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1. On the Concept of Style of Thinking
The concept of style of $scim\dot{u}6c$ thinking $see\dot{m}n\phi y$ appeared in the middle $20^{th}$ century, possibly by
the founders of modem theoretical physics, ${\rm Max}$ Bom (1882-1970), Wolfgang Pauli (1900-1958) and
others, who umderstood by that tem a complex of distinctive features of dassical or non-dassical fun-
damental physical theoties. In particular, $Mx$ Born, in his $37^{A}$ Guthtie Lecme, ddivered 13th March
1953, notes

Ithink that $ffi\alpha e$ are gmerd $at\dot{u}tudes$ of the min$dwl\dot{u}ch$ change $v\alpha y$ slowly and $cons\dot{u}tute$ defi-
nite $philosopl\dot{u}cal$ peiiods vith $characte\dot{u}s\dot{u}c$ ideas in all btanches of human $ac\dot{u}vi\dot{u}es,$ $s\dot{\circ}mcc$ in-
duded $Pad\dot{\iota}$ in arecmt letter to me, has used the expression ‘styles’. styles of $\mathbb{A}inhnb$ styles not
only in $\mathfrak{N}$ but ako in $s\dot{\mathfrak{a}}ence.$ Adopin$g\mathbb{A}\dot{s}tem\iota$ Imintain that physical theory has its styles
and that its $p\dot{r}nciplesd\alpha ive\ omM$ fact a $bd$ of stabihty. They are, so to $sp*nh\dot{t}wp$ apri-
ori with respect to that pniod If you are aware of the style of your own $\dot{u}me$ you can $mke$ some
$cau\dot{u}ouspredic\dot{u}ons$.You can at least $r\dot{q}$ect ideas $wl\dot{u}ch$ are $fot\dot{d}gn$ to Ae $s\eta le$ ofyour $\dot{u}me^{1}$

Bom fiirdier advances his thought, by $dis\dot{u}ngu\lrcorner s\ovalbox{\tt\small REJECT} \mathbb{A}e$ Greek style, Ae style of Ae $Ch^{\dot{\mathfrak{g}}}s\dot{u}ane\alpha$, the
Gahleo-Newton style $md$ Ae new style “commenced in 1900, $whm$ Phnck published his $radia\dot{u}on$

fomula and the idea ofAe quantum of $mergy.$
”$2$

Felix Klein, in his $Vo’ ksunged$, not-iced a difference between two styles of mathematical $\ovalbox{\tt\small REJECT}$ the
intuitive and the fomahst styles. A mathematician thinking in intuitive manmer sttives to penetrate into
the essence of a problern, gain an insight of its solution and then to state and prove a theorem. Proof is
secondary for him, in compatison to the $inmi\dot{u}ve$ insight On the other hand, the main task of a
mathematician thinking in fomahst manner is to prove a theorrn in minute detail and provide alter-
native proofs, in order to ascertain the mathematical fact

In the mid $60s$, the concept of style of scientific thinking or other similar tenns, such as Thoms S.
Kuhn’s “patadigms;4 Ime Lakatos’ “scientific research programs5 etc. started to be used in history
and methodology of science. However, the concept of style was established in history of science in
Alistair Cameron Crombie’s monumental wotk Sgks of $S\dot{a}en\phi c$ Tbinknp in th European $Trd\dot{k}0\theta$ . He
distinguuished in the history of classical European science a taxonomy of six styles “distinguished by
their objects of inquiry and their method of argument (1) postulational; (2) the experimental style; (3)

$\iota{\rm Max}$ Bom, ‘The Conceptual Situation in Physics and the Prospects of its Future Development,” 1953 Proceedings of
the $Phy\dot{\alpha}calSoaey$. $S\ell clionA,$ $66,501$ . Print publication: Issue 6 (1 June 1953).
2 Ibid 502.
3 Klei, Fdix, Vorksungm fibrr $keEnt\nu ick1uigd\ell rMatbmatik$ in 19. Jahrbundtrt, Teil II, Verlag von Julius Spinger, Ber-
lin, 1927.
4 Thomas S. Kuhn, The Structun $ofSrien*fcRe\nu ok\dot{t}ons$, lst. cd., Chicago: Univ. of Chicago $Pr.$ , 1962.
5 Imre Lakatos, $Tb$, MethodolOgy of $Sae\# kfcR\prime searrb$ Programmes: Philosopbical Papers Volume 1. Cambtidge: Cambridge
University Press, 1978.
6$)$ Alistair Cameron Crombie, Sgks of $Sci\prime nkfc$ Thinking in the European Tmdition: Th, History $ofA_{\Psi}nmt$ and $E\varphi kna\dot{k}on$

$E\phi\prime cial\phi$ in $tbe$ Mathettatical and $Bione4ca/S\dot{a}enc\prime s$ andArts. London: Gcrald Duckworth&Company, 1995.

数理解析研究所講究録
第 1625巻 2009年 12-22 12



hypothetical modelling; (4) taxonomy; (5) probabilistic and statistical analysis; (6) histotical detivation.
Each style deftned the questions to be put to its $sub$) $ect$-matter, and those questions yidded answets
within that style7.

