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1. On the Concept of Style of Thinking

The concept of style of scientific thinking seemingly appeared in the middle 20% centuty, possibly by
the founders of modern theoretical physics, Max Bom (1882-1970), Wolfgang Pauli (1900-1958) and
others, who understood by that term a complex of distinctive features of classical ot non-classical fun-
damental physical theoties. In particular, Max Bom, in his 37% Guthtie Lecture, delivered 13th Match
1953, notes

I think that there are general attitudes of the mind which change very slowly and constitute defi-
nite philosophical periods with characteristic ideas in all branches of human activities, science in-
cluded. Pauly, in a recent letter to me, has used the expression ‘styles’, styles of thinking, styles not
only in art, but also in science. Adopting this term, I maintain that physical theory has its styles
and that its principles derive from this fact a kind of stability. They ate, so to speak, relatively a pri-
ori with respect to that period. If you are awate of the style of your own time you can make some
cautious predictions. You can at least reject ideas which ate foreign to the style of your time. !

Born further advances his thought, by distinguishing the Greek style, the style of the Christian era, the

Galileo-Newton style and the new style “commenced in 1900, when Planck published his radiation
formula and the idea of the quantum of energy.””

Felix Klein, in his Vorksunger’, noticed a difference between two styles of mathematical thinking: the
intuitive and the formalist styles. A mathematician thinking in intuitive manner strives to penetrate into
the essence of a problem, gain an insight of its solution and then to state and prove a theorem. Proof is
secondary for him, in comparison to the intuitive insight. On the other hand, the main task of a
mathematician thinking in formalist manner is to prove a theorem in minute detail and provide alter-
native proofs, in order to ascertain the mathematical fact.

In the mid 60s, the concept of style of scientific thinking ot other similat terms, such as Thomas S.
Kuhn’s “paradigms,” Imre Lakatos’ “scientific research programs,” etc. started to be used in history
and methodology of science. Howevet, the concept of style was established in history of science in
Alistair Cameron Crombie’s monumental wotk Styls of Scientsfic Thinking in the European Traditiors. He
distinguished in the history of classical European science a taxonomy of six styles “distinguished by
their objects of inquiry and their method of argument: (1) postulational; (2) the expetimental style; (3)

1 Max Bom, “The Conceptual Situation in Physics and the Prospects of its Future Development,” 1953 Procsedings of
the Physical Society. Section A, 66, 501. Print publication: Issue 6 (1 June 1953).

2 Jbid. 502.

3 Klein, Felix, Vorlesungen iiber die Entwicklung der Mathematik im 19. Jabrbundert, Teil 11, Verlag von Julius Springer, Ber-
lin, 1927.

4 Thomas S. Kuhn, The Structure of Scientsfic Revolutions, 1st. ed., Chicago: Univ. of Chicago Pr., 1962.

5 Imre Lakatos, The Methodology of Scientsfic Research Programmes: Philosophical Papers Volume 1. Cambridge: Cambridge
University Press, 1978.

%) Alistair Cameron Crombie, Styks of Scientific Thinking in the European Tradition: The History of Argument and Explanation
Especially in the Mathematical and Biomedical Sciences and Arts. London: Gerald Duckworth & Company, 1995.
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hypothetical modelling; (4) taxonomy; (5) probabilistic and statistical analysis; (6) histotical detivation.
Each style defined the questions to be put to its subject-matter, and those questions yielded answers
within that style’.

In modem histoty of mathematics, the concept of “style” of mathematical thinking is commonly used
as a looser and more general notion of “method,” including certain crank-handle aspects of mathemat-
ics, such as mathematical patterns, commitment to a rule ot standard, mathematical activity, cognitive
attitudes, modes of understanding, etc. A mathematical style does not generate eithet a discovety or a
demonstration; it is not easily definable, for it may be a “French-school style” or a “Gottingen’s style,”
or a “seventeenth-century style”, a methodologically defined style (such as, for instance, “experimen-
tal” style) or a style defined by a problem.

