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1. QUANTUM GROUPS

Throughout this survey, we will mainly treat quantum groups of compact or
discrete type. Our standard references are [2, 9, 19, 45]. We denote by $\otimes mini-$

mal tensor products or spatial tensor products for C’-algebras or von Neumann
algebras, respectively. The leg notations are frequently used. For example, let
$T\in B(H\otimes H)$ , where $H$ is a Hilbert space. Set the transposition of the i-th and
j-th tensor components, $\sigma_{ij}\in B(H\otimes H\otimes H)$ for $i,j=1,2,3$ . Then $T_{12}=T\otimes 1$ ,
$T_{13}=\sigma_{23}T_{12}\sigma_{23}$ and so on.

1.1. Compact quantum groups
The following definition of a compact quantum group has been introduced by

S. L. Woronowicz [45]:

Deflnition 1.1 (Woronowicz). A compact quantum group $(c.q.g.)\mathbb{G}$ is a pair
$(C(\mathbb{G}), \delta)$ that satisfies the following conditions:

(1) $C(\mathbb{G})$ is a separable unital $C^{*}$-algebra;
(2) (Coproduct) The map $\delta:C(\mathbb{G})arrow C(\mathbb{G})\otimes C(\mathbb{G})$ is a coproduct, i.e. it is a

faithful unital $*$-homomorphism satisfying the co-associativity condition,
$(\delta\otimes$ id$)\circ\delta=($ id $\otimes\delta)0\delta$ ;

(3) (Cancellation property) The vector spaces $\delta(C(\mathbb{G}))(\mathbb{C}\otimes C(\mathbb{G}))$ and
$\delta(C(\mathbb{G}))(C(\mathbb{G})\otimes \mathbb{C})$ are dense in $C(\mathbb{G})\otimes C(\mathbb{G})$ .

Example 1.2. A compact group $\mathbb{G}$ is regarded as a compact quantum group.
Indeed, via the identification $C(\mathbb{G})\otimes C(\mathbb{G})=C(\mathbb{G}\cross \mathbb{G})$ , a coproduct $\delta$ is defined
by

$\delta(x)(r, s)$ $:=x(rs)$ for all $x\in C(\mathbb{G}),r,$ $s\in G$ .
The cancellation property means $rs=rt$ or $sr=tr$ imply $s=t$ for $r,$ $s,$ $t\in \mathbb{G}$ .
Note that a compact semigroup with cancellation property is a compact group.

As in a compact group theory, the following state called Haar state plays an
important role.

Theorem 1.3 (Woronowicz). There uniquely exists a state $h\in C(G)^{*}$ such that
$(id\otimes h)(\delta(a))=h(a)1=(h\otimes id)(\delta(a))$ for all $a\in C(\mathbb{G})$ .
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1.2. Reduced quantum groups
We should note that $h$ may not be faithful in general. For example, the full

group $C^{*}$-algebra $C^{*}F_{2}$ is a c.q. $g$ . with a coproduct $\delta(r)=r\otimes r$ for $r\in F_{2}$ .
The Haar state is given by $h(r)=0$ if $r\neq e$ . However, $h$ is not faithful because
$C^{*}F_{2}\not\cong C_{red}^{*}F_{2}$ .

Let $N_{h}$ $:=\{a\in C(\mathbb{G})|h(a^{*}a)=0\}$ . Then it is known that $N_{h}$ is in fact an ideal
of $C(\mathbb{G})$ , and we can consider the reduced compact quantum group $C(\mathbb{G}_{red})$ $:=$

$C(\mathbb{G})/N_{h}$ with a natural coproduct. By definition, $h$ is faithful on $C(\mathbb{G}_{red})$ .
Let $(L^{2}(\mathbb{G}), \Omega_{h})$ be the GNS representation associated with the Haar state $h$ ,

that is,
$\bullet$ $L^{2}(\mathbb{G})$ is a Hilbert space;
$\bullet$ $\Omega_{h}\in L^{2}(\mathbb{G})$ is the GNS cyclic vector, i.e. we have $L^{2}(\mathbb{G})=C(\mathbb{G})\Omega_{h}$ and

$h(a)=(a\Omega_{h}, \Omega_{h})$ .
Note that $N_{h}$ is precisely equal to the kernel of the GNS representation.

1.3. Multiplicative unitaries
From the bi-invariance of the state $h$ , the following theorem holds:

Theorem 1.4. There exist unitary operators $V,$ $W\in B(L^{2}(\mathbb{G})\otimes L^{2}(\mathbb{G}))$ satisfying
$V(a\Omega_{h}\otimes\xi)=\delta(a)(\Omega_{h}\otimes\xi)$ for all $a\in C(\mathbb{G}),$ $\xi\in L^{2}(\mathbb{G})$ ;

$W^{*}(\xi\otimes a\Omega_{h})=\delta(a)(\xi\otimes\Omega_{h})$ for all $a\in C(\mathbb{G}),\xi\in L^{2}(\mathbb{G})$ .
Then $V$ and $W$ satisfy the following notable pentagon equations:

$V_{12}V_{13}V_{23}=V_{23}V_{12}$ , $W_{12}W_{13}W_{23}=W_{23}W_{12}$ . (1.1)

By definition, we have the following implementation formula:

$V(a\otimes 1)V^{*}=\delta(a)=W^{*}(1\otimes a)W$ for all $a\in C(\mathbb{G}_{red})$ . (1.2)

1.4. Von Neumann closures of quantum groups
We denote by $L^{\infty}(\mathbb{G})$ the weak closure of $C(\mathbb{G}_{red})$ in $B(L^{2}(\mathbb{G}))$ . The coproduct

$\delta$ extends to the normal morphism from $L^{\infty}(\mathbb{G})$ into $L^{\infty}(\mathbb{G})\otimes L^{\infty}(\mathbb{G})$ through
(1.2). Then the pair $(L^{\infty}(\mathbb{G}), \delta)$ is called the von Neumann algebraic compact
quantum group. It is non-trivial that there exists a modular automorphism for
$h$ , and the Haar state $h(\cdot)=(\cdot\Omega_{h}, \Omega_{h})$ is faithful on $L^{\infty}(\mathbb{G})[45]$ .

1.5. Kac type quantum groups
Definition 1.5. A compact quantum group is said to be of $Kac$ type when the
Haar state is tracial, i.e. $h(ab)=h(ba)$ for all $a,$ $b\in C(\mathbb{G})$ .

A compact group or $C^{*}$-group algebra of a discrete group are typical examples
of Kac type quantum groups, but they are not all. As an example, $SU_{-1}(n)$ is
of Kac type, which is neither commutative nor co-commutative. Readers should
note the first such example discovered by G. I. Kac and V. G. Paljutkin [17].
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1.6. Representation theory
Definition 1.6. Let $H$ be a Hilbert space. A unitary $v\in B(H)\otimes L^{\infty}(\mathbb{G})$ is
called a (right unitary) representation if it satisfies

$(id\otimes\delta)(v)=v_{12}v_{13}$ . (1.3)

Similarly we can define a left representation. The above equality is the trans-
lation of the equality $v(rs)=v(r)v(s),$ $r,$ $s\in \mathbb{G}$ in terms of a Hopf algebra.