In modem history of mathematics, the concept of “style” ofmathematical tlhinking is commonly used
as a looser and more general notion of “method,” induding certain crank-handle aspects ofmathemat-
ics, such as mathmatical pattems, commitnent to a nie ot standard, mathematical activity, cognitive
anitudes, modes of understanding, etc. A mathematical style does not gmerate either a discovery or a
demonstration; it is not easily definable, for it may be a “French-school style” or a “Gottingen’s style,”
or a ”seventeenth-century style”, a methodologically defined style (such as, for instance, expeinm-
tal” style) or a style defined by a problm.

Crombie ascdbes to the Greeks the achievement of the postulational style, as exrnplified in Eudid’s
Ekments. In our paper, we present two histotical types of styles of Greek mathematical thinking that
can hardly be called $postula\dot{u}onal$. Notably, the (Neo-) Pythagorean style of aridmetic thinking that
can be characterised as a style of developing number theory by genetic construUtons $(d \oint niAonsf$, and the
Euclidean style of aridmetic, which can be characterised as $gene\dot{h}t^{9}$, in the smse that number theory is
developed &om below by effective proofs.

2. On the style of Pythagorean arithmetic reasoning
The style of aridunetic in the Neo-Pythagoreans’ $trea\dot{u}ses^{10}$ is snilringly differmt from that of the Eu-
didean Elements. Namely, it is charactetised by the absence of proof in Ae Eudidem sense and lack
of mathematical $sophis\dot{u}ca\dot{u}on$ that has led certain historians to consider $\mathbb{A}is$ type ofmathematics as a
feature of decadence ofmathematics in this periodll. The alleged absence of otiginality in these works
has also givm grounds to believe that “the $a\dot{n}dme\dot{u}c$ presented in these wotks derives substantially
from an ancient, prmtive stage of Pythagorean aiithmetic” and to use them as “an index of the char-
acter of $a\dot{n}dme\dot{u}c$ science in the $5^{th}$ century. 12

The style ofNeo-Pythagorean atidmetic reasoning has the following chatactetistics:

(1) Aritbmetical naroning is conhcted oon a 3-dimensiOnal $\prime d\ell m\dot{a}n$
” that $extend_{J}ind\phi nikp$ in $tbed\dot{n}\dot{\phi}on$ ofin-

mase. Number is $con\nu enhonallJ$ designated as a “suite” (or schematic pattem) that is a finite sequmce
of signs (alphas) standing unbounded in the direction of increase and bounded below by the mona.$s$ in
the direction of decrease. The resulting configuration possesses intemal structure and proper order and
serves as a pattem $exemph\theta^{i}ng$ the mode of consrruction of the kind of nimber considered in each
case. Thus, number depmds on the monad and, accotding to Theon “there are infinitCly mmy mo-
nads.”

7 Ibid 1, xt
8 Vandoulakis, I.M “A Genetic Intcrpretation of Neo-Pythagorean $Atithme\dot{u}c.$

” Oriens - $Oc\dot{a}d_{\ell\hslash J}$ Cahirrs $hC\prime ntn$

dhitoin $d\ell sSae\# c\iota s\ell t$ dtsphilOsophus arabet et M\’edi\’enaks [to appear].
9 Vandoulakis, I.M. “Was Euclid’s Approach to Arithmetic Axiomatic¿‘ $O\dot{n}ens- Oc\dot{a}d\ell is$ Cabim $du$ Crntn d’bishin $d\ell J$

Stirncts et dtsphilOsophies arabes et Midiivaks, 2 (1998), 141-181.
$1$ Nco-Pythagorean ariUunetic survived in the texts of Nicomachus of Getasa ($2^{nd}$ century AD), Theon of Smyrna
($2^{nd}$ century AD), Iamblichus, Domninos of Larissa ($5^{th}$ century AD), Asdepius of Tralles, and Ioanncs Philoponus
($5^{\mathfrak{g}_{L}}6^{th}$ century AD).
11 Tamery, Paul(us). La Gionitne Gncqut. Histoite g\’en\’eralc de la g\v{c}om\’etrie $d’$\v{c}mentaire. Paris, 1887, 11-12.
Heath, Thomas L. A Histo$O’$ ofGreek Mathenatics. vol. 1-2. Oxford. Clarendon Ptess, 1921, 1, 97-99.
12 Knotr, Wlbur Richard. $Tbe$ Bvolution of $tbe$ Euclidean Elements. Reidcl Publ. Co. 1975, 132.
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The linear smcture of numbers is violated in the case ofplane, md solid numbers that have two-, or
$Mee- d\dot{m}$msional geomeuical $configura\dot{u}ons$ , respectively. Plane (solid, respectivdy) numbers are rep-
resmted by a $spe\dot{\mathfrak{a}}\S c$ schematic pattem in the fom of $\phi hne$ or $spa\dot{u}aD$ “region,” consisin$g$ of signs
oflower rank (linear or plane, respectively). In this way, the “domain” over which $a\dot{n}thme\dot{u}cal$ reason-
ing is conducted is $s\alpha a\dot{u}fied$, depending on the dimension of the respecuve $config\iota ra\dot{u}on,\dot{L}e$. its com-
binatoriA complexity.

The stratification of the “domain” mkes necessary the $introduc\dot{u}on$ of different number-generating
opetations at each level The linear “domain” is generated by the use of the iterative process of addin$g$

a monad. ${\rm Re}$ phne ”domain” is generated by the use of the “gnomon.”