Crombie asctibes to the Greeks the achievement of the postulational style, as exemplified in Euclid’s
Elements. In our paper, we present two historical types of styles of Greek mathematical thinking that
can hardly be called postulational. Notably, the (Neo-) Pythagorean style of atithmetic thinking that
can be characterised as a style of developing number theory by genetic constructions (definitionsp, and the
Euclidean style of atithmetic, which can be characterised as genen®, in the sense that number theoty is
developed from below by effective proofs.

2. On the style of Pythagorean arithmetic reasoning

The style of arithmetic in the Neo-Pythagoreans’ treatisesi? is strikingly different from that of the Eu-
clidean E/ements. Namely, it is characterised by the absence of proof in the Euclidean sense and lack
of mathematical sophistication that has led certain histotians to consider this type of mathematics as a
feature of decadence of mathematics in this period!!. The alleged absence of originality in these works
has also given grounds to believe that “the atithmetic presented in these works detives substantially
from an ancient, primitive stage of Pythagorean arithmetic”” and to use them as “an index of the char-
acter of arithmetic science in the 5% century.”2

The style of Neo-Pythagorean arithmetic reasoning has the following characteristics:

(1) Anithmetical reasoning is conducted over a 3-dimensional “domain” that extends indefinitely in the direction of in-
orease. Numbet is conventionally designated as a “suite” (or schematic pattern) that is a finite sequence
of signs (alphas) standing unbounded in the direction of increase and bounded below by the monas in
the direction of decrease. The resulting configuration possesses internal structure and proper order and
serves as a pattern exemplifying the mode of construction of the kind of number considered in each
case. Thus, number depends on the monad and, according to Theon “there ate infinitely many mo-
nads.”

7 1bid, 1, xi.

8 Vandoulakis, LM “A Genetic Interpretation of Neo-Pythagorean Arithmetic,” Orisns - Occidens Cahiers du Centre
d’bistoire des Sciences et des philosaphies arabes et Médiévales [to appeat]. ,

9 Vandoulakis, M. “Was Euclid’s Approach to Arithmetic Axiomatic?”” Oriens - Occidens Cabiers du Centre d’histoire des
Sciences et des philosophies arabes ot Médiévales, 2 (1998), 141-181.

10 Neo-Pythagorean arithmetic survived in the texts of Nicomachus of Gerasa (2 century AD), Theon of Smyrna
(2 century AD), Iamblichus, Domninos of Larissa (5% century AD), Asclepius of Tralles, and Ioannes Philoponus
(5%-6t century AD).

! Tannery, Paul(us). La Géométrie Grecque. Histoire générale de la géométrie élémentaire. Paris, 1887, 11-12.

Heath, Thomas L. A History of Greek Mathematics. vol. 1-2. Oxford. Clatendon Press, 1921, 1, 97-99.

12 Knorr, Wilbur Richard. The Evolution of the Euclidean Elements. Reidel Publ. Co. 1975, 132.
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The linear structure of numbets is violated in the case of plane, and solid numbers that have two-, or
three-dimensional geometrical configurations, respectively. Plane (solid, respectively) numbers are rep-
resented by a specific schematic pattern in the form of (plane or spatial) “region,” consisting of signs
of lower rank (linear or plane, respectively). In this way, the “domain” over which arithmetical reason-
ing is conducted is stratified, depending on the dimension of the respective configuration, ie. its com-
binatorial complexity.

The stratification of the “domain” makes necessary the introduction of different numbet-generating
operations at each level. The linear “domain” is generated by the use of the iterative process of adding
a monad. The plane “domain” is generated by the use of the “gnomon.”

(2) The starting-point of Neo-Pythagorean arithmetic is a single object, i.e. the monad, denoted by an alpha, and
taken to beadesignated object (not a number), that is
L= {a}.

Over this set, an iterative procedure of attaching an alpha is admitted. Numbers are then defined as
suites of the form

k=<{a,aa...a)

whete = means that k is an abbreviation for the suite

aaa,...a
consisting of k signs.

Futther, the “natural suite” is introduced as the finite sequence of the form

<1,2,3,.... k>

and the varous kinds of numbers, such as the even-times even, the even-times odd numbers etc., are
then specified as suites constructed according to certain rules?s.