Example 1.7. The multiplicative unitaries $V\in B(L^{2}(\mathbb{G}))\otimes L^{\infty}(\mathbb{G})$ and $W\in$

$L^{\infty}(G)\otimes B(L^{2}(\mathbb{G}))$ are right and left representations, respectively. Indeed using
the pentagon equation (1.1), we have

$(id\otimes\delta)(V)=V_{23}V_{12}V_{23}^{*}=(V_{12}V_{13}V_{23})V_{23}^{*}=V_{12}V_{13}$.

Similarly we obtain $(\delta\otimes$ id$)(W)=W_{13}W_{23}$ .

There are the following three operations:
$\bullet$ (direct sum)

$v_{1}\oplus v_{2}$ $:=(\begin{array}{ll}v_{l} 00 v_{2}\end{array})\in B(H_{1}\oplus H_{2})\otimes L^{\infty}(\mathbb{G})$ ;

$\bullet$ (tensor product)
$v_{1}\otimes v_{2}$ $:=(v_{1})_{13}(v_{2})_{23}\in B(H_{1}\otimes H_{2})\otimes L^{\infty}(\mathbb{G})$ ;

$\bullet$ (conjugation) Let $v=(v_{ij})_{i,j\in I}$ be a matrix form of a representation.
Consider

$v^{c}:=(v_{ij}^{*})_{i,j\in I}$

which may not be a unitary, but this still satisfies (1.3). In fact, if the
dimension is finite, then it is unitarizable, i.e. there exists a positive
invertible operator $Q$ such that

$\overline{v}:=(Q^{1/2}\otimes 1)v^{c}(Q^{-1/2}\otimes 1)$

is a unitary matrix, where $Q$ is usually canonically chosen (see \S 1.9).
The important point is that the Peter-Weyl theory holds even for the quantum

setting. Let us introduce the intertwiner space between unitary representations
$v_{i}\in B(H_{i})\otimes L^{\infty}(\mathbb{G}),$ $i=1,2$ ,

Mor$(v_{1}, v_{2})$ $:=\{T\in B(H_{1}, H_{2})|(T\otimes 1)v_{1}=v_{2}(T\otimes 1)\}$ .

Definition 1.8. Let $v\in B(H)\otimes L^{\infty}(\mathbb{G})$ be a unitary representation.
$\bullet$ A unitary representation is said to be irreducible when Mor$(v, v)=\mathbb{C}1_{H}$ .
$\bullet$ Let $w\in B(K)\otimes L^{\infty}(\mathbb{G})$ be a unitary representation. We say that $v$ and

$w$ are equivalent if Mor$(v, w)$ contains a unitary.

Theorem 1.9 (Woronowicz). The following hold:
(1) An irreducible representation is finite dimensional;
(2) $A$ finite dimensional representation is the direct sum of irreducibles;
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(3) Let $v\in B(H)\otimes L^{\infty}(\mathbb{G})$ be a finite dimensional representation. Then
$v\in B(H)\otimes C(\mathbb{G})$ .

Define the following subspace of $C(\mathbb{G})$ called the smooth part:
$A(\mathbb{G}):=$ span{ $v_{ij}|v$ finite dimensional representation}.

Theorem 1.10 (Woronowicz). The following hold:
(1) $A(\mathbb{G})$ is a $unital*$ -subalgebra that is dense in $C(\mathbb{G})$ ;
(2) The set $\{v_{\pi_{ij}}\}_{ij\in I_{\pi}},$ $\pi\in$ Irr $(\mathbb{G})$ is a linear basis of $A(\mathbb{G})$ ;
(3) The Haar state $h$ is faithful on $A(\mathbb{G})$ .

We denote by Irr $(\mathbb{G})$ the set of equivalent classes of irreducible representations
of $\mathbb{G}$ . For each $\pi\in$ Irr $(\mathbb{G})$ , we choose a corresponding representation $v_{\pi}\in$

$B(H_{\pi})\otimes L^{\infty}(\mathbb{G})$ . Note that $\dim(H_{\pi})<\infty$ from the previous theorem. The
trivial one dimensional representation is denoted by 1. For $\pi\in$ Irr $(\mathbb{G})$ , the
conjugation is denoted by $\overline{\pi}$ , which is the unique element of Irr $(\mathbb{G})$ such that
$Mor(\pi\otimes\overline{\pi}, 1)\neq 0$ or $Mor(\overline{\pi}\otimes\pi, 1)\neq 0$ .

Let us define the Z-module,

$\mathcal{R}_{C};=$ $\oplus$ $\mathbb{Z}\pi$ .
$\pi\in$ Irr(G)

Setting $N_{\pi\rho}^{\sigma}$ $:=\dim$ Mor$(\pi\otimes\rho, \sigma)$ for $\pi,$ $\rho,$ $\sigma\in$ Irr $(\mathbb{G})$ , we define the following
product structure on $\mathcal{R}_{\mathbb{C}}$ :

$\pi\cdot\rho=\sum_{\sigma\in Irr(G)}N_{\pi\rho}^{\sigma}\sigma$
.

The Z-ring $\mathcal{R}_{C}$ is called the representation ring of $\mathbb{G}$ .

Definition 1.11. We say that a compact quantum group $\mathbb{G}$ has commutative
fusion rules if $\mathcal{R}_{\mathbb{C}}$ is commutative.

1.7. Hopf algebra structure
By Theorem 1.10, we can introduce the maps $\epsilon:A(\mathbb{G})arrow \mathbb{C}$ and $\kappa:A(\mathbb{G})arrow$

$A(\mathbb{G})$ defined by
$\epsilon(v_{\pi_{ij}})=\delta_{ij}$ for $\pi\in$ Irr $(\mathbb{G}),$ $i,j\in I_{\pi}$ ,

$\kappa(v_{\pi_{ij}})=v_{\pi_{ji}}^{*}$ for $\pi\in$ Irr $(\mathbb{G}),$ $i,j\in I_{\pi}$ .
Theorem 1.12 (Woronowicz). The following hold:

(1) $\epsilon$ is $a*$ -homomorphism satisfying
$(\epsilon\otimes id)0\delta=$ id $=($id $\otimes\epsilon)\circ\delta$ on $A(\mathbb{G})$ ;

(2) $\kappa$ is an anti-homomorphism satisfying $\kappa(\kappa(a)^{*})^{*}=a$ for $a\in A(\mathbb{G})$ and
$mo(\kappa\otimes id)0\delta=\epsilon=m\circ(id\otimes\kappa)\circ\delta$ on $A(\mathbb{G})$ ,

where $m:A(\mathbb{G})\otimes A(\mathbb{G})arrow A(\mathbb{G})$ is the multiplication.

So, $A(\mathbb{G})$ has a Hopf $*$-algebra structure.
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1.8. Modular objects
We introduce the Woronowicz characters $\{f_{z}\}_{z\in \mathbb{C}}$ on $A(\mathbb{G})$ [$45$ , Theorem2.4].

