) Implicit surface $z-x^{2}+y^{2}=0$ ; (right) its Gauss map.

A more complicated example is given by the double toms surface, defined implicitly

by $(\sqrt{(\sqrt{x^{2}+y^{2}}-2)^{2}+y^{2}}-2)^{2}+z^{2}-1=0$ and whose normal vector field is shown
in Figure 11:

In [14] $:=ImplicitNormalField[$ $($Sqrt $[$ (Sqrt $[x^{-}2+y^{\sim}2]-2$ ) $2+y^{\sim}2]-2)^{\wedge}2+z^{\wedge}2-1$ .
$\{x,$ $-6,6\},$ $\{y,-4,4\}_{*}\{z,$ $-1,1\}$ , Surface- $>True$ , VectorHead-$>Polygon$ ,
PlotPointsSurface-$>\{5.5\}]$

Out $[$14$]$ $:=See$ Figure11

Figure 11: The double torus surface and its vector normal field.

In [15] $:=ImplicitGaussMap[$ $($ Sqrt $[$ (Sqrt $[x^{\wedge}2+y^{\wedge}2]-2$ ) $2+y^{\text{へ}}2]-2)^{arrow}2+z^{rightarrow}2-1$ ,
$\{x,-6,6\},$ $\{y,-4,4\},$ $\{z,-1,1\}$ ,Pl$otPoints->\{5,5\}]$

Out[15]: $=See$ Figure 12
It is interesting to remark that, because the Gauss map is a continuous (in fact,

differentiable) function, it is closed for compact sets, i.e. it transforms compact sets into
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Figure 12: (left) Double torus surface; (right) its Gauss map.

compact sets. Since the double torus is compact, its image is actually the unit sphere.
Another example of this property is the Lam\’e surface of fourth degree $x^{4}+y^{4}+z^{4}=1$ :
In [16]: $=ImplicitNormalField[x^{\sim}4+y^{arrow}4+z^{-}4-1,\{x,-1,1\},$ $\{y,-1,1\},$ $\{z,-1,1\}$ ,

Surface- $>Tme$ , PlotPointsSurface- $>\{4,6\}$ , VectorHead-$>Polygon$]
Out $[$ 16$]:=See$ Figure 13

Figure 13: The surface $x^{4}+y^{4}+z^{4}=1$ and its vector normal field.

Its corresponding Gauss map image can displayed as:
In [17] $:=ImplicitGaussMap[x^{rightarrow}4+y^{arrow}4+z^{-}4-1,$ $\{x,-1,1\}$ , $\{y, -1,1\}$ ,

$\{z , -1,1\}$ , PlotPoints-$>\{4.6\}]$

Out $[$ 17$]:=See$ Figure 14

2.3.2 Parametric Surfaces

As indicated above, the package also deals with surfaces given in parametric form. In the
following example, we consider the Mobius strip, parameterized by

$\vec{S}(u, v)=(cos(u)+vcos(u)sin(\frac{u}{2}),$ $sin(u)+vsin( \frac{u}{2})sin(u)$ , vcos $( \frac{u}{2}))$
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Figure 14: Lam\’e surface of fourth degree; (right) its Gauss map.

Figures 15 and 16 show its normal vector field and the Gauss map, respectively.
In[18]: $=$ ParametricNormalField $[\{Cos[u]+v$ Cos $[u]$ Sin $[u/2]$ ,

Sin $[u]+v$ Sin $[u/2]$ Sin $[u],v$ Cos $[u/2]\},$ $\{u,$ $0,4$ Pi,Pi/10 $\}$ ,
$\{v, -1/2,1/2,0.1\}$ , Surface-$>True$ , PlotPoints- $>\{50,7\}$ ,
SurfaceDomain- $>\{\{0,2$ Pi $\},$ $\{-1/2,1/2\}\},VectorHead->Polygon$ ,
HeadLength- $>0.25$ , HeadWidth- $>0.1$ , VectorColor-$>RGBColor[1,0,0]]$

$Out[18]:=See$ Figure 15

Figure 15: The M\"obius strip and its vector normal field.