(3) Anithmetic is developed by genetic constructions of various configurations. The act of the establishment of the
next step in the process of genetic construction is implemented by operations of combinatorial charac-
ter, and its implementation entails a modification in the preceding state of the “region.”

Accordingly, Neo-Pythagorean arithmetic is a visual theory of counting over a distinctive combinatorial
“domain,” insofar as it concems genetic constructions of various finite schematic pattemns, that is

suites and (plane or spatial) configurations. All these configurations are the result of conctrete com-
pleted genetic constructions, which possess the following features:

(® They begin from the same initial object, i.e. the monad;!+

13 The natural suite should not be confused with the natural seties; the former is a finite constructional element and
serves as pattern exemplifying the mode of construction of the kind of number considered in each case. For further
details, see Vandoulakis, LM “A Genetic Interpretation of Neo-Pythagorean Arithmetic,” Oniens - Occidens Cabiers du
Centre d’histoire des Sciences et des philosophies arabes et Médisvales [to appear].

14 There are constructions that begin not directly from the unit, but from a natural suite. However, in these cases the

construction of that suite, beginning from the unit, is obvious or has been realised previously and is reasonably omit-
ted.
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() Provided that the result of the application of cettain itetative operations (addition by a
unit, application of the gnomon or other detivative operations) generate numbers of the
same kind, new numbers are constructed;

(i) Itis stated that the method of generation of a patticular kind of number can genetate all
the numbers of the kind required. :

The first two clauses enable one to construct new numbets out of given ones. The third clause (some-
times omitted by the Neo-Pythagorean authots) says that the method of construction described by the
first two clauses “‘exhaists” all the numbers that have to be constructed.!s

Numbetr
[ ]
— Even Odd
by dividing by meqsuring
even-times evcnI _| primeand
incomposite
even-times odd secondary and
composite ]

even-times even

secondary and composite in itself,
but prime and incomposite
in relation to another

by comparison of a number
Yo the sum of its parts

over-perfect -

petfect

[ QP U S S U

deficient -

Scheme 1. Classification of numbers in Book I of Nicomachus’ "Introduction to Arithmetic"

The objects thus introduced in Neo-Pythagotean arithmetic by genetic constructions are infinite se-
quences, usually incompletely exemplified by a natural suite or cettain (finite) combinatorial configura-
tion. Insofar as the objects discussed (suites and combinatotial configurations) are always finite in-
stances and never considered in their completion, what is implicitly involved hete is the abstraction of
potential infinity that allows reasoning about however long genetic processes. The tealizability of the

15 Special attention should be paid on the formulation of the third clause. In modern genetic definitions, the analo-
gous clause is usually phrased as follows:

(iii*) There are no other objects except those generated by the application of the first two clauses.
Thus the clauses (i), (i), and (iii*) are taken to define a set of objects that are specified by means of the clauses (i) and
(). The possibility for an object to posses the defining property is based on clause (iii*). This clause implicitly as-
sumes the universe of all objects as given beforchand. In virtue of the law of excluded middle, evety object of the
universe either possesses the defining ptoperty or does not. Then clause (iii*) is taken to mean that there are no ob-
jects in the set determined by the defining property except those that have been constructed in the way described by
() and ().
However, this does not seem to be the way of thinking of the ancient authots, for whom the totality of all numbers
was not considered as given beforehand. It could not be for one more reason: the statement “a number such that ...”
(in the sense of its effective construction) was for the Neo-Pythagorean arithmeticians an “experimental” fact,
whereas the statement “there are no numbers such that ...” is not an “experimental” fact. Accordingly, clause (iii) is
never phrased by the Neo-Pythagoreans in the form of negative existential sentence.
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genetic constructions is taken to be potential. The natural suites, for instance, are taken to be extendi-
ble “as far as you wish,” and the process of construction of successive combinatorial configurations
can continue ad infinitum.