The multiplicative functional $f_{z}:A(\mathbb{G})arrow \mathbb{C}$ is uniquely determined by the fol-
lowing properties:

(1) $f_{0}=\epsilon$ ;
(2) For any $a\in A(\mathbb{G})$ , the function $\mathbb{C}\ni z\mapsto f_{z}(a)\in \mathbb{C}$ is entirely holomor-

phic;
(3) $(f_{z_{1}}\otimes f_{Z2})\circ\delta=f_{z_{1}+z2}$ for any $z_{1},$ $z_{2}\in \mathbb{C}$ ;
(4) For any $z\in \mathbb{C}$ and $a\in A(\mathbb{G}),$ $f_{z}(\kappa(a))=f_{-z}(a),$ $f_{z}(a^{*})=\overline{f_{-\overline{z}}(a)}$;
(5) For any $a\in A(\mathbb{G}),$ $\kappa^{2}(a)=(f_{1}\otimes id\otimes f_{-1})((\delta\otimes$ id$)(\delta(a)))$ ;
(6) For any $a,$ $b\in A(\mathbb{G}),$ $h(ab)=h(b$ $(f_{1}\otimes id\otimes f_{1})((\delta\otimes$ id$)(\delta(a))))$ .

The modular automorphism group $\{\sigma_{t}^{h}\}_{t\in \mathbb{R}}$ is given by
$\sigma_{t}^{h}(x)=(f_{it}\otimes id\otimes f_{it})((\delta\otimes$ id$)(\delta(x)))$ for all $t\in \mathbb{R},$ $x\in A(\mathbb{G})$ .

We define the following map $\tau_{t}:A(\mathbb{G})arrow A(\mathbb{G})$ by
$\tau_{t}(x)=(f_{u}\otimes id\otimes f_{-it})((\delta\otimes$ id$)(\delta(x)))$ for all $t\in \mathbb{R},$ $x\in A(\mathbb{G})$ .

Then $\{\tau_{t}\}_{t\in \mathbb{R}}$ is a one-parameter automorphism group on $A(\mathbb{G})$ and it is called
the scaling automorphism group. Since the Haar state $h$ is invariant under the
$*$-preserving maps $\sigma_{t}^{h}$ and $\tau_{t}$ , we can extend them to the maps on $C(\mathbb{G}_{red})$ , and
on $L^{\infty}(\mathbb{G})$ .
1.9. Quantum Peter-Weyl theorem

Let $v\in B(H)\otimes A(\mathbb{G})$ be a finite dimensional representation. We set
$Q_{v}:=(id\otimes f_{1})(v)$ ,

which is an invertible positive operator on $H$ . For $\pi\in$ Irr $(\mathbb{G})$ , we write $Q_{\pi}$ instead
of $Q_{v_{\pi}}$ . When $\mathbb{G}$ is of Kac type, then $Q_{v}=1$ for any representation $v$ .

Deflnition 1.13. The value Tr$H(Q_{v})$ is called the quantum dimension of $v$ , and
denoted by $\dim_{q}(v)$ .

Since it can be shown that Ttr $(Q_{\pi}^{-1})=$ Thr $(Q_{\pi})$ , we have $\dim_{q}(v)\geq\dim H$ .

Theorem 1.14. The Haar state $h$ satisfies the following generalized orthogonal-
ity;

$($ id $\otimes h)(v_{\pi}(\xi\eta^{*}\otimes 1)v_{\rho}^{*})=\delta_{\pi,\rho}\dim_{q}(\pi)(Q_{\pi}\xi, \eta)$,
$(id\otimes h)(v_{\pi}^{*}(\xi\eta^{*}\otimes 1)v_{\rho})=\delta_{\pi,\rho}\dim_{q}(\pi)(Q_{\pi}^{-1}\xi, \eta)$ ,

where $\pi,$ $\rho\in$ Irr $(\mathbb{G})_{f}\xi\in H_{\pi}$ and $\eta\in H_{\rho}$ .
The key point of the proof of this result is to observe that $($ id $\otimes h)(v_{\pi}(\xi\eta^{*}\otimes$

$1)v_{\rho}^{*})\in$ Mor$(\rho, \pi)$ . The matrix form is sometimes useful. Take an ONB $\{\epsilon_{\pi}i\}_{i\in I_{\pi}}$ .
Then we have
$h(v_{\pi_{i,j}}v_{\rho_{k,\ell}}^{*})=\delta_{\pi)\rho}\dim_{q}(\pi)^{-1}Q_{\pi_{\ell_{1}j}}\delta_{i,k}$ , $h_{G}(v_{\pi_{i,j}}^{*}v_{\rho_{k,\ell}})=\delta_{\pi,\rho}\dim_{q}(\pi)^{-1}(F_{\pi}^{-1})_{k,i}\delta_{j,\ell}$ .
In particular, $h(v_{\pi_{ij}})=\delta_{\pi,1}\delta_{ij}$ .
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We see that the matrix $(Q_{\pi}^{1/2}\otimes 1)v_{\pi}^{c}(Q_{\pi}^{-1/2}\otimes 1)$ is a unitary representation
equivalent to $v_{\overline{\pi}}$ .

Now note that $\dim$ Mor $(\pi\otimes\overline{\pi}, 1)=1$ , and take $t_{\pi}\in$ Mor $(\pi\otimes\overline{\pi}, 1)$ such that
$t_{\pi}^{*}t_{\pi}=\dim_{q}(\pi)$ . The following theorem is due to Woronowicz, but our notation
is slightly different because we do not use special ONB (see [8]).

Theorem 1.15 (Quantum Peter-Weyl theorem). One has the following unitary
isomorphism:

$L^{2}( \mathbb{G})arrow\bigoplus_{\pi\in Irr(G)}H_{\overline{\pi}}\otimes H_{\pi}$
,

which maps $(\omega_{\xi,\eta}\otimes$ id$)(v_{\pi})\Omega_{h}$ to $(1\otimes\eta^{*})ot_{\overline{\pi}}\otimes\xi$ . intertwines the left and right
$\mathbb{G}$-actions.

1.10. Non-trivial examples 1
For a classical compact Lie group $\mathbb{G}$ , we can construct the q-deformation $\mathbb{G}_{q}$

[18], where $q\in[-1,1]\backslash \{0\}$ . If $q=1,$ $\mathbb{G}_{1}$ is nothing but the original $\mathbb{G}$ . The
object corresponding to $q=0$ is considered as a quantum semigroup which is not
a quantum group because that does not have a Haar state.

Now we explain the simplest and the most important example $SU_{q}(2)[44]$ . The
continuous function algebra $C(SU_{q}(2))$ is the universal $C^{*}$-algebra generated by
four elements $x,$ $u,$ $v$ and $y$ with the following relations:

$ux=qxu$ , $vx=qxv$ , $yu=quy$ , $yv=qvy$ , $uv=vu$ ,
$xy-q^{-1}uv=1=yx-quv$ ,

$x^{*}=y$ , $u^{*}=-q^{-1}v$ .
To introduce a coproduct $\delta$ , the following 2 by 2 unitary matrix is useful:

$v(\pi_{1/2}):=(\begin{array}{ll}x uv y\end{array})$ .