(2) The starfing-point ofNto-Pythagorean $m\dot{t}bmeht$ is $a$ $x\dot{n}gko\phi\dot{e}ct,$ le. the monad, denoted by $m$ alpha, and
takm to be adesignated object (not a number), that is

$\mathcal{L}=\{a\}$ .
Over $tl\dot{u}s$ set, an iterative procedure of attachmg $m$ alpha is admitted Numbers are $\mathbb{A}m$ defined as
suites of the fom

$k-$-く $a,$ $a,$ $a,$ $\ldots a\rangle$

where $\underline{arrow}$ means that $k$ is an abbreviation for thc suite

$a,$ $a,$ $a,$ $\ldots a$

consisuing of $k$ signs.

Further, the “natural suite” is introduced as the finite sequence of the fom

$<1,2,3,$ $\ldots,k>$

and the vatious L& of numbers, such as the $ev\alpha i-\dot{u}mes$ evm, the $even-\dot{u}mes$ odd numbers etc., are
thm specified as suites $cons\alpha ucted$ according to certain rules13.

(3) $\Lambda n\dot{t}bmt\dot{k}c\dot{u}d\ell it\psi_{d}y$ pnekt commaeons of $M\dot{\theta}usco\phi_{l^{uf}}\ovalbox{\tt\small REJECT} ons$. The act of the establishment of the
next step in the process of genetic cons$\propto uc\dot{u}$on is implemented by opetations of combinatorial chatac-
ter, and its implenientation entails a $modifica\dot{u}on$ in the precedng satc of the “region.”

Accordingly, $Neo-\ovalbox{\tt\small REJECT} rema\dot{n}dme\dot{u}c$ is a visual theory of counting over a $dis\dot{u}nc\dot{\mathfrak{g}}vccombinato\dot{r}al$

“domain.” insobU as it concems genetic consmuctions of vaiious ffiite schematic pattems, $\mathbb{A}at$ is
suites and $\phi lane$ or $spa\dot{u}a$り configurations. All these configurations are the result of concretc com-
pleted genetic constructions, which possess the $fo\mathbb{I}ow\dot{m}g$ features:

(1) They begin &om the same $ini\dot{\mathfrak{g}}A$ object, le. the $momd;^{t4}$

13 The natural suite should not be confused with the natural $se\dot{r}es$ ; thc formcr is a ffiite constructional demcnt and
serves as pattem exemplifying the mode of construction of the kin$d$ of number considered in each case. For further
details, see Vandoulakis, I.M “A Genetic Interpretation of Neo-Pythagorean Atidunetic,“ Onent- Ocadtru Cahiers $du$

Cenm d’histoin $d\ell sSrien\prime\prime s$ $et$ &J $bihbisa\alpha b_{l}s’/MJd\acute{e}\nu ak_{J}$ [to appear].
i4 There are constructions that begin not directly from the unit, but from a natural suite. However, in these cases the
construction of that suite, beginning from the $mit_{9}$ is obvious or has bcen realiscd pteviously and is rcasonably omit-
ted.
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(i) Provided that the result of the application of certain iterative operations (addition by a
unit, application of the gnomon or other derivative operations) genetate numbers of the
same kind, new numbers are constructed;

(iii) It is stated that the method ofgeneration of a particular kind ofnumber cm gmerate $a\mathbb{I}$

the numbers of the kmd required.
The first two clauses enable one to construct new numbets out of given ones. The third dause (some-
$\dot{\mathfrak{g}}mes$ omitted by the $Neo$-Mrem authors) says that the method of construction described by the
ftrst two dauses $exha\dot{\Phi}$ts” all the numbers that have to be constructed.15

The objects thus $in\alpha oduced$ in Neo-Pythagorean atithmetic by genetic constructions are infinite se-
qumces, usually incompletely exmplfed by a natural suite or certain (ffiite) combinatotial configura-
tion. Insoffi as the objects discussed (suites and combinatotial configurations) are always finite in-
stances md never considered in their compleuion, what is implicitly $invo!ved$ here is the abstraction of
potential infmity that allows reasoning about however long gmetic processes. The realzability of the

15 Special attention should bc paid on the formulation of the tluird dause. In modem genetic de6nitions, the analo-
gous clause is usually phrased as follows:

$(\ddot{u}i^{*})$ There are no other objects except those generated by the application of the first two dauses.
Thus the clauses $\textcircled{1},$ $(1i)$ , and $(1\ddot{A}^{*})$ are taken to defme a set of objects that arc specified by means of the clauses (i) and
$(\ddot{u})$ . ‘The possibility fot an object to posses the defining property is based on clause $(\ddot{\dot{m}}^{*})$ . Tluis dause implicitly as-
sumes the univetse of all objects as given beforehand. In virtue of the law of excluded middle, every object of the
universe either possesses the deflning propcrty or does not. Then clause $(\ddot{u}i^{*})$ is taken to mean that there are no ob-
$|$ects in the set detemmed by the dcffiing propcrty except those that have been constructed in the way desctibed by
$()$ and (it).
However, this does not seem to be the way of thinniking of the ancient authots, for whom the totality of all numbers
was not considered as given beforehand. It could not be for me more reason: the statement “a number such that...”
(in the sense of its effective construction) was for the Neo-Pythagorean arithmcdcians an “experimental” fact,
whereas the statement $s$ ‘there are no numbers such that...” is not an “expetimental” fact. Accordingly, clause $(ii_{1})$ is
never phrased by the Neo-Pythagoreans in the form of negative $existen\dot{u}$al sentence.

