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0 Introduction
In this short note, we review results in [FKl, FK2] of a joint work with Ilijas Farah.
In [FKl], we completely solved an old question of Dixmier on definition of UHF
algebras. In [FK2], we gave a non-classification results of non-separable UHF type
$C^{*}$-algebras.

1 Three definitions of UHF algebras
In this section, we introduce three concepts which we name UHF, AM and LM.
These three notions coincide for separable unital $C^{*}$-algebras, and Dixmier asked
whether these are still equivalent for non-separable unital $C^{*}$-algebras. We prove
that this is not the case for most cases.

For two subsets $\mathcal{F},$ $\mathcal{G}$ of a $C^{*}$-algebra $A$ and $\epsilon>0$ , we write $\mathcal{F}\subset_{\epsilon}\mathcal{G}$ if for all
$x\in \mathcal{F}$ there exists $y\in \mathcal{G}$ such that $\Vert x-y\Vert<\epsilon$ . For each positive integer $n$ , we
denote by $M_{n}(\mathbb{C})$ the unital $C^{*}$-algebra of all $n\cross n$ matrices with complex entries. A
$C^{*}$-algebra which is isomorphic to $M_{n}(\mathbb{C})$ for some $n$ is called a full matrix algebra.

Definition 1.1 A $C^{*}$-algebra $A$ is said to be

$\bullet$ uniformly hyperfinite $(or UHF)$ if $A$ is isomorphic to a tensor product of full
matrix algebras.

$\bullet$ approximately matricial (or AM) if it has a directed family of full matrix
subalgebras with dense union.

$\bullet$ locally matricial $($or $LM)$ if for any finite subset $\mathcal{F}$ of $A$ and any $\epsilon>0$ , there
exists a full matrix subalgebra $M$ of $A$ with $\mathcal{F}\subset_{\epsilon}M$ ,

In [$G$ , Theorem 1.13], Glimm shows that for separable $C^{*}$-algebras, the three
conditions UHF, unital AM and unital LM coincide (see also $[D$ , Remark 1.3 and
Theorem 1.6] $)$ . Dixmier asked whether these three conditions coincide for general
$C^{*}$-algebras in [$D$ , Problem 8.1].
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By definition, AM algebra is an inductive limit of full matrix algebras. It is
easy to see, using the result on separable UHF algebras mentioned above, that LM
algebra is an inductive limit of separable UHF algebras. Thus the existence of an LM
algebra which is not AM, shown in Theorem 3.1, implies that the class of inductive
limits of full matrix algebras is not closed under taking inductive limits.

2 Cardinals
We prepare some notions on cardinals in this section before stating the main results
in the next section. Consult [J] for detail on cardinals and their arithmetic.

For an ordinal $\gamma,$ $\aleph_{\gamma}$ is the $\gamma$-th infinite cardinal (with counting starting at $\aleph_{0}$ as
the 0-th infinite cardinal). Hence $\aleph_{0}$ is the smallest infinite cardinal, and $\aleph_{1}$ is the
smallest uncountable cardinal and so on. Let us denote the cardinality of a set $X$

by $|X|$ . Thus $|\mathbb{N}|=\aleph_{0}$ and $|\mathbb{R}|=2^{\aleph_{0}}$ . Our results do not use any axiom other than
the standard axioms ZFC, but some problems relate to the Continuum Hypothesis.
Recall that the Continuum Hypothesis asks whether $2^{\aleph_{0}}=\aleph_{1}$ holds or not, and is
known to be independent of ZFC.

Definition 2.1 An infinite cardinal $\kappa$ is said to be singular if there exists a set $I$

with $|I|<\kappa$ and cardinals $\kappa_{i}$ with $\kappa_{i}<\kappa$ for $i\in I$ such that $\kappa=\sum_{i\in I}\kappa_{i}$ . Otherwise
$\kappa$ is said to be regular.