Then the coproduct $\delta$ is given by

$(_{\delta(v)}^{\delta(x)}$ $\delta(u)\delta(y)):=(\begin{array}{llll}x \otimes 1 u \otimes 1v \otimes 1 y \otimes 1\end{array})\cdot(\begin{array}{llll}1\otimes x 1\otimes ul\otimes v 1\otimes y\end{array})$ ,

This means $v(\pi_{1/2})$ is a representation, which is in fact irreducible.
It is known that Irr$(SU_{q}(2))$ is naturally identified with the positive half in-

tegers $(1/2)\mathbb{Z}_{\geq 0}$ . Each $\nu\in$ Irr $(SU_{q}(2))$ is called the spin and the dimension
of $v(\pi_{\nu})$ is $2\nu+1$ . The quantum dimension of $\pi_{\nu}$ is given by the q-integer
$[2\nu+1]_{q}:=(q^{-2\nu-1}-q^{2\nu+1})/(q^{-1}-q)[20]$ .

On tensor products, we have the same formula (Clebsh-Gordan rule) as that
of $SU(2)$ ,

$\pi_{\mu}\otimes\pi_{\nu}=\pi_{|\mu-\nu|}\oplus\pi_{|\mu-\nu|+1}\oplus\cdots\oplus\pi_{\mu+\nu-1}\oplus\pi_{\mu+\nu}$ .
In particular, $SU_{q}(2)$ has commutative fusion rules [20, 44].

This phenomena hold for every q-deformation of a classical compact Lie group,
that is, the fusion rule is invariant under the q-deformation, and it is commutative.
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1.11. Non-trivial example 2
Our second interesting example is a universal quantum group. There are a lot

of variants, and we explain the only original examples here [35].

Definition 1.16. Let $F\in GL(n, \mathbb{C})$ .
$\bullet$ (Universal orthogonal quantum group $A_{o}(F)$ ) Assume that $F\overline{F}=\pm 1$ .

The function algebra $C(A_{o}(F))$ is the universal $C^{*}$-algebra generated by
$u_{ij},$ $i,j=1,$ $\ldots,$

$n$ , which satisfy

$u=(F\otimes 1)u^{c}(F^{-1}\otimes 1)$ ,

where $u=(u_{ij})_{ij}$ and $u^{c}=(u_{ij}^{*})_{ij}$ .
$\bullet$ (Universal quantum group $A_{u}(F)$ ) The function algebra $C(A_{u}(F))$ is the

universal $C^{*}$-algebra generated by $u_{ij},$ $i,j=1,$ $\ldots,$
$n$ such that $u$ and

$(F\otimes 1)u^{c}(F^{-1}\otimes 1)$ are unitary.

The both coproducts are given by

$\delta(u_{ij})=\sum_{i,j=1}^{n}u_{ik}\otimes u_{kj}$ .

This means the matrix $u$ is a representation, which is in fact irreducible.
By definition, we obtain the surjective morphism $r:C(A_{u}(F))arrow C(A_{o}(F))$ as

quantum groups. Hence $A_{o}(F)$ is a quantum subgroup of $A_{u}(F)$ .
The fusion rules of $A_{o}(F)$ and $A_{u}(F)$ are computed by T. Banica [3, 4]. The

c.q. $g$ . $A_{o}(F)$ has the same fusion rule as $SU(2)$ , and in fact, it is monoidally
equivalent to $SU_{q}(2)$ for some $q[8]$ (see \S 3.4). We can regard Irr$(A_{u}(F))$ as the
free monoid $\mathbb{N}\star \mathbb{N}$ whose product is written like $xy$ for $x,$ $y\in \mathbb{N}\star \mathbb{N}$ . Let $\alpha$ and
$\beta$ are the generators. We define the conjugation on $\mathbb{N}\star \mathbb{N}$ such that $\overline{\alpha}=\beta$ . The
representation ring is $\mathcal{R}=\mathbb{Z}[\mathbb{N}\star \mathbb{N}]$ as a $\mathbb{Z}$-module. The product structure $x\cdot y$

for $x,$ $y\in \mathbb{N}\star \mathbb{N}$ is given by

$x \cdot y:=\sum_{\ulcorner\{a\in N\star N|x=xoa,-\partial yo\}}x_{0}y_{0}$
.

For example, $\alpha\cdot\alpha=\alpha^{2}$ and $\alpha\cdot\beta=\alpha\beta+1$ . So, the fusion rule does not depend
on $F$ . In particular, $\dim$ Mor$(x\otimes y, z)=0$ or 1 for all $x,$ $y,$ $z\in$ Irr $(A_{u}(F))$ .

Recall the definition of $A_{u}(F)$ where we have taken a unitary matrix $u\in$

$B(\mathbb{C}^{n})\otimes C(A_{u}(F))$ . In fact, $u$ and I are irreducible representations corresponding
to $\alpha$ and $\beta$ , respectively.

2. DISCRETE QUANTUM GROUPS

Let $\mathbb{G}$ be a c.q. $g$ . In this section, we study basic properties of the dual $\hat{\mathbb{G}}$ .
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2.1. Right and left group algebras
Recall the multiplicative unitaries $V,$ $W$ , which is right and left representations

of $\mathbb{G}$ on $L^{2}(\mathbb{G})$ . We introduce the following subspaces:

$R(\mathbb{G})$ : $=$ spanw $\{(id\otimes\omega)(V) |\omega\in L^{\infty}(\mathbb{G})_{*}\})$

$L(\mathbb{G})$ : $=$ spanw $\{(\omega\otimes id)(W) |\omega\in L^{\infty}(\mathbb{G})_{*}\}$ .
We call them right, left group algebms, respectively.

Define the maps $\beta,$ $\beta^{\ell}:B(L^{2}(\mathbb{G}))arrow B(L^{2}(\mathbb{G}))\otimes B(L^{2}(\mathbb{G}))$ ,

$\beta(x)$ $:=V^{*}(1\otimes x)V$ for $x\in B(L^{2}(\mathbb{G}))$ ,
$\beta^{\ell}(x)$ $:=W(x\otimes 1)W^{*}$ for $x\in B(L^{2}(\mathbb{G}))$ .

Theorem 2.1. The following hold:
$\bullet$ $R(\mathbb{G})$ and $L(\mathbb{G})$ are von Neumann algebras;
$\bullet$ The restrictions $\Delta$ $:=\beta|_{R(G)}$ and $\Delta^{\ell}$

$:=\beta^{\ell}|_{L(G)}$ define coproducts, $i.e$ .
$\triangle(R(\mathbb{G}))\subset R(\mathbb{G})\otimes R(\mathbb{G})$ , $(\Delta\otimes$ id$)\circ\triangle=($ id $\otimes\Delta)\circ\Delta$

and
$\Delta(L(\mathbb{G}))\subset L(\mathbb{G})\otimes L(\mathbb{G})$ , $(\triangle^{\ell}\otimes$ id$)\circ\Delta^{\ell}=($id $\otimes\triangle^{\ell})0\Delta^{\ell}$ .