Moteover, the objects introduced in Neo-Pythagorean arithmetic are not only (potentially) infinite, but
also intrinsically associated with the rule for their genetic construction from the monad. In this sense,
we can say that the Neo-Pythagotean approach to arithmetic is not purely extensional. Definitions of
arithmetical concepts are reduced to the demonstration how a definite combinatonial rule works, when
one passes from a number to its successor, in the process of construction of :e considered kind of
number. Arithmetic theorems are thus ultimately reduced to the demonstration that the transition
from a number to its successor follows a definite combinatorial rule.

(&) The Finitary Princple. It is obvious that the method outlined above is not grounded upon the idea of
proof (in the strict sense of the word). In the context of Neo-Pythagorean arithmetic, numbers ate
conceived as given and any statement about them asserts something, which is confirmed in each in-
stance by simple combinatorial means. If, for example, two numbers are given, it is sufficient to con-
Jirm by the construction of the corresponding configuration (or by obsetvations over the exemplary
suite), whether what has been stated about these numbers is correct or not. The demonstration is pet-
formed by inspection over a finite fragment of a usually (potential) infinite object. In this sense, we can
say that the statements of Neo-Pythagorean arithmetic have finitary meaning.

(5) Mental experiments. Arithmetical reasoning is conducted in the form of mental experiments
over concrete objects of combinatonial character. Any assertion about numbers utters a law, which can
be confirmed in each case by pure combinatorial means. For any given concrete numbers, it sufficient
to verify by the construction of the corresponding configuration whether the law uttered holds for the
considered numbers. Thus, such type of arithmetical reasoning admits the representation by (configu-
rations of) letters as intented interpretation for the effective confirmation (deixis) of the arithmetical
statements and develops in accordance with its combinatorial model.

(6) Genetic construction (demonstration) vs. proof. Therefore, the foundation of Neo-Pythagorean arithmetic is
not proof, in the style of Euclidean E/ements, and the works of other mathematicians of the classical
antiquity, but the idea of genetic construction (demonstration), by means of which the cotrectness of
arithmetical statements is confirmed. This type of anthmetical treasoning about given numbets can be
realized without assumptions of axiomatic character. The confirmation of atithmetical statements is real-
izable by a specific ‘expetiment.’

In this context, arithmetical reasoning is conducted as theotetical viswa/ reasoning conceming the pos-
sibility to catry out certain genetic constructions over a domain of concrete objects. These objects are
introduced by genetic constructions and represent infinite sequences that are illustrated incompletely
by means of a finite suite or configuration.

(7) Generality. In the expositions of Neo-Pythagorean arithmetic, one does not find enunciation of uni-
versal theorems, that is formal statements beginning with quantificational words of the type “all,”
“every,” etc. The problem ptrimarily concems the case when a general property is asserted of an infi-
nite (in the sense described above) domain of objects. In these cases the general property is established
by induction, that is by means of certain constructions of such a character that the possibility to repeat
a similar reasoning so that to implement the cotresponding construction for any other given number of
the same kind is evident. On this ground one can conclude that whatever number of the kind might
have been given, it is possible to confirm (by analogous line of reasoning) that this number has the
property in question.
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The use of such a rule of generality is necessaty fot the development of Neo-Pythagorean arithmetic,
in absence of specific quantification. In this way, the statements of Neo-Pythagorean arithmetic can be
understood as general declarations of our capability to implement certain constructions for any given
number of certain kind. The belief that we can implement the required construction for any given
numbet (combinatorial pattern) might have been tooted in the experience gained from the realization
of such constructions. As a tesult of this kind of “expetimentation” it becotes clear how one has to
proceed in each case, i.c. at each case it is clear what we have to do. In this sense, the statements estab-
lished in Neo-Pythagotean arithmetic are general, that is they establish that for any number of certain
kind the outcome of the construction, according to a definite rule, is 2 number possessing the required

property.

(8) Negation. It is obvious from the evidence of atithmetical reasoning discussed so far that Neo-
Pythagorean arithmetic is about affirmative sentences stating something ‘positive’ that can be
confirmed by means of the consttuction of the corresponding configuration. We do not meet in Neo-
Pythagorean arithmetic any kind of ‘negative’ sentences, that is statements asserting existence of a
number specified by a negative property (or lacking a propetty), ot statements asserting impossibility
of a construction. Such statements could not have a straightforward “expetimental” character within
Neo-Pythagorean arithmetic.