15



gmetic construcuions is taken to be potential. The natural suites, for instance, are taken to be extmdi-
ble “as far as you wish,” and the process of construction of successive combinatorial configutations
can $con\dot{u}nuead$ infnitum.
Moreover, the objects introduced in $Neo$-Mrem $a\dot{n}thme\dot{u}c$ are not only $[potm\dot{u}a\mathbb{I}y)$ infinite, but
ako inttinsically associated with the mle for their genetic consmuction from the monad. In $A\dot oe$ smse,
we can say that the Neo-Pythagorean approach to $a\dot{n}dme\dot{u}c$ is not purely extensionaL Definitions of
$a\dot{n}thme\dot{u}cal$ concepts are reduced to the dumonstration how a definite combinatotial rule $woAs$, whm
one passes from a number to its successor, in the process of construction of $*L$ xe considered kind of
number. Atidunetic theorms are thus ulinately reduced to the demonstration that the $\alpha ansi\dot{u}on$

&om a number to its successor follows a definite combinatoriA rule.

(4) The Finitary $Pnn\dot{\varphi}k$. It is obvious that the method oudined above is not grounded upon the idea of
proof $(m$ the sttict smse of the word. In the context of $Neoarrow Rr\alpha iia\dot{n}dme\dot{u}c$ , numbers are
conceived as given md my statement about thcm asserts something, which is confimed in each in-
stance by simple combinatonal means. If, for example, two numbers are given, it is sufficient to con-
firm by the $consmc\dot{u}on$ of the corresponding $configura\dot{u}on$ (or by observations over the exmplary
suuite), whether what has been stated about these numbers is correct or not The demonstration is per-
fomed by inspection over a Rite fragment of a usually $\phi ot\infty\dot{\mathfrak{g}}a\mathfrak{h}$ infinite object In this sense, we cm
say imt Ae statements of $Neo$-Mrem $a\dot{n}dme\dot{u}c$ havefnitary meaning.

(5) Mental $e\dot{M}m$ents. Atithmetical reasoning is conducted in the form ofmental experimen ts
over concrete objects of combinatorid character. Any assertion about numbers utters a law, which can
be confirmed in each case by pure combin$ato\dot{r}al$ means. For any given concrete numbers, it sufficient
to $\nu enp$ by the construction of the corresponding configuration $whe\mathbb{A}er$ the law uttered holds for the
considered numbers. Thus, such type of atithmetical reasoning admits the representation by (configu-
rations of) letters as intented interpretation for the effective confimation $(\phi\dot{\alpha}zs)$ of the $\dot{m}dme\dot{u}cal$

statements md devdops in accordance with its combinatorial model

(6) Genetit $tonm\dot{\phi}on(4monJml\dot{i}on)\nu s$. proof. Therefore, the foundation of $Neo-\ovalbox{\tt\small REJECT} r\infty 1$ arithmetic is
not proof, in the style of Eudidean Elements, and the woiJrs of other $mathema\dot{u}\dot{o}ans$ of the dassical
mtiquity, but the idea of genetic $consmc\dot{u}on$ (dernonsttation), by means ofwhich the correctness of
$a\dot{n}dme\dot{u}cal$ statements is confimed. This type of aiidmetical reasoning about given numbers can be
realzed without assumptions of axiomatic cbaracter. The conffination of $a\dot{n}dme\dot{u}cal$ statements is real-
izable by a specific expein$mt$ ’

In dtis context, atitlmetical teasoning is conducted as theoretical visual reasoning conceming the pos-
sibihty to carry out certain $gme\dot{u}c$ constructions over a domin of concrete objects. These objects are
introduced by genetic constructions and represent infinite sequmces that are illustrated incompletely
by means of a finite suite or configuration.

$\sigma)Genem\emptyset$. In the $expos\ddot{m}ons$ of $Neo-\ovalbox{\tt\small REJECT} r\infty Ila\dot{n}dme\dot{u}c$ , one does not find $mun\dot{\circ}a\dot{u}on$ of uni-
versal theorms, that is fomal statements $be\dot{p}nning$ with quantifcational words of the type “all,”
“every,” etc. The problem $p\dot{n}_{-}ma\dot{n}1y$ concems the case when a general property is asserted of an infi-
nite ($m$ the sense descnbed above) domin of objects. In these cases the general $prope\eta$ is established
by induction, that is by means of certain constructions of such a chatacter that the possibility to repeat
a $sim\lrcorner ar$ reasoning so that to implement Ae $co\alpha espon\ovalbox{\tt\small REJECT} consmic\dot{u}on$ for $W$ other given number of
the same Ld is evident On $d\dot{u}s$ ground one cm condude that whatever number of the knd might
have been $\dot{p}m_{\tau}$ it is possible to confim (by analogous linc of $t\infty onin\partial$ that this number has the
property in question.
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The use of such a mle of gmerality is necessary fot the devdopment of Neo-Pythagorean $a\dot{n}dme\dot{u}c$,
in absence of specific quantiftcation. In this way, the statemmts of $Neo- P\mu agorema\dot{n}thme\dot{u}c$ cm be
understood as general declarations of our capability to implement certain constructions fot any given
number of certain kind. The belief that we cm implment the required construction for any given
number (combinatorial pattem) might have bem rooted in the experience gained from the realization
of such consttuctions. As a result of this kind of $expe\dot{r}menta\dot{u}on$

” it becomes clear how one has to
proceed in each case, i.e. at each case it is clear what we have to do. In this sense, the statements estab-
lished in $Neo-R^{ffi}agorema\dot{n}dme\dot{u}c$ are genml, imt is they establish that fot any number of certain
kind the outcome of the construction, according to a deffiite $mle$, is a number possessing the required
property.