Proof. We prove the second statement. Take $($ id $\otimes\omega)(V)\in R(\mathbb{G})$ . Then using
the pentagon equation, we have
$\Delta((id\otimes\omega)(V))=V^{*}(1\otimes(id\otimes\omega)(V))V$

$=$ $(id\otimes id\otimes\omega)(V_{12}^{*}V_{23}V_{12})=(id\otimes id\otimes\omega)(V_{13}V_{23})\in R(\mathbb{G})\otimes R(\mathbb{G})$ .
a

This theorem implies that the pair $(R(\mathbb{G}), \triangle)$ is a bialgebra. In fact, it is known
that there exist weights $\varphi$ and $\psi$ on $R(\mathbb{G})$ such that

$\bullet$ $\varphi((\omega\otimes id)(\Delta(x)))=\omega(1)\psi(x)$ for all $\omega\in R(\mathbb{G})_{*}^{+},$ $x\in R(\mathbb{G})_{+}$ .
$\bullet$ $\psi((id\otimes\omega)(\triangle(x)))=\omega(1)\varphi(x)$ for all $\omega\in R(\mathbb{G})_{*}^{+},$ $x\in R(\mathbb{G})_{+}$ ;

Therefore, $\hat{\mathbb{G}}$

$:=(R(\mathbb{G}), \triangle)$ is a quantum group in the sense of [19].
Using Theorem 1.15, we obtain the isomorphism,

$R( \mathbb{G})arrow\bigoplus_{\pi\in Irr(G)}B(H_{\pi})$
.

Hence $\hat{\mathbb{G}}$ is also called a discrete quantum group. Similarly $L(\mathbb{G})$ is a discrete
quantum group, too. They are acting on $L^{2}(\mathbb{G})$ standardly, and

$R(\mathbb{G})’=L(\mathbb{G})$ .

A discrete quantum group is also characterized by the existence of a normal
counit. Indeed in our case, the normal counit $\hat{\epsilon}$ is given by the evaluation of
$x\in R(\mathbb{G})$ at $\pi=1$ , i.e. $\hat{\epsilon}(x)=x_{1}\in \mathbb{C}$ .
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When we study actions of $\hat{\mathbb{G}}$ , the following description of the coproduct $\triangle$ is
quite useful:

$\Delta(x_{\pi})=$ $\sum$ $\sum$ $Sx_{\pi}S^{*}$ for $x_{\pi}\in B(H_{\pi})\subset R(\mathbb{G})$ ,
$\rho_{1}\sigma\in$Irr(G) $S\in$ONB $(Mor(\pi,\rho\otimes\sigma))$

where ONB $(Mor(\pi, \rho\otimes\sigma))$ is a set of orthonormal bases of Mor $(\rho\otimes\sigma, \pi)$ with
the inner product $(S, T);=T^{*}S$ .

2.2. Actions of quantum groups
Definition 2.2. Let $\mathbb{G}=(L^{\infty}(\mathbb{G}), \delta)$ be a locally compact quantum group and
$M$ a von Neumann algebra. A map $\alpha:Marrow M\otimes L^{\infty}(\mathbb{G})$ is called a (right) action
when it satisfies the following:

$\bullet$ $\alpha$ is a unital faithful normal $*$-homomorphism;
$\bullet(id\otimes\delta)0\alpha=(\alpha\otimes id)\circ\alpha$ .

A left action is similarly defined.

Example 2.3. The map $\beta:B(L^{2}(\mathbb{G}))arrow R(\mathbb{G})\otimes B(L^{2}(\mathbb{G}))$ is a left action of $\hat{\mathbb{G}}$ .
Similarly $\alpha:B(L^{2}(\mathbb{G}))arrow B(L^{2}(\mathbb{G}))\otimes L^{\infty}(\mathbb{G})$ defined by $\alpha(x)=V(x\otimes 1)V^{*}$ is a
right action of $\mathbb{G}$ .
2.3. Quantum subgroups and left (right) coideals

There are several ways to define a quantum subgroup of a c.q. $g$ . Here, we
adopt the following definition.

Definition 2.4. Let $\mathbb{G}$ and $\mathbb{H}$ be compact quantum groups. We say that $\mathbb{H}$ is a
quantum subgroup of $\mathbb{G}$ if there exists a unital $*$-homomorphism $r_{\mathbb{H}}:A(\mathbb{G})arrow A(\mathbb{H})$

such that
$\bullet$

$r_{\mathbb{H}}$ is surjective;
$\bullet\delta_{\mathbb{H}}or_{\mathbb{H}}=(r_{\mathbb{H}}\otimes r_{\mathbb{H}})0\delta_{G}$.

This definition is weaker than the usual $C^{*}$-version, which requires $r_{\mathbb{H}}$ is a
C’-homomorphism from $C(\mathbb{G})$ onto $C(\mathbb{H})$ .

Note that $\mathbb{H}$ acts on $A(\mathbb{G})$ from the both sides as $\mathbb{H}\cap\gamma^{p}A(\mathbb{G})\wedge\gamma^{r}\mathbb{H}$ defined by
$\gamma^{\ell}$ $:=$ $(r_{\mathbb{H}}\otimes$ id$)\circ\delta_{G}$ , $\gamma^{r}$ $:=($id $\otimes r_{\mathbb{H}})\circ\delta_{G}$ .

Then we define the non-commutative quotient spaces by the following fixed point
algebras:

$A(\mathbb{H}\backslash \mathbb{G}):=\{a\in A(\mathbb{G})|\gamma^{\ell}(a)=1\otimes a\}$ ,
$A(\mathbb{G}/\mathbb{H}):=\{a\in A(\mathbb{G})|\gamma^{r}(a)=a\otimes 1\}$ .

The weak closures in $B(L^{2}(\mathbb{G}))$ are denoted by $L^{\infty}(\mathbb{H}\backslash \mathbb{G})$ and $L^{\infty}(\mathbb{G}/\mathbb{H})$ .
Note that the left $\mathbb{H}$-action $\gamma^{\ell}$ and the right $\mathbb{G}$-action $\delta_{G}$ are commuting, i.e.

$($ id $\otimes\delta_{G})\circ\gamma^{\ell}=(\gamma^{\ell}\otimes$ id$)0\delta_{G}$ . Hence $\mathbb{G}$ is also acting $A(\mathbb{H}\backslash \mathbb{G})$ by $\delta$ . Similarly
the coproduct $\delta$ defines a left action on $A(\mathbb{G}/\mathbb{H})$ . Since these actions are preserv-
ing the Haar state, they extend to the quotient spaces $L^{\infty}(\mathbb{H}\backslash \mathbb{G})$ or $L^{\infty}(\mathbb{G}/\mathbb{H})$ ,
respectively. They are typical examples of right or left coideals.
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Definition 2.5. Let $B\subset L^{\infty}(\mathbb{G})$ be a von Neumann subalgebra. Then we say
that

$\bullet$ $B$ is a left coideal if $\delta(B)\subset L^{\infty}(\mathbb{G})\otimes B$ ;
$\bullet$ $B$ is a right coideal if $\delta(B)\subset B\otimes L^{\infty}(\mathbb{G})$ ;
$\bullet$ a left (right) coideal $B$ is of quotient type if $B=L^{\infty}(\mathbb{G}/\mathbb{H})$ (resp.