This preconception against negation is also evidenced by the Pythagorean philosophet Philolaus, who
declates that

“the nature of number and harmony does not permit falsity, because it is not peculiar to it. ... .

Truth is peculiar ... to the kind of number” (Stobeus; D/K/ Vors. 44 B11)
Thus, the lack of negative statements in the canonical exposition of Neo-Pythagorean arithmetic
seems to a doctrinal charactetistic of the Pythagorean mathematical tradition. This feature lends to this
kind of atithmetic certain peculiar semantic characteristics, namely all sentences in Neo-Pythagorean
atithmetic are affirmative statements asserting the possibility of certain constructions and, thereby, the
Neo-Pythagorean atithmetic contains only such “experimental” truths that describe the actual state of
affairs. From a modem point of view, this kind of arithmetic represents a positive (negationless), finitary
Jfragment of Peano arithmetic.

3. On the style of Euclidean arithmetic reasoning

Euclid’s style of arithmetical reasoning is also not postulational. The lack of specific arithmetical axi-
oms in Book VII has puzzled histotians of mathematics'é. In our view, it is hardly possible to ascribe
to the Greeks a conscious undertaking to axiomatize atithmetic. The view that associates the begin-
nings of the axiomatization of arithmetic with the works of Grassman'’, Dedekind!® and Peanot®
seems to be more plausible®, In this case, the following questions can be stated: why atithmetic was

16 Mueller, Ian. Philosophy of Mathematics and Deductive Structure in Euclid’s "Elements”. MIT, 1981, 59.

Artman, Benno. “Euclid’s E/ements and its Prehistory” Mueller, Ian. I[TEPI TON MA®HMATOQN (Peri ton Mathe-
maton). Edmonton. Alberta: Academic Printing & Publishing, 1992 [A4peiron XXIV no 4 (December 1991)], 32.
Jean-Louis Gardies, “Sur I'axiomatique de 'arithmétique euclidienne,” Oriens - Occidens Cahiers du Centre d’histosrs des
Sciences ot des philosophies arabes ot Médsévales, 2 (1998), 125-140.

17 Grassman H. Lehrbuch der Arithmetik fiir hohere Lehranstalten. Berlin. 1861.

18 Dedekind J.W.R. Was sind und was sollen die Zahlen? Brunswick. 1888.

13 Peano Giuseppe. Arithmeticas principia, novo methodo exposita. Torino. 1889.

2 Demidov, Sergej S. “Sur I'histoire de la méthode axiomatique.” Actes du XIle Congress International d’Histoire des
Sciences, Padis. t. IV, 1971, 45-47.
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axiomatized so late? How Euclidean arithmetic is constructed? The first question is conclusively an-
swered by Yanovskaja?!. Her major and quite conclusive argument is that “algorithms in atithmetic
have absolute charactet, wheteas in geometty we have to do with reducibility algorithms”2. The an-
swer to the second question is, in out view, the following: Euclidean arithmetic is constructed not
axiomatically, but by effective progfs>.

(1) The “domain” of Euclid’d ‘Elements,” Book V1. The Euclidean number — ar:thmos — has the following
formal structure:

A = {aE}aZZ

where E designates the unit and a is the number of times (multitude) that E is repeated to obtain the
number 4, denoted by a segment.

Euclid constructs his arithmetic for the numbets-arithmoi, that is for the numbers designated as seg-
ments, while the arithmetic of multitudes is taken for granted. Thus, arithmetic is constructed as for-
mal theory of numbers-arithmoi, while the concept of multitude or iteration number has a specific
metatheoretical character®.

The concepts “equal,” “less,” “greater,” to which today ate asctibed a purely quantitative meaning, in
Euclid seems to be also associated with the geometric notion of relative position, but also applied to
multitudes when Euclid compares two sets of numbers-arithmot.