The cardinals $\aleph_{1},$ $\aleph_{2},$
$\ldots$ are regular. More generally, every successor cardinal

$\aleph_{\gamma+1}$ is regular because $\aleph_{\gamma}\aleph_{\gamma}=\aleph_{\gamma}$ . Let $\omega$ be the smallest infinite ordinal. Then the
limit cardinal $\aleph_{\omega}$ is singular because $\aleph_{\omega}=\sum_{n\in N}\aleph_{n}$ .

Definition 2.2 The character density $\chi(A)$ of a $C^{*}$-algebra $A$ is the smallest car-
dinality of a dense subset of $A$ .

Note that $A$ is separable if and only if its character density $\chi(A)$ is $\aleph_{0}$ .

Lemma 2.3 For an infinite cardinal $\kappa$ , there are at most $2^{\kappa}$ isomorphism classes
of $C^{*}$-algebras $A$ with $\chi(A)=\kappa$ .

Proof. This is because on a fixed set of size $\kappa$ there are at most $2^{\kappa}$ ways to define
$+,$ $\cdot,$

$*$ and $\Vert\cdot\Vert$ . $\square$

3 Main results
The following is the main result in [FKl].

Theorem 3.1 (1) For a $C^{*}$-algebra with character density at most $\aleph_{1},$ AM and
$LM$ are equivalent.

(2) For every cardinal $\kappa>\aleph_{1}$ , there exists a unital $LM$ algebra with character
density $\kappa$ which is not AM.

55



(3) For every cardinal $\kappa\geq\aleph_{1}$ , there enists a unital AM algebra with character
density $\kappa$ which is not $UHF$.

Similarly, (1) and (2) hold if we replace AM and LM to AF and LF defined as
follows.

Definition 3.2 A $C^{*}$-algebra $A$ is said to be

$\bullet$ approximately finite-dimensional $($or $AF)$ if it has a directed family of finite-
dimensional subalgebras with dense union.

$\bullet$ locally finite-dimensional $($ or $LF)$ if for any finite subset $\mathcal{F}$ of $A$ and any $\epsilon>0$ ,
there exists a finite-dimensional subalgebra $D$ of $A$ with $\mathcal{F}\subset_{\epsilon}D$ ,

In the next section, we give classification of UHF algebras done in [FK2] (Propo-
sition 4.1). $\mathbb{R}om$ this, we get the following.

Proposition 3.3 Let $\gamma$ be an ordinal. Then the number of isomorphism classes of
$UHF$ algebras of character density $\aleph_{\gamma}$ is equal to $(|\gamma|+\aleph_{0})^{\aleph_{0}}$ .

By setting $\gamma=0$ in the proposition above, we see that the number of isomorphism
classes of separable UHF algebras is $\aleph_{0^{0}}^{\aleph}=2^{\aleph_{0}}$ . Hence there are as many separable
UHF algebras as separable $C^{*}$-algebras. However for $\gamma>0$ , the cardinality $(|\gamma|+$

$\aleph_{0})^{\aleph_{0}}$ is much, much smaller than the (possible) cardinality $2^{\aleph_{\gamma}}$ of the isomorphism
classes of $C^{*}$-algebras of character density $\aleph_{\gamma}$ (see Lemma 2.3). For example, $(|\gamma|+$

$\aleph_{0})^{\aleph_{0}}$ is still $2^{N_{0}}$ for an ordinal $\gamma$ with $|\gamma|\leq 2^{N_{0}}$ . On the contrary, the following
theorem, which is one of the main result in [FK2], says that there are lots of AM
algebras.

Theorem 3.4 If $\kappa$ is a regular infinite cardinal, then there are $2^{\kappa}$ non-isomorphic
AM algebms of character density $\kappa$ .

In fact, all AM algebras in Theorem 3.4 can be chosen so that they have the same
K-groups and Cuntz semigroups as the ones of the CAR algebra. For a singular
infinite cardinal $\kappa$ we do not know whether there are $2^{\kappa}$ non-isomorphic AM algebras
of character density $\kappa$ . For example, when $\kappa=\aleph_{\omega}$ , we know that there are $\sum_{n\in N}2^{\aleph_{n}}$

non-isomorphic AM algebras of character density $\aleph_{\omega}$ using Theorem 3.4. However
this cardinality can be strictly smaller than $2^{\aleph_{\omega}}= \prod_{n\in N}2^{\aleph_{n}}$ .