$L^{\infty}(\mathbb{H}\backslash \mathbb{G}))$ for some quantum subgroup $\mathbb{H}$ .

Thanks to Gelfand theorem, every left coideal is of quotient type when $\mathbb{G}$ is a
compact group [1]. However, this is not true in general [26, 27, 30]. Indeed, we
have the following characterization [31].

Theorem 2.6 (Tomatsu). Let $B\subset L^{\infty}(\mathbb{G})$ be a right coideal. Then the following
are equivalent;

$\bullet$ $B$ is of quotient type;
$\bullet$ There exists an expectation $E_{B}:L^{\infty}(\mathbb{G})arrow B$ preserving the Haar state,

and moreover $\hat{\mathbb{G}}$ acts on $B,$ $i.e$ . $\beta(B)\subset R(\mathbb{G})\otimes B$ .

This theorem has been proved for co-amenable quantum groups [31], but the
same proof works because we have changed the definition of quantum subgroups.

2.4. Amenability and co-amenability
For details of the theory of amenability for quantum groups, readers are referred

to [5, 6, 7, 29] and references therein.

Definition 2.7. We say that $\hat{\mathbb{G}}$ is amenable when there exists an invariant mean
$m$ on $R(\mathbb{G})$ , that is, $m\in R(\mathbb{G})^{*}$ is a state such that

$m((id\otimes\omega)(\Delta(x)))=\omega(1)m(x)=m((\omega\otimes id)(\Delta(x)))$.

In this case, $\mathbb{G}$ is said to be co-amenable.

Theorem 2.8 (Bedos-Murphy-TUset, Tomatsu). The following are equivalent:
$\bullet$

$\mathbb{G}$ is co-amenable;
$\bullet$ $C(\mathbb{G}_{red})$ has a bounded counit $\epsilon$ , which is $a*$ -homomorphism $\epsilon:C(\mathbb{G}_{red})arrow$

$\mathbb{C}$ such that $(\epsilon\otimes$ id$)0\delta=$ id $=(id\otimes\epsilon)\circ\delta$ .

If $\mathbb{G}$ is co-amenable, then $C(\mathbb{G}_{red})$ is the universal $C^{*}$-algebra of $A(\mathbb{G})$ , which
is proved by using Fell absorption technique.

It is easy to see that any quantum subgroup of a co-amenable c.q. $g$ . is also
co-amenable. Since $A_{o}(F)(n\geq 3)$ or $A_{u}(F)$ has non-co-amenable quantum
subgroups, they are not co-amenable. It is known that the q-deformation of a
classical compact Lie group is co-amenable. In particular, $SU_{q}(2)$ is co-amenable.

3. PROBLEMS

In this section, some interesting open problems are listed.

10



3.1. Minimal actions
One of the most difficult problem in a quantum group theory is the existence

of minimal actions on amenable factors. The definition of minimality is the
following:

Definition 3.1. An action $M_{\Gamma\backslash }^{\alpha}\mathbb{G}$ is said to be minimal if it satisfies
$\bullet$ (trivial relative commutant) $(M^{\alpha})’\cap M=\mathbb{C}$ ;
$\bullet$ (full spectrum) $L^{\infty}(\mathbb{G})=\overline{span}^{w}\{(\omega\otimes id)(\alpha(M))|\omega\in M_{*}\}$ .

The first condition is concerned with the high non-commutativity of the fixed
point algebra in the ambient algebra. In particular, $M$ must be a factor. The
second one is also called faithfulness of $\alpha$ . Indeed if $\mathbb{G}$ is a compact group, then
that is equivalent to the injectivity of the group homomorphism $\alpha:\mathbb{G}arrow$ Aut$(M)$ ,
and the trivial action is excluded.

Example 3.2. Let $\mathbb{G}\subset U(n)$ be a closed subgroup. We present a typical con-
struction of a minimal action of $\mathbb{G}$ on the amenable type $II_{1}$ factor $\mathcal{R}_{0}$ .

Set the unitary representation $\pi:\mathbb{G}arrow U(n+1)$ ,

$\pi(g)=(\begin{array}{ll}g 00 1\end{array})$ .

Then $\mathbb{G}$ acts on $M_{n+1}(\mathbb{C})^{\otimes k}$ by adjoint action Ad $\pi^{\otimes k}(g)$ for each $k\geq 0$ . The
action extends to the UHF $M_{n+1}(\mathbb{C})^{\otimes\infty}$ , which preserves the unique trace. Hence
we obtain an action of $\mathbb{G}$ on its weak closure, i.e. the amenable type IIl factor
$\mathcal{R}_{0}$ . Indeed it is minimal [44]. It is known that any minimal action of a compact
group on $\mathcal{R}_{C}$ is unique up to conjugacy [25, 22].

We have seen an example of a minimal action of a compact Lie group. The
first example of a minimal action of a c.q. $g$ . was constructed by Y. Ueda [33].

Let $\mathbb{G}$ be a $c$ .q.g. Take a von Neumann algebra $N$ such that $N’\cap(N\star L^{\infty}(\mathbb{G}))=$

$\mathbb{C}$ . Then consider the Ueda action $\alpha$ $:=$ id $\star\delta$ on a factor $M$ $:=N\star L^{\infty}(\mathbb{G})$ . By
definition, $\alpha$ is minimal. The point is that $M$ is not amenable. So, our problem
is the following:

Problem 3.3. Let $\mathbb{G}$ be a compact quantum group of non-Kac type. Does there
exist a minimal action on an amenable factor?

If there would exist such an action, $\mathbb{G}$ would have to be co-amenable [36]. Al-
though we have not known if it is true or not even for $SU_{q}(2)$ , Izumi’s observation
seems to be relevant.

Let $v\in B(H)\otimes L^{\infty}(\mathbb{G})$ be a finite dimensional representation. Then as in
the previous example, we can define the infinite tensor product action $\alpha$ on an
amenable factor $\mathcal{R}$ , which is a Powers factor. According to Izumi theory, we have
the isomorphism between $\mathbb{G}$-algebras,

$(\mathcal{R}^{\alpha})’\cap \mathcal{R}\cong H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ ,
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where $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ is the Poisson boundary associated with the random walk on
$\hat{\mathbb{G}}$ with a probability measure $\mu[13]$ . Therefore, $\alpha$ is never minimal when $\mathbb{G}$ is of
non-Kac type.