(8) Negation. It is obvious from the evidmce of $a\dot{n}dme\dot{u}cal$ reasoning discussed so far that Neo-
Pythagorem $a\dot{n}dme\dot{u}c$ is about a ffirmativ $e$ sentmces stating $somed\dot{u}ngposi\dot{u}ve$

’ that cm be
confimed by mems of the construction of the corresponding configuration. We do not meet in Neo-
$P\psi agorema\dot{n}dme\dot{u}c$ any kind of $nega\dot{u}ve$

’ sentences, that is statements asserting existmce of a
number specified by a negative property (or lacking a property), or statements assning impossibility
of a construction. Such statements could not have a straightforward “experimental” character within
Neo-Pythagorean $a\dot{n}dme\dot{u}c$.

This preconception against negation is also evidenced by the $\varphi agorem$ philosopher Philolaus, who
declares that

“the natute of number and hamony does not pemit falsity, because it is not peculiar to it... .
Truth is peculiar... to the kind ofnumbe’‘ (Stobeus; $D/K/$ Vors44 Bll)

Thus, the lack of negative statements in the canonical exposition of Neo-Pythagorem $a\dot{n}dune\dot{u}c$

sems to a $doc\dot{m}a1characte\dot{n}s\dot{u}c$ of the Pythagorean mthemtical tradition. This featute lends to this
kind of $a\dot{n}dme\dot{u}c$ certain pecuhar semantic $characte\dot{n}s\dot{u}cs$, nmdy all sentmces in $Neo$-Rrem
$a\dot{n}dune\dot{u}c$ aoe affimative statments asserting the possibility of certain constructions and, thereby, the
Neo-Pythagorean aridmetic contains only such $expe\dot{r}mentd$

” $m\mathbb{A}s$ that descibe the actual state of
affairs. From a modem point of view, dus kind of atidmetic represents a posihve (negationless), fnitary
fagment ofPeano $a\dot{n}thme\dot{u}c$.

3. On the style of Euclidean arithmetic reasoning
Euclid’s style of aridmetical reasoning is also not postulationaL llie lack of specific aritlmetical axi-
oms in Book VII has puzzled historms of mathemtics16. In our view, it is hardly possible to ascribe
to the Greeks a conscious undertaking to axiomtize arithmetic. The view that associates the $be\dot{g}n-$

nings of $\mathbb{A}eaxiom\dot{u}za\dot{u}on$ of $a\dot{n}dune\dot{u}c$ with the works of Grassmnl7, $Dedd\dot{n}nd^{18}$ md Pemol9
sems to be more $plausible2$. In this case, the following questions cm be stated: why atithmetic was

16 $MueUer$, Ian. $Philosoph_{f}$ ofMathenatits and Dtductive Structure in Euclid $s^{\prime/}Eknents$“. MIT, 1981, 59.
Artman, Benno. “Euclid’s Elenrntj and its Prehistory“ MueUer, Ian. $\Pi EPIT\Omega NMA\Theta HMAT\Omega N$ (Peri ton Matbe-
maton). Edmonton. Alberta: Academic $P\dot{r}n\dot{m}$g&Publishing, 1992 [Apeiron XXIV no 4 (Decembet 1991)], 32.
Jean-Louis Gardies $*$ ‘Sur l’axiomatique de $1’a\dot{n}dm\acute{\Leftrightarrow}\dot{u}que$ euclidienne,“ Onens - Octidtius Cahiers $du$ Crntn $dbi_{J}toind\ell s$

$S\dot{a}\prime nces$ et $d\ell spbih_{J}oph\dot{u}s$ arabes et Midiivaks, 2 (1998), 125-140.
17 Grassman H. Lehrbuch derrAnthmuetikfir hbhen Lthranstaltrn. Berlin. 1861.
18 Dedeldnd J.W.R. $W’as$ sind und was $so/l\prime i$ die Zahltn? Brunswick. 1888.
19 Peano Giuseppe. Anthmeticasprincipia, novo nrthodo $e$. bosita. Torino. 1889.
$x$ Demidov, Setgej S. $\iota$‘Sur lliistoire dc la m\’ethode $a$]$Iioma\dot{u}que.$

” Actes $du$ Xllt Congretss Intmational dHistoire des
$S\dot{a}e\pi ces$, Paris. $t$. N. 1971, 45-47.
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$axiom\dot{u}zed$ so late? How Euclidean $\dot{m}thme\dot{u}c$ is constructed? The first $ques\dot{u}on$ is conclusivdy m-
swered by $Ymovska\dot{|}a^{21}$ . Her mjor and quite condusive argument is that ”algotithms in $a\dot{n}dme\dot{u}c$

have absolute character, whereas in geomeffy we have to do with reducibiity algotithms22. The an-
swer to the second question is, in our view, the following Euclidean $\dot{m}dune\dot{u}c$ is constructed not
axiomtically, but by ffeckix$pmfP^{3}$ .