4 Classification of UHF algebras
Separable UHF algebras was classified by supematural numbers. In this section, we
extend this classification to general UHF algebras using what I call hypernatural
numbers. In this note, a hypernatural number $\lambda$ means that a family of cardinals
$\lambda=(\lambda_{p})_{p\in \mathcal{P}}$ indexed by the set $\mathcal{P}$ of all prime numbers. A hypernatural number
$\lambda$ can be symbolically written as $\lambda=\prod_{p\in P}p^{\lambda_{p}}$ . For a hypernatural number $\lambda=$
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$(\lambda_{p})_{p\in \mathcal{P}}$ , the cardinal $\sum_{p\in \mathcal{P}}\lambda_{p}$ is called the density of $\lambda$ . Recall that a supernatural
number can be considered as a hypernatural number of density $\leq\aleph_{0}$ .

A UHF algebra is a $C^{*}$-algebra obtained as a tensor product $A=\otimes_{x\in X}M_{n(x)}(\mathbb{C})$

where $n:Xarrow \mathbb{Z}\geq 2$ is a map from a set $X$ to the set $\mathbb{Z}_{\geq 2}$ of the integers greater
than or equal to 2. One can see that $\chi(A)=|X|$ . For such a map $n:Xarrow \mathbb{Z}_{\geq 2}$ we
associate a hypernatural number $\lambda$ of density $|X|$ by

$\lambda_{p}:=\sum_{x\in X}\max\{l\in \mathbb{N}:p^{l}|n(x)\}$

for each prime $p\in \mathcal{P}$ . We say that $\lambda$ is the hypernatural number of the UHF algebra
$A=\otimes_{x\in X}M_{n(x)}(\mathbb{C})$ . We prove the following in [FK2].

Proposition 4.1 The correspondence described above from a $UHF$ algebra of char-
acter density $\kappa$ to its hypematuml number of density $\kappa$ is one-to-one.

For a cardinal $\kappa$ , we denote by $[0, \kappa]$ the set of all cardinal less than or equal to
$\kappa$ . Note that we have $|[0, \aleph_{\gamma}]|=|\gamma|+\aleph_{0}$ for an ordinal $\gamma$ . In other words, when
$\kappa=\aleph_{0},$ $\aleph_{1},$

$\ldots,$
$\aleph_{n},$

$\ldots$ we have $|[0, \kappa]|=\aleph_{0}$ , and when $\kappa=\aleph_{\gamma}$ for an infinite ordinal
$\gamma$ , we have $|[0, \kappa]$ I $=|\gamma|$ . From Proposition 4.1, the set of isomorphism classes of
UHF algebras of character density $\leq\aleph_{\gamma}$ corresponds bijectively to the set of maps
from $\mathcal{P}$ to $[0, \aleph_{\gamma}]$ . This proves Proposition 3.3.

I have a complaint about the discussion above on hypernatural numbers (other
than the name “hypernatural number”). That is the above definition of the hyper-
natural number of a UHF algebra depends on particular tensor products represen-
tations of a given UHF algebra. In the proof of Proposition 4.1, we show that this
notion actually does not depend on tensor products representations, but it is bet-
ter to give a definition without using tensor products representations. There is an
obvious candidate, but I do not know this definition coincides with the one above.
Specifically the following is open.

Conjecture 4.2 Let $A$ be a $UHF$ algebra, and $\lambda=\prod_{p\in P}p^{\lambda_{p}}$ be its hypematuml
number described above. Then for each $p\in \mathcal{P}$ and a cardinal $\kappa$ there exists a unital
$*$ -homomorphism $from\otimes_{\kappa}M_{p}(\mathbb{C})$ to $A$ if and only if $\kappa\leq\lambda(p)$ .