Many operator algebraists have interest in this problem because it has an ap-
plication to Jones’ problem, that is, to determine the index values for irreducible
subfactors of $\mathcal{R}_{C}[16]$ . If Proposition 3.3 would be affirmatively solved for $SU_{q}(2)$ ,
then the set of possible values greater than 4 would become $($4, $\infty)[34]$ . They
are attained for Wassermann subfactors:

$M^{\alpha}\subset(B(\mathbb{C}^{2})\otimes M)^{\tilde{\alpha}}$ ,

where $\tilde{\alpha}=$ Ad$(v_{\pi_{1/2}})_{13}o(id\otimes\alpha)$ .
However, we might solve Jones’ problem without proving the existence. In

fact, if we had found an example of an action $\alpha$ on an amenable factor $M$ such
that

$\bullet$ $M=M^{\alpha}\oplus M_{\pi_{1/2}}\oplus 0\oplus M_{\pi_{3/2}}\oplus\ldots$ (spectral decomposition);
$\bullet$ $\{M, \alpha\}$ is conjugate to $\{B(\mathbb{C}^{2})\otimes M,\tilde{\alpha}\}$ ,

then the Wassermann inclusion would give an index $\dim_{q}(\pi_{1/2})^{2}=(q^{-1}+q)^{2}$ .

3.2. Centers of Poisson boundaries
We briefly recall the notion of the Poisson boundary for a discrete quantum

group. We refer to [13] for definitions of terminology.
Let $\phi_{\pi}\in B(H_{\pi})_{*}$ be the right $\mathbb{G}$-invariant state. Define a transition operator

$P_{\pi}$ on $R(\mathbb{G})$ by $P_{\pi}(x)=($ id $\otimes\phi_{\pi})(\Delta_{R}(x))$ for $x\in R(\mathbb{G})$ . When $\hat{\mathbb{G}}$ is a discrete
group, $P_{g},$

$g\in\hat{\mathbb{G}}$ , is nothing but the right translation of functions by $g\in\hat{\mathbb{G}}$ ,
which is an automorphism. However, the map $P_{\pi}$ is not an automorphism but a
faithful normal u.c. $p$ . map in general.

For a probability measure $\mu$ on Irr $(\mathbb{G})$ , we set a non-commutative Markov
operator,

$P_{\mu}:= \sum_{\pi\in Irr(G)}\mu(\pi)P_{\pi}$
.

We assume $\mu$ is generating, that is, $supp(\mu)$ generates Irr $(\mathbb{G})$ as a “semigroup”, i.e.
for any $\pi\in$ Irr $(\mathbb{G})$ , there exist $\rho_{1},$ $\ldots,$

$\rho_{n}\in supp(\mu)$ such that the representation
$\pi$ is contained in the tensor product representation $\rho_{1}\otimes\cdots\otimes\rho_{n}$ .

Then we define an operator system,

$H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ $:=\{x\in R(\mathbb{G})|P_{\mu}(x)=x\}$ .

We often regard id $-P_{\mu}$ as a Laplace operator on $\hat{\mathbb{G}}$ , and we say that each ele-
ment of $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ is $P_{\mu}$-harmonic. That operator system has the.von Neumann
algebra structure defined by

$x \cdot y=\lim_{narrow\infty}P_{\mu}^{n}(xy)$ for $x,$
$y\in H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ , (3.1)
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where the limit is taken in the strong topology [13, Theorem 3.6]. The von
Neumann algebra $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ is called the (non-commutative) Poisson boundary
of $\{R(\mathbb{G}), P_{\mu}\}$ .

We know that $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ is isomorphic to $(\mathcal{R}^{G})’\cap \mathcal{R}$ , where $\mathcal{R}\cap \mathbb{G}$ is an
ITP action [13]. Thanks to Takesaki theorem on an expectation [28], we see that
$(\mathcal{R}^{G})’\cap \mathcal{R}$ is amenable, and so is $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ .

Now we recall the actions $\hat{\mathbb{G}}_{C\backslash }^{\beta}B(L^{2}(\mathbb{G}))\wedge\alpha \mathbb{G}$ defined by
$\beta(x)$ $:=V^{*}(1\otimes x)V$, $\alpha(x)=V(x\otimes 1)V^{*}$ .

Since we can prove $P_{\mu}$ and $\alpha$ or $\beta$ are commuting on $R(\mathbb{G})$ , the Poisson boundary
is a $\hat{\mathbb{G}}- \mathbb{G}$-von Neumann algebra. We should note that if $\hat{\mathbb{G}}$ is a discrete group, then
$\alpha$ is trivial. Hence a non-triviality of $\alpha$ on $R(\mathbb{G})$ is a purely quantum phenomenon.

In Poisson boundary theory, one of the most important problem is the following:

Problem 3.4 (Identification problem). Realize $\hat{\mathbb{G}}rightarrow \mathbb{G}$ -von Neumann algebra
$H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ more concretely.

For example, if $\mathbb{G}$ is the q-deformation of a classical compact Lie group, then
the Poisson boundary is isomorphic to a quantum flag manifold [13, 15, 31]. Also
for $A_{o}(F)$ or $A_{u}(F)$ , the computation has been done [38, 39, 40].

Here, we propose a new problem on a Poisson boundary. Recall that $P_{\mu}$ and $\alpha$

are commuting, and $P_{\mu}$ acts on the fixed point algebra $R(\mathbb{G})^{\alpha}$ , which is nothing
but the center $Z(R(\mathbb{G}))=\ell_{\infty}$ (Irr $(\mathbb{G})$ ). Hence we introduce the classical part of
a Poisson boundary,

$H^{\infty}(\hat{\mathbb{G}}, P_{\mu})_{cla8S}$ $:=H^{\infty}(\hat{\mathbb{G}}, P_{\mu})\cap Z(R(\mathbb{G}))$ .
Let us denote the center of $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ by $Z(H^{\infty}(\hat{\mathbb{G}}, P_{\mu}))$ . It is trivial by (3.1)

that the classical part $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})_{class}$ is contained in $Z(H^{\infty}(\hat{\mathbb{G}}, P_{\mu}))$ . Now we
present following our problem:

Conjecture 3.5. Let $\mathbb{G}$ be a compact quantum group and $\mu$ a generating proba-
bility measure. Then the following equality holds:

$H^{\infty}(\hat{\mathbb{G}}, P_{\mu})_{class}=Z(H^{\infty}(\hat{\mathbb{G}}, P_{\mu}))$ .
When $\mathbb{G}$ has a commutative fusion, then the classical part is trivial [12, 13].

So, the conjecture means the factoriality of $H^{\infty}(\hat{\mathbb{G}}, P_{\mu})$ .
There are some positive observations about this conjecture. For $SU_{q}(2)$ case,

it is true because the quantum flag manifold (or a Podle\’{s} sphere) $L^{\infty}(T\backslash SU_{q}(2))$

is a type $I_{\infty}$ factor. However, that is unknown for other q-deformations. The
conjecture holds even for non-amenable examples such as $A_{o}(F)$ and $A_{u}(F)[37$ ,
39]. It has seemed to be affirmative so far.