(1) The $hm\dot{a}n$ “ ofEuclid’d ‘Ekments, “Book I77. The Eucldean number-aritbmos-has the following
fomal smcmre:

$A_{\vec{-}}\{aE\}_{a\geq 2}$

where $E$ designates the unit and $a$ is the number of $\dot{u}mes(mul\dot{u}tude)$ that $E$ is repeated to obtain the
number $A$ , denoted by a segment

Euclid constructs his $a\dot{n}dme\dot{u}c$ for the nimbers-arithmoi, that is for the numbers $desi_{\Psi}ated$ as seg-
ments, while the aritlmetic of multitudes is taken for granted. Thus, atithmetic is constructed as for-
mal theory of numbers-anthmoi, while the concept of multitude or iteration number has a specific
metatheoretical $chatacter^{u}$ .

The concepts “equ4” less,” “greater,” to which today are asctibed a purdy $qum\dot{u}tative$ maning, in
Euclid sems to be ako associated with thc geomeUic notion of relative $posi\dot{u}on$, but ako applied to
multitudes when Eudid compares two sets of nimbers-anthmoi.

(2) $Gmm\emptyset$. Eudid $some\dot{u}mes$ uses quanuficational words applied to numbers-arithmoi, although
such expressions are very rare. The most common way by whch Eudid expresses generality is to
speak about anthmos without artide. Thus, most $mun\dot{\circ}a\dot{u}ons$ in Eudid’s $a\dot{n}dme\dot{u}cd$ Books state
some property about numbers, where anthmos is used without aricle. However, when he proceeds to
the ektbeJis of the theorem he mkes a number of important $hng_{-j}^{u}s\dot{u}c$-logical operations:

$a$. designation of numbeoe-antbmoi is inffoduced by means of a segment nmed by one (or two)
letter(s);

Demidov, Setgej S. “On Axiomatic and $Gme\dot{u}c$ Construction of Mathematical Theoties.“ Hin$\dot{u}kka$, Jaakko, Gru-
ender, David, and Agazzi, Evandro (Eds). 1981. $Tb\ell 0\sigma$ Change, Ancient Axionatics, and Galileo ’s Methodology. Pro-
ceedings of thtt 1978 Pisa Confrrrnce on $tbe$ History and Philosofby of Scirnc. Dordrecht: Reidd Publ. Co., Vol. 1, 215-
222.
Medvedev, Fedor A. “On the Role of Axiomatic Method in the Development of Ancient Mathematics.” Hintikka,
Jaakko, Gruender, David, and Agazzi, Evandro (Eds). 1981. Theory Cbange, Ancient A $vionatics_{l}$ and Galiko ’s Mrth-
odology. $Proce\prime diigs$ of th, 1978 $Pi_{J}a$ Confrrrnct on th, $Hist0\eta$ and Philosophy of Scirnce. Dordrecht: Reidd Publ. Co.,
Vol. 1, 223-225.
21 Yanovskaya S. A. “From the lustory of $axioma\dot{u}cs.$” Rtport in the $3^{;d}AllU\dot{n}onCoi\rho nJJ$ ofMathrnatics, $S\prime c\dot{k}on$ of$Hi_{J}toO’$

ofMathenatics, 26 June 1956, II, 105 [$m$ Russian].
Yanovskaya S. A. “From the history of axiomatics.”–issltdovaniya, 1958, 63-96 $\mathbb{R}^{p}anded$ version
of the preceding report) [$m$ Russian].
22 Ibid., 64, see also Bychkov, Scrgej S. ”Geometry and the axiomatic method”, $Isto$r$ik\ell- naknakksh$ isskdovaniya 1
(36) (1996) 2, 195-204 [in Russian].
23 Vandoulakis I.M 1998. ‘Was Euclid’s Approach to $A\dot{n}4ime\dot{u}cA\dot{n}oma\dot{u}c\gamma O\dot{n}ei_{J}\cdot Oc\dot{a}d\ell rj$ Cahiers du Centre
dbstoire des Sciences et dcs philosophies arabes et M\’edi\’evales, 2, 141-181.
24 Bashmakova, Izabclla G. “The Arithmetic Books of Euclid’s Ekmenti’. Istoriko-natrmalitSskit $i_{J}skd\ell\nu a\dot{\eta}a$ I (1948),
321 [in Russian].
Vitrac, Banard. De Quelques $Qu\ell s\dot{k}onJ$ Toucbant au Traitment de la Proportionnaliti dans $k_{J}$ \’E llnmts $dEucAd’$. Pa-
ris, 1993, I, 118.
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$b$ . the name of the number-antbmos (that is the letter) is now used with defnite artide standing
before it

In this way, gmeral statements about numbers are interpreted as statements about $m$ arbitrary given
(mdicated) number. $Qum\dot{u}fica\dot{u}on$ is not fomally expressed by means of vatiables and quantifiers
rmging over thcm, but using the ordinary expressive means of natural language. In virtue of the in-
stantiation described above the process of proof takes places actually with an arbitrary given number.
This “rule of specification” is considered inversible, although Eudid applies the inverse rule very rarely
in the $\dot{m}thme\dot{u}cal$ Books. The degtee of generality thus attained is no higher than generalty expressi-
ble by fxee vatiables rangng over numbers.

(3) FundOmental $con\varphi ts$. The basic undeflned concept of Euclidean $a\dot{n}dune\dot{u}c$ is that of to measure
(katametrein), which undetles most of the kinds of numbers defined by Euclid. The concept“a num-
ber $B$ measures a number $A$ ” can be interpreted as follows:

$BmeasureJA\vec{-}$ ($B<A$)& $(A=nB)$ ,

that is $A$ is obtained by $n$ repetitions of $B$ .