If this conjecture is true, then one can define $\lambda_{p}$ for $A$ to be the supremum
(which is actually maximum) of cardinalities $\kappa$ such that there exists a unital $*-$

homomorphism from $\otimes_{\kappa}M_{p}(\mathbb{C})$ to $A$ . This definition is intrinsic, and does not use
tensor products representations of a UHF algebra $A$ . Of course, the “if” part can
be proven easily. It is also easy to see the “only if” part for $\kappa\leq\aleph_{0}$ . I do not know
how to prove the following.

Problem 4.3 Prove that there exists no $unital*$ -homomorphism $ffom\otimes_{\aleph_{1}}M_{3}(\mathbb{C})$

to $(\otimes_{N_{1}}M_{2}(\mathbb{C}))\otimes(\otimes_{\aleph_{0}}M_{3}(\mathbb{C}))$ .
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5Twisted action and Twisted crossed products
To prove Theorem 3.1 and Theorem 3.4, we use crossed products or more generally
twisted crossed products. In this section we give definitions and examples of twiste.$d$

action and twisted crossed products. For more detail, see [PR].
Let $A$ be a unital $C^{*}$-algebra. The automorphism group and the unitary group

of $A$ are denoted by Aut $(A)$ and $U(A)$ , respectively. The units of Aut $(A)$ and $U(A)$

are denoted by id and 1 although the units of all other groups are denoted by $e$ . For
a unitary $u\in U(A)$ , we define Ad $u\in$ Aut $(A)$ by Ad $u(a)=uau^{*}$ for $a\in A$ .

Definition 5.1 A twisted action of a group $G$ on a unital $C^{*}$-algebra $A$ is a pair
$(\alpha, c)$ of maps $\alpha:Garrow$ Aut $(A)$ and $c:G\cross Garrow U(A)$ satisfying

(i) $\alpha_{e}=$ id and $\alpha_{g}\alpha_{h}=Ad(c(g, h))\alpha_{gh}$ for all $g,$ $h\in G$ ,
(ii) $c(e, g)=c(g, e)=1$ for all $g\in G$ and

$c(g, h)c(gh, k)=\alpha_{g}(c(h, k))c(g, hk)$ for all $g,$ $h,$ $k\in G$ .

If $c(g, h)=1$ for all $g,$ $h\in G$ , then $\alpha:Garrow$ Aut $(A)$ is a homomorphism. In this
case we say that $\alpha$ is an action.

Definition 5.2 For a twisted action $(\alpha, c)$ of a group $G$ on a unital $C^{*}$-algebra
$A$ , we define its (full) twisted crossed product $A$ $n_{\alpha,c}G$ to be the universal unital
$C^{*}$-algebra generated by a unital subalgebra $A\subset A\nu_{\alpha,c}G$ and a family $\{u_{g}\}_{g\in G}$ of
unitaries in $A$ $n_{\alpha,c}G$ such that $u_{g}u_{h}=c(g)h)u_{gh}$ for $g,$ $h\in G$ and Ad $u_{g}|_{A}=\alpha_{g}$ for
$g\in G$ .

For $g\in G$ , the unitary $u_{g}\in Ax_{\alpha,c}G$ is called the implementing unitary of $\alpha_{g}$ .
It is easy to see that the linear span of the elements in the form $au_{g}\in Ax_{\alpha,c}G$ for
$a\in A$ and $g\in G$ is dense in $A\aleph_{\alpha,c}G$ .

For our purpose, we only need the existence of a unital $C^{*}$-algebra generated by
a unital subalgebra $A$ and a family $\{u_{g}\}_{g\in G}$ of unitaries satisfying the two conditions
in Definition 5.2 for the twisted actions $(\alpha, c)$ considered below, and we do not use its
universal property. In fact, since every our example is simple any such a $C^{*}$-algebra
is universal. We can use a regular representation to prove the existence of such a
$C^{*}$-algebra, and we do in [FKl]. Although in [PR] it was assumed that a $C^{*}$-algebra
is separable and a group is second countable, these assumptions are needed only to
deal with Borel maps. Because we consider discrete groups, all results in [PR] hold
for non-separable $C^{*}$-algebras and uncountable groups (cf. [ZM]).