3.3. 2-cocycles
The next problem is about 2-cocycle deformations of a locally compact quan-

tum group. Let $\mathbb{G}$ be a locally compact quantum group with the coproduct $\delta$ .
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Definition 3.6. An element $\Omega\in L^{\infty}(\mathbb{G})\otimes L^{\infty}(\mathbb{G})$ is called a 2-cocycle if it
satisfies the following:

$\bullet$
$\Omega$ is a unitary:

$\bullet$ $(\Omega\otimes 1)(\delta\otimes$ id$)(\Omega)=(1\otimes\Omega)($ id $\otimes\delta)(\Omega)$ .

Let us deflne the map $\delta_{\Omega}$ $:=$ Ad $\Omega 0\delta$ , which is a new coproduct on $L^{\infty}(\mathbb{G})$ .
Hence $(L^{\infty}(\mathbb{G}), \delta_{\Omega})$ is a bi-algebra. In fact, K. De Commer recently proved that
there exist the left and right invariant weights on it, that is, $\mathbb{G}_{\Omega}$ $:=(L^{\infty}(\mathbb{G}), \delta_{\Omega})$

is a locally compact quantum group [10].
If $\mathbb{G}$ is discrete, $\mathbb{G}$ is again discrete (use the counit). If $\mathbb{G}$ is a compact Kac, then

$\mathbb{G}_{\Omega}$ is also compact. However, the compactness is not invariant in general [10].
His example is involving free products of $SU_{q}(2)$ . So, we propose the following
problem.

Problem 3.7. Find a co-amenable compact quantum group $\mathbb{G}$ which has a 2-
cocycle $\Omega$ so that $\mathbb{G}_{\Omega}$ is not compact.

3.4. Monoidal equivalences
Definition 3.8. Let $\mathbb{G}$ and $\mathbb{G}_{1}$ be compact quantum groups. We say that they
are monoidally equivalent when there exist the following maps both denoted by
$\varphi$ :

$\bullet$ a bijection $\varphi$ : Irr $(\mathbb{G})arrow$ Irr $(\mathbb{G}_{1})$ ;
$\bullet$ bijective linear maps $\varphi$ : Mor $(x_{1}\otimes\cdots\otimes x_{m}, y_{1}\otimes\cdots\otimes y_{n})arrow$Mor$(\varphi(x_{1})\otimes$

. . . $\otimes\varphi(x_{m}),$ $\varphi(y_{1})\otimes\cdots\otimes\varphi(y_{n}))$ for $x_{1},$ $\ldots,x_{m},$ $y_{1},$ $\ldots,$
$y_{n}\in$ Irr $(\mathbb{G})$ ,

such that
$\bullet\varphi(1)=1$ ;
$\bullet\varphi(S^{*})=\varphi(S)^{*}$ ;
$\bullet\varphi(ST)=\varphi(S)\varphi(T)$ ;
$\bullet\varphi(S\otimes T)=\varphi(S)\otimes\varphi(T)$ .

This means the tensor category of $\mathbb{G}$ and $\mathbb{G}_{1}$ are isomorphic, and so are their
fusion algebras, in particular. The dimensions of their representation spaces
may not be equal, but their quantum dimensions are invariant, i.e. $\dim_{q}(x)=$

$\dim_{q}(\varphi(x))$ .
The following problem is proposed by T. Banica.

Problem 3.9. Assume that $\mathbb{G}$ has commutative fusion rules. Then does there
exist a co-amenable compact quantum group $\mathbb{G}_{1}$ such that $\mathbb{G}\sim \mathbb{G}_{1}^{Q}$

The fusion algebra of $A_{o}(F)$ is exactly same as the one of $SU_{q}(2)[3]$ . So, the
problem is true for $A_{o}(F)$ .

3.5. Universal quantum groups
Denote $A_{u}(1_{n})$ by $A_{u}(n)$ . It is known that $L^{\infty}(A_{u}(n))$ is a type $II_{1}$ factor (the

trace is the Haar state) [4, 40].
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Problem 3.10 (Banica). Is the factor $L^{\infty}(A_{u}(n))$ isomorphic to a free group
factor $L(F_{r})$ for some $r\in \mathbb{N}^{Q}$

If $n=2$ , it is proved by Banica [4] with $r=2$ .
Even if the statement of the previous problem does not hold, it is expectable

that the factor $L^{\infty}(A_{o}(n))$ or $L^{\infty}(A_{u}(n))$ have similar properties to free group
factors. Indeed, $L^{\infty}(A_{o}(n))$ has Akemann-Ostrand property, it is solid [23, 40].

Problem 3.11. Show that the factor $L^{\infty}(A_{o}(n))$ has no Cartan subalgebras.

3.6. Ergodic actions of $SU(n)$

We have considered several problems related with compact quantum groups,
but there still remain some problems for compact groups.

Problem 3.12 (Jones). Can $SU(n)$ ergodically act on $\mathcal{R}_{0^{9}}$

The first breakthrough was made by A. Wassermann [42, 43]. He classified
all ergodic actions of $SU(2)$ , and indeed there does not exist an ergodic action
on $\mathcal{R}_{0}$ . Hence probably $SU(n)$ can not act on $\mathcal{R}_{0}$ ergodically. One of the key
point of this problem is to require the factoriality. If $n\geq 3$ , then $T^{2}$ embeds into
$SU(n)$ . Inducing an ergodic action from $r\mathbb{F}^{2}\cap \mathcal{R}_{0}$ (consider the irrational rotation
algebra), we see the induced algebra, which is of type $II_{1}$ , has a non-trivial center.

Even if we focus on very restricted cases, the answer has not been given. Let
$\mathbb{G}=SU(n)$ and $\omega\in R(\mathbb{G})\otimes R(\mathbb{G})$ a 2-cocycle. Then $\mathbb{G}$ ergodically acts on the
twisted group algebra $R_{\omega}(\mathbb{G})$ , whose type has not been computed yet.

There is a relating problem [41]. Let us introduce the 2-cohomology set $H^{2}(\hat{\mathbb{G}})$

which consists of equivalence classes of 2-cocycles.

Conjecture 3.13 (A. Wassermann). Each element of $H^{2}(\hat{\mathbb{G}})$ is coming from
$H^{2}(\overline{T_{\max}})$ via the embedding $R(T_{\max})\subset R(\mathbb{G})$ , where $T_{\max}$ is the maximal torus
of $\mathbb{G}=SU(n)$ . In particular, $H^{2}(\hat{\mathbb{G}})$ is a finite set.

Of course, the following problem is still open.

Problem 3.14. Classify all ergodic actions of $SU_{q}(2)$ .

Readers are referred to [8, 24, 30] for examples or partial classification results.

3.7. Galois correspondence
In [14, 32], a Galois correspondence for a minimal action of a c.q. $g$ . is proved.

The next step is to generalize this result to locally compact quantum group
actions.

Problem 3.15. Does the Galois $cor\tau espondence$ hold for any minimal actions of
locally compact quantum groups 9

Readers are referred to [11, 14, 32].
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