(2) Generalty. Euclid sometimes uses quantificational words applied to numbers-arizhmoi, although
such expressions are very rate. The most common way by which Euclid expresses generality is to
speak about arithmos without article. Thus, most enunciations in Euclid’s arithmetical Books state
some property about numbers, where arithmos is used without article. However, when he proceeds to
the ekthesis of the theorem he makes a number of important linguistic-logical operations:

a. designation of numbers-arithmoi is introduced by means of a segment named by one (or two)
letter(s);

Demidov, Sergej S. “On Axiomatic and Genetic Construction of Mathematical Theories.” Hintikka, Jaakko, Gru-
ender, David, and Agazzi, Evandro (Eds). 1981. Theory Change, Ancient Axiomatics, and Galileo’s Methodology. Pro-

cesdings of the 1978 Pisa Conference on the History and Philosophy of Science. Dordrecht: Reidel Publ. Co., Vol. 1, 215-
222.

Medvedev, Fedor A. “On the Role of Axiomatic Method in the Development of Ancient Mathematics.” Hintikka,
Jaakko, Gruender, David, and Agazzi, Evandro (Eds). 1981. Theory Change, Ancient Axiomatics, and Galileo’s Meth-
odology. Procesdings of the 1978 Pisa Conference on the History and Philosophy of Science. Dotrdrecht: Reidel Publ. Co.,
Vol. 1, 223- 225,

2 Yanovskaya S. A. “From the history of axiomatics.” Report in the 37 Al-Union Congress of Mathematics, Section of History -
of Mathematics, 26 June 1956, II, 105 [in Russian].

Yanovskaya S. A. “From the history of axiomatics.” Istoriko-matematiéeskse issledovaniya, 1958, 63-96 (Expanded version
of the preceding report) [in Russian].

2 Tbid., 64, see also Bychkov, Sergej S. “Geometry and the axiomatic method”, Istoriko-matsmatieskse issledovaniya 1
(36) (1996) 2, 195-204 [in Russian)].

2 Vandoulakis I.M 1998. “Was Euclid’s Approach to Arithmetic Axiomatic?” Oniens - Occidens Cahiers du Centre
d’histoire des Sciences et des philosophies arabes et Médiévales, 2, 141-181.

24 Bashmakova, Izabella G. “The Arithmetic Books of Euclid’s Elements”. Istoriko-matematiteskse issledovaniya 1 (1948),
321 [in Russian].

Vitrac, Bemard. De Qwelgues Questions Touchant au Traitement de la Proportionnalité dans les Eléments d’Esnclide. Pa-
ris, 1993, 1, 118.
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b. the name of the number-arithmos (that is the letter) is now used with definite article standing
before it.

In this way, general statements about numbers ate interpreted as statements about an arbitrary given
(indicated) number. Quantification is not formally expressed by means of variables and quantifiers
ranging over them, but using the otdinary expressive means of natural language. In virtue of the in-
stantiation described above the process of proof takes places actually with an arbitrary given number.
This “rule of specification” is considered inversible, although Euclid applies the inverse rule very rarely
in the arithmetical Books. The degtee of genetality thus attained is no higher than generality expressi-
ble by free variables ranging over numbers.

(3) Fundamental concepts. The basic undefined concept of Euclidean arithmetic is that of fo measure
(katametrein), which underlies most of the kinds of numbers defined by Euclid. The concept “a num-

ber B measures a number 4” can be interpreted as follows:

B measures A = (B < A) & (A = nB),
that is 4 is obtained by # repetitions of B.

After the introduction of several atithmetical concepts, such as “part,” “multiple,” “parts,” and others,
the concept of proportional numbers is introduced as four-place predicate over numbers?

{[(C < A) & (A=nC)& (D < B) & (B = nD)]v
[(4<C)&(C=mA)&(B<D)&(D=mB)v _
{EXN[(A=mX)&(B=nX)& (m>n>D]&
ANC=mY)&(D=nY)&(m>n>1)]}}

) Implscit assumptions concerning reasoning over infinste processes. In the proofs of Proposition 1 and 2, expos-
ing the process of anthyphairesis, Euclid uses implicitly the following implicit assumptions:

Proportional(4, B,C,D) =

1 The least number principle: the set of multiples 7B, such that nB 2 A , has least element
n,,such that nyB > A ,yet (ny,—-1)B< A.
ii. The infinite descent principle: the process of anthyphairesis will terminate in a finite num-
bet of steps, that is the chain 4 > B> B, > B, >...> B, >... is finite.
. If X measures 4 and B, then X measures A+ B, that is if A=mX, B=nX, then
AxB=(mtn)X.