After the introduction of sevetal $a\dot{n}\mathbb{A}me\dot{u}cal$ concepts, such as “part,” “multiple;‘ “parts;‘ md others,
the concept ofproportional numbers is introduced as four-place predicate over nmnbers25

Proportional$(A,B,C,D)\vec{-}\{\begin{array}{l}\{[(C<A)\ (A=nC)\ (D<B)\ (B=nD)]\vee[(A<C)\ (C=mA)\ (B<D)\ (D =mB)] \vee 26\{(\text{ヨ} )[(A=mX)\ (B=nX)\ (m >n>1)] \ (\text{ョ}Y)[(C=mY)\ (D=nY)\ (m>n>1)]\}\}\end{array}$

(3) $I_{\Phi}Aa\dot{t}arJu\psi\dot{n}ons$ conceming $naJoning$ over infiniteprocesses. In the proofs ofProposition 1 and 2, expos-
ing the process of $antwb\dot{a}n\dot{n}r$, Eudid uses implicidy the following implicit $assmip\dot{u}ons$ :

$\dot{\iota}$ $Tbe$ least numberprinciple: the set of $mul\dot{u}plesnB$ , such that $nB\geq A$ , has least dment
$n_{0}$ , such that $n_{0}B\geq A$ , yet $(n_{0}-1)B<A$ .

it $Tbe$ infnite descent principle: the process of antbypbairesis will terminate in a finite num-
ber of steps, that is the chain $A>B>B_{1}>B_{2}>\ldots>B_{k}>\ldots$ is finite.

$\ddot{\dot{m}}$. If $X$ measures $A$ md $B$ , then $X$ measures $A\pm B$ , that is if $A=mX,$ $B=nX$ , then
$A\pm B=(m\pm n)X$ .

The first is equivalent to the pin$\dot{o}ple$ of $m\mathbb{A}em\dot{u}cal$ induction if the following niom is added: every
number (except the unit) has a predeccssor. The second assumption is equivalent to the ptinciple of
$m\mathbb{A}em\dot{u}calinduc\dot{u}on$ and is used in $Proposi\dot{u}on31$

(VII, 31) $(\forall A)$ {Composite$(A)arrow($ョ$B)[P\dot{n}me(B)\ (B<A)\ (A=nB)]$ } $27$

25 Thomas L. Heath (Ed.). $Tbe$ Thirteen Books of $EucAd’s$ Eltmrnts. 1908, 1926, 1956. Translated from the text of
Hcibcrg with introduction and commentary. Vols. 1-3. Cambridge; Dover, New York, 278 Def. 20.
26 For the justifcation of this explication, see Vandouhkis, I.M. ‘Was Euclid’s Approach to Arithmetic Axiomatic?”
OrienJ- $Otad\ell nJ$ Cahim $h$ Cmln d’histoin &r $S\dot{a}ems$ $et$ &,phhsopbies arabtt et Midiivalts, 2 (1998), 141-181.
27 From this proposition follows directly Ptoposition 32, that any number eithct is prime or is measured by some
prin$e$ number. From (31) and (32) follows, that any composite number is a product of primes in one way only. How-
evet, Euclid does not make the additional step neithet to focmulate, nor to prove this proposition. See, for instance,

19



However, the use of these ptinciples has alwaysfnitaq character in Euclid.

(4) Intnhckon ofentilies ofbigher $\omega\psi kn\dot{g}$. In Propositions 20-22, Eudid uses the “dass“ of all pairs that
“have the same ratio.” Each such class is uniqudy associated with one pair of numbers, namdy the
least pair of numbers that have the same $ra\dot{u}0$ . Eudid gives $m$ effective procedure for findmg such a
least pair.

First, assuming the existence of such a pair, Eudid proves that the least pair should possess the follow-
in$g$ properties:

a$)$ Let $(A_{0},B_{0})$ be the least pair of numbers, which have the same tatio, md $(A,B)$ my other
pair of numbers, which have the same $ra\dot{u}0$ . Thm $A=mA_{0}$ and $B=mB_{0}$ (Proposition 20);

b$)$ $P\dot{r}me$ to one another numbers $m$ the least of those which have the same $ra\dot{u}0$ with them
(Proposition $21^{28}$) and, conversdy, the least pairs of numbers which have the same ratio with
them are $p\dot{r}me$ to one anothet (Proposition 22).

Further, Eucld proves a number of theorms needed for thc effective construcdon of the least pair of
numbers haVing the same $ra\dot{u}0$ , wlich is done in Proposition 33. The later $proposi\dot{u}on$ in combin$a\dot{u}on$

with Proposition 21 gives the uiuiqumess of the least pair.

(5) The$fni\emptyset$principle and the use of$e\mathcal{J}ediu$ pmctdmJ. Thus, Eudidean $a\dot{n}dune\dot{u}c$ is consmcted from be-
low, begnning &om the $ui\dot{u}t$ . Further, a number of $a\dot{n}dme\dot{u}cal$ concepts ate introduced in the Deffii-
tions of Book VII. From these, the concepts of $par\zeta mul\dot{u}ple$ , parts, $propor\dot{u}onahty$, and pime num-
bers are not defined effectivdy. However, they become effective in virtue of Propositions 1, 2, md 3
that provide an effective procedure for my numbers to find their common measure. In $d\dot{u}s$ way, $\mathbb{A}e$

proofs of the Propositions 4-19 should be considered as effective eithex In particular, some of them
are conducted by manipulations of equahty-type rdations between numbers-arithmoi, multitudes and
part Cparts).