Let us consider a twisted action $(\alpha, c)$ of a group $G$ on the trivial unital $C^{*}-$

algebra $A=\mathbb{C}$ . Since Aut $(\mathbb{C})$ consists of the one element {id}, there exists only
one choice for the map $\alpha:Garrow$ Aut $(\mathbb{C})$ , namely the trivial one. In this case, the
twisted crossed product $\mathbb{C}\aleph_{\alpha,c}G$ is called a twisted group $C^{*}$-algebra, and denoted
by $C^{*}(G;c)$ . The map $c:G\cross Garrow U(\mathbb{C})=:\mathbb{T}$ satisfying the condition (ii) in
Definition 5.1 for trivial $\alpha$ is called a 2-cocycle. All groups considered in this paper
are of the following type.
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Definition 5.3 For a set $X$ , we denote by $G_{X}$ the abelian group consisting of all
finite subsets of $X$ where the operation is the symmetric difference $\Delta$ .

Note that $G_{X}$ is isomorphic to the direct sum $\oplus_{X}\mathbb{Z}/2\mathbb{Z}$ of $|X|$ -copies of $\mathbb{Z}/2\mathbb{Z}$ .
We often identify an element $x$ of $X$ with a subset $\{x\}$ of $X$ . For these group $G_{X}$ ,
examples of 2-cocycles $c$ and twisted group $C^{*}$-algebras $C^{*}(G_{X};c)$ are given by the
following lemma. For a set $X$ , we denote by $[X]^{2}$ the set of all subsets of $X$ with
cardinality 2.

Lemma 5.4 Let $X$ be a set. Take $Z\subset X^{2}$ such that $(x, y)\in Z$ implies $(y, x)\not\in Z$ ,
and set $[Z]=\{\{x, y\}\in[X]^{2} : (x, y)\in Z\}\subset[X]^{2}$ . Then the map $c_{Z}:G_{X}\cross G_{X}arrow T$

defined by
$c_{Z}(g, h):=(-1)^{|\{(x_{J}y)\in Z:x\in g,y\in h\}|}$ .

is a 2-cocycle, and the twisted group $C^{*}$-algebm $C^{*}(G_{X};c_{Z})$ is the universal $C^{*}-$

algebra genemted by self-adjoint unitaries $\{u_{x}\}_{x\in X}$ satisfying that $u_{x}u_{y}=u_{y}u_{x}$ for
$\{x, y\}\not\in[Z]$ and $u_{x}u_{y}=-u_{y}u_{x}$ for $\{x, y\}\in[Z]$ .
Proof. It is straightforward to check that $c_{Z}$ is a 2-cocycle. Let $\{u_{g}\}_{g\in G_{X}}$ be the gen-
erators in $C^{*}(G_{X};c_{Z})$ given in Definition 5.2. Then it is easy to see that the family
$\{u_{\{x\}}\}_{x\in X}$ satisfies the conditions in the statement. Conversely, take self-adjoint uni-
taries $\{u_{x}\}_{x\in X}$ satisfying the conditions in the statement. For $g=\{x_{1}, x_{2}, \ldots, x_{n}\}\in$

$G_{X}$ , set $u_{g}$ by
$u_{g}:=(-1)^{k}u_{x_{1}}u_{x2}\cdots u_{x_{n}}$

where $k$ $:=|\{(i,j) : 1 \leq i<j\leq n, (x_{i}, x_{j})\in Z\}|$ . Then it is routine to check
that this is well-defined and $\{u_{g}\}_{g\in G_{X}}$ satisfies the conditions for the generators in
$C^{*}(G_{X};c_{Z})$ . This concludes the proof.