The first is equivalent to the ptinciple of mathematical induction if the following axiom is added: every
number (except the unit) has a predecessot. The second assumption is equivalent to the principle of
mathematical induction and is used in Proposition 31

(V1L 31) (VA){Composite(4) —> (3B)[Ptime(B) & (B < A) & (A = nB)]}#

% Thomas L. Heath (Ed.). The Thirteen Books of Euclid’s Elements. 1908, 1926, 1956. Translated from the text of
Heiberg with introduction and commentary. Vols. 1-3. Cambridge; Dover, New York, 278 Def. 20.

26 For the justification of this explication, see Vandoulakis, I.M. “Was Euclid’s Approach to Arithmetic Axiomatic?”
Oriens - Occidens Cabiers du Centre d’histoire des Scisnces et des philosophies arabes et Médisvales, 2 (1998), 141-181.

7 From this proposition follows directly Proposition 32, that any number either is prime or is measured by some
prime number. From (31) and (32) follows, that any composite number is a product of primes in one way only. How-
ever, Euclid does not make the additional step neither to formulate, nor to prove this proposition. See, for instance,
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Howevert, the use of these principles has always finstary character in Euclid.

Number
by measuring
by measuring by dividing I by maltiplication
I | ]
art/ multiple | feven prime lcomposite plane
arts odd rime to one another lcomposite to one another T Pl
] | ] | |
. : square
perfect | | proportional r B et eios -- -:
even-times even solid
even-times odd
odd-times odd
cube

Scheme 2. Kinds of Numbers defined in Euclid's Book VI1I

(4) Introduction of entities of higher complexaty. In Propositions 20-22, Euclid uses the “class” of all pairs that
“have the same ratio.” Each such class is uniquely associated with one pair of numbers, namely the
least pair of numbers that have the same ratio. Euclid gives an effective procedure for finding such a
least pair.

First, assuming the existence of such a pair, Euclid proves that the least pair should possess the follow-
ing properties:

a) Let (4,,B,) be the least pair of numbers, which have the same ratio, and (A4, B) any other
pair of numbers, which have the same ratio. Then 4 = m4, and B = mB, (Proposition 20);

b) Prime to one another numbers are the least of those which have the same ratio with them
(Proposition 2128) and, conversely, the least pairs of numbers which have the same ratio with
them are prime to one another (Proposition 22).
Further, Euclid proves a number of theorems needed for the effective construction of the least pair of
numbers having the same ratio, which is done in Proposition 33. The later proposition in combination
with Proposition 21 gives the uniqueness of the least pair.

(5) The finitary principle and the use of effective procedures. Thus, Euclidean arithmetic is constructed from be-
low, beginning from the unit. Futther, a number of arithmetical concepts are introduced in the Defini-
tions of Book VII. From these, the concepts of part, multiple, parts, proportionality, and prime num-
bers ate not defined effectively. However, they become effective in virtue of Propositions 1, 2, and 3
that provide an effective procedure for any numbers to find their common measure. In this way, the
proofs of the Propositions 4-19 should be considered as effective either. In particular, some of them
are conducted by manipulations of equality-type trelations between numbets-arithmot, multitudes and
part (parts).

Knort, Wilbur Richard. “Problems in the interptetation of Greek number theory: Euclid and the Fundamental theo-
rem of arithmetic” Stwd. Hist. Phil. S¢i. T (1976) 3, 353-368.

Hendy M.D. “Euclid and the Fundamental Theorem of Arithmetic” Historia Mathematica 2(1975), 189-191.

Mullin A.A. “Mathematico-philosophical temarks on new theorems analogous to the fundamental theorem of arith-
metic” Notre Dame Journal of Formal Logic 6(1965), 218-222.