Knorr, WAbur Richatd. “Problems in the interpretation of Greek number theory: Euclid and the Fundamental theo-
rem of $a\dot{n}thme\dot{u}c$” Stud. Hist. Phil. Sci. 7 (1976) 3, 353-368.
Hendy M.D. “Euclid and the Fundamental Theorem of $A\dot{r}dimeuc$” Historia Matbmatica 2(1975), 189-191.
Mullin A.A. “Mathematico-philosophical remarks on new theorems analogous to the fundamental theorem of atith-
metic” Notrt Dame Joumal ofFornal Logic 6(1965), 218-222.
28 We should note that in the proof of Proposition 21, Euclid uses the so called least numbet ptinciple, that is he
assumes the existence of a least pair of those which have the same $ra\dot{u}0$ .
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The introduction ofmore complex objects is tealis$ed$ tluough the compnison of these objects md the
establishment of an equahty-type relation between them. In pardcular, ratios are in$\alpha oduced$ through
the compatison of ratios (“sameness‘’), in Propositions VII, 20-22. Yet, Eudid confines hmself solely
in the statemmt of the sameness of ratios, without trying to mke the additional step to define ratios
themdves, based on their sammess. In othet words, Euclid nowhere reaches a defmition by abstrac-
tion of the concept of ratio.

Instead, Euclid gives again in Proposition VII 33 an effective procedure for finding the least pair from
the numbers that have the same ratio. This pair is unique and chamcterises the whole class ofpairs that
have the same ratio. Eudid also provides $m$ effective constmction of the least common multiple md
the least number out ofgiven parts.

Therefore all propositions imt involve existence of numbers appear, in the context of Euclid’s arith-
metic, associated with some effective procedure for fnding the reqUired number. It is constructed
without assumptions of axiomtic character. It lacks the concept of absolute nimber or my daborated
concept of equality. Instead, it is constructed as ’fomal’ theory of arithmoi. The concept of number-
segment (anthmos) is some kind of $fomahsa\dot{u}on$’ of the metahnguistic concept of $mul\dot{u}tude’\phi ktbos$).
The only pinciple” $(a\prime u_{e}-sar\dot{u}ng$ point$)$ of Euclid’s system of atidmetic is the unit (monas). As-
suming the existence of units in nature, imt is in $m$ ontological sense that is never applied in arith-
metical reasoning itsdf, he ptocee&to the introduction of new kinds of numbcts by means of effec-
tive procedures.

Nowhere the author of the Elements mkes use of the $ass\iota mp\dot{u}on$ that the numbets form a fixed uni-
verse of discourse that is given beforehand. Hence he never postulates or proves $e\dot{r}stence$ ofnumbers
haVing a certain property, but always consffucts’ the required numbers by means of effective proce-
dures. Existmce of numbers is never deduced by strong indirect arguments. The use of reductio $ad$

absurdum rdies on a specific propositional fom of the law of exduded middle md applies to decid-
able atitlrnetical predicates. Moreover, Euclid seems to avoid the law of exduded middle in the atith-
metical proofs. All propositions of the form $P(A)V\neg P(A)$ are proved by consideration of each part
of the disjunction separately.

Only the potential infinite is used in Eudid’s aridimetical reasoning. The actual infnite is never used,
even in the most sophisticated cases that involve reasoning ovet infinite processes, such as the use of
inffiite descent, the least number pinciple md mthemtical induction. The $a\dot{n}dme\dot{u}cal$ operations
ate always applied on finite objects. All these enable us to chatactense Euclidem atidunedc as atitlme-
tic of thefmite mind.

Furthemore, the approach adopted by Eudid does not need any special predicate logic. Euclid’s
at itlmetic can be charactnised as a ffiim $aa9^{nent}$ of dassical atidmetic; hence it does not necessar-
ily presuppose the full force of first-order predicate logic. In our view, Eudid’s approach was just the
most“natural” way to devdop $a\dot{n}dme\dot{u}c$.

4. In Lieu of Conclusion
In histotiography of Greek mthemtics, number theory is commonly treated within the prevailing
postulational style of diin$hng$. This has led to the recognition that Greek number theory of the
Euclidean Ekments al short &om the postulational ideal, as exemplified in the other Books of the
Ekments and to undercstimtion of the number theory of the (Neo-) Pytiagorean authors. The domi-
nant histotiographical viewpoint prevented historians to search for altemtive approaches and recog-
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nise mother style of reasoning in Greek number theory. In our view, the $posffla\dot{u}ond$ style was not
unuiversal for Greek mthmatics. It appropriatdy applies to Greek geometry, yet not to number the-
ory, to which the Greeks have devdoped a different approach.

The Greek-European postulational style ofmthemtical $\ovalbox{\tt\small REJECT}$ is usually $con\alpha asted$ to the Chmese
style of thinking that makes use of concrete mathematical objects md practical $\Phi^{0\dot{n}d}1\dot{m}C$ procedures.
However, the $reCO\Psi^{i\dot{u}on}$ of the genetic style of Greek $a\dot{n}dme\dot{u}c$ enables us to refomulate the ques-
tion of compatison between the two minstram traditions. In compatison to the Chinese style, the
objects of Greek number theory, that is the numbers $(an\dot{t}bma\iota)$ , are not concrete, but “given”, that is
finitary entities, while the dmonsttative procedures are not practical, but”effective.”
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