In[19]: $=ParametricGaussMap[\{Cos[u]+v$ Cos $[u]$ Sin $[u/2]$ , Sin $[u]+$
$v$ Sin $[u/2]$ Sin $[u],$ $v$ Cos $[u/2]\},$ $\{u,0,4Pi\},$ $\{v$ ,-1/2,1/2$\}$ ,
SurfaceDomain- $>\{\{0,2$ Pi $\},$ $\{-1/2,1/2\}\}$ ,PlotPoints$->\{50,7\}]$

$Out[19]:=See$ Figure16

2.4 Example 4: Solving Functional Equations
In this section we use the Mathematica package FSolve [3, 4], implemented to solve
functional equations [2, 5]. Let’s start loading the package:
In [20] $:=$くく FunctionalEquations‘FSolve‘
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Figure 16: (left) M\"obius strip surface; (right) its Gauss map.

It includes the command: FSolve [$eqn$ , {functions}, {variables}, options] where $eqn$

denotes the functional equation to be solved, {functions} is the list of unknown functions,
{variables} is the list of variables and options allows the users to consider different
domains for the variables (see Table 1) and classes of feasible functions (see Table 2).

Table 1: List of all feasible domains used in the FSolve package.

For instance, we can calculate the solution of the functional equation $f(x+y)=$
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Table 2: Classes of feasible fumctions used in the FSolve package.

$g(x)+h(y)$ where $x,$ $y\in \mathbb{R}$ and $f,$ $g,$ $h$ are continuous functions as:
In [21] $:=$ FSolve $[f[x+y]==g[x]+h[y],$ $\{f$ , $g,h\},$ $\{x,y\}$ , Domain- $>Real$ ,

Class- $>$Continuous]

Out[21] $:=\{f(x)arrow C(1)x+C(2)+C(3), g(x)arrow C(1)x+C(2), h(x)arrow C(1)x+C(3)\}$

where $C(1),$ $C(2)$ and $C(3)$ are arbitrary constants. Note that a single equation can
determine several unknown functions (such as $f,$ $g$ and $h$ in this example). Note also that
the solution can depend on one or more arbitrary constants and$/or$ arbitrary functions:
In [22] $:=FSolve[f[x]*Sin[y]+h[x]*g[y]==0, \{f , g,h\}, \{x,y\}]$

$\{\{f[x]arrow 0, g[y]arrow C[0]Sin[y]+C[1]Arb[0][y], h[x]arrow 0\}$ ,
Out[22]

$:= \{f[x]arrow C[1]Arb[0][x], g[y]arrow-\frac{C[1]Sin[y]}{C[0]}, h[x]arrow C[0]Arb[0][x]\}\}$

In [23] $:=FSolve[k[u]*1[v]==-b[u] , \{k, 1,b\}, \{u,v\}]$

Out[23] $:=$
$\{\{k[u]arrow 0, b[u]arrow 0, l[v]arrow C[0]+C[1]*Arb[0][v]\}$ ,
$\{k[u]arrow C[0]*Arb[0][u],$ $b[u]arrow C[1]*Arb[0][u],$ $l[v]arrow-(C[1]/C[0])\}\}$ ,

In [24]: $=FSolve[f[g[x]+h[y]]-s[r[x]+s[y]]==0,$ $\{f,g,h.r,$ $s\},$ $\{x,y\}$ ,
Domain-$>RealPositive$ , Class-$>Arbitrary$]

Out $[$24$]$ $:=$ $\{\{f[x]arrow s[\frac{x-C|2\rceil-C[3\rceil}{C[1]}],$ $g[x]arrow C[2]+C[1]r[x],$ $h[x]arrow C[3]+C[1]s[x]\}\}$
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