28 We should note that in the proof of Proposition 21, Euclid uses the so called least number principle, that is he
assumes the existence of a least pair of those which have the same ratio.
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The introduction of more complex objects is realised through the comparison of these objects and the
establishment of an equality-type relation between them. In particular, ratios are introduced through
the compatison of ratios (““sameness™), in Propositions VII, 20-22. Yet, Euclid confines himself solely
in the statement of the sameness of ratios, without trying to make the additional step to define ratios
themselves, based on their sameness. In other wotds, Euclid nowhere reaches a definition by abstrac-
#ion of the concept of ratio.

Instead, Euclid gives again in Proposition VII 33 an effective procedure for finding the least pair from
the numbers that have the same ratio. This pair is unique and characterises the whole class of pairs that
have the same ratio. Euclid also provides an effective construction of the least common multiple and
the least number out of given patts.

Therefore all propositions that involve existence of numbets appear, in the context of Euclid’s arith-
metic, associated with some effective procedure for finding the requited number. It is constructed
without assumptions of axiomatic character. It lacks the concept of absolute number or any elaborated
concept of equality. Instead, it is constructed as ‘formal’ theory of arizhmoi. The concept of numbet-
segment (arihmos) is some kind of ‘formalisation’ of the metalinguistic concept of ‘multitude’ (plezhos).
The only “pmmple” (arkhe — startmg point) of Euclid’s system of arithmetic is the unit (monas). As-
suming the existence of units in nature, that is in an ontological sense that is never applied in atith-
metical reasoning itself, he proceeds to the introduction of new kinds of numbers by means of effec-
tive procedures.

Nowhere the author of the E/ements makes use of the assumption that the numbers form a fixed uni-
verse of discourse that is given beforehand. Hence he never postulates ot proves existence of numbers
having a certain property, but always ‘constructs’ the required numbets by means of effective proce-
dures. Existence of numbers is never deduced by strong indirect arguments. The use of reductio ad
absurdum relies on a specific propositional form of the law of excluded middle and applies to decid-

able arithmetical predicates. Moreover, Euclid seems to avoid the law of excluded middle in the arith-
metical proofs. All propositions of the form P(A) v —P(A) ate proved by consideration of each patt

of the disjunction sepatately.

Only the potential infinite is used in Euclid’s arithmetical reasoning. The actual infinite is never used,
even in the most sophisticated cases that involve reasoning over infinite processes, such as the use of
infinite descent, the least number principle and mathematical induction. The atithmetical operations
are always applied on finite objects. All these enable us to charactetise Euclidean arithmetic as arithme-
tic of the finite mind.

Furthermore, the approach adopted by Euclid does not need any special predicate logic. Euclid’s
arithmetic can be characterised as a finitary fragment of classical arithmetic; hence it does not necessar-
ily presuppose the full force of first-order predicate logic. In our view, Euclid’s approach was just the
most “natural” way to develop arithmetic.

4. In Lieu of Conclusion

In historiography of Greek mathematics, number theoty is commonly treated within the prevailing
postulational style of thinking. This has led to the recognition that Gteek number theory of the
Euclidean Elments fall shott from the postulational ideal, as exemplified in the other Books of the
Elements and to underestimation of the number theoty of the (Neo-) Pythagorean authots. The domi-
nant histotiographical viewpoint prevented histotians to search for alternative approaches and recog-
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nise another style of reasoning in Greek number theory. In our view, the postulational style was not
universal for Greek mathematics. It appropriately applies to Greek geometry, yet not to number the-
ory, to which the Greeks have developed a different approach.

The Greek-European postulational style of mathematical thinking is usually contrasted to the Chinese
style of thinking that makes use of concrete mathematical objects and practical algorithmic procedures.
However, the recognition of the genetic style of Greek arithmetic enables us to reformulate the ques-
tion of comparison between the two mainstream traditions. In comparison to the Chinese style, the
objects of Greek number theory, that is the numbers (anthmoz), are not concrete, but “given”, that is
finitary entities, while the demonstrative procedures are not practical, but “effective.”