Remark 5.5 We note that $C^{*}(G_{X};c_{Z})$ depends only on $[Z]\subset[X]^{2}$ , and every
subset of $[X]^{2}$ arises. It is known that the twisted group $C^{*}$-algebra $C^{*}(G;c)$ only
depends on the class defined by a 2-cocycle $c$ in the 2-cohomology group $H^{2}(G;T)$

(see cite[Lemma 3.3]PR for example). When the group $G$ is given by $G=G_{X}$ for
a set $X$ , the 2-cohomology group $H^{2}(G_{X};T)$ is isomorphic to the group $2^{[X]^{2}}$ of all
subsets of $[X]^{2}$ (which is isomorphic to $\prod_{[X]^{2}}\mathbb{Z}/2\mathbb{Z}$ ) via the map $c_{Z}\mapsto[X]^{2}\backslash [Z]$ .
Thus the above lemma gives a description of all twisted group $C^{*}$-algebras $C^{*}(G;c)$

when $G=G_{X}$ for a set $X$ . We do not use these facts.

If $|X|=2$ , say $X=\{+, -\}$ , and if $Z=\{(+, -)\}\subset X^{2}$ , then the twisted
group $C^{*}$-algebra C’ $(G_{X};c_{Z})$ considered in Lemma 5.4 is the $C^{*}$-algebra generated
by two self-adjoint unitaries $u_{+},$ $u_{-}$ with $u_{+}u_{-}=-u_{-}u+\cdot$ This $C^{*}$-algebra is 4-
dimensional, its basis is given by $\{1, u_{+}, u_{-}, u_{\{+,-\}}\}$ , and it is noncommutative.
Hence it is isomorphic to $M_{2}(\mathbb{C})$ . The concrete isomorphism from $C^{*}(G_{X};c_{Z})$ to
$M_{2}(\mathbb{C})$ is given by sending $u_{+}$ and $u_{-}$ to the unitaries

$v=(\begin{array}{l}0l0-1\end{array})$ and $w=(\begin{array}{ll}0 11 0\end{array})$

in $M_{2}(\mathbb{C})$ . In summary, we get the following.
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Lemma 5.6 A $C^{*}$-algebm $C^{*}(\{v, w\})$ generated by two self-adjoint unitaries $v,$ $w$

with $vw=-wv$ is always isomorphic to $M_{2}(\mathbb{C})$ .

Let us take a set $X$ and flx it. We consider the set $Y$ $:=X\cross\{+, -\}$ and

$Z$ $:=\{((x, +), (x, -))$ : $x\in X\}\subset Y^{2}$ .

We denote by $A_{X}$ the twisted group $C^{*}$-algebra $C^{*}(G_{Y};c_{Z})$ . By Lemma 5.4, $A_{X}$ is
the $C^{*}$-algebra generated by self-adjoint unitaries $\{u_{(x,+)}, u_{(x,-)}\}_{x\in X}$ with $u_{(x,+)}u_{(x,-)}=$

$-u_{(x,-)}u_{(x,+)}$ for $x\in X$ and $u_{(x,i)}u_{(y,j)}=u_{(y,j)}u_{(x,i)}$ for $x\neq y$ and $i,j\in\{+, -\}$ .
By Lemma 5.6, one can see that $C^{*}(\{u_{(x,+)}, u_{(x,-)}\})\cong M_{2}(\mathbb{C})$ for each $x\in X$ .
Since the family $\{C^{*}(\{u_{(x_{\dagger}+)},u_{(x,-)}\})\}_{x\in X}$ mutually commutes and generates $A_{X}=$

$C^{*}(G_{Y};c_{Z})$ , we get the following.

Lemma 5.7 The twisted group $C^{*}$-algebm $A_{X}=C^{*}(G_{Y};c_{Z})$ is isomorphic to the
$UHF$ algebm $\otimes_{x\in X}M_{2}(\mathbb{C})$ of chamcter density $|X|$ .

When $|X|=\aleph_{0}$ , the UHF algebra $\otimes_{x\in X}M_{2}(\mathbb{C})$ is called the CAR algebra. Let
$\alpha\in$ Aut $(A_{X})$ be the automorphism such that $\alpha|_{C^{r}(\{u_{(x,+)},u_{(x,-)}\})}=$ Ad$(u_{(x,+)})$ for
$x\in X$ . Since $\alpha^{2}=$ id, we can consider $\alpha$ as an action of $\mathbb{Z}/2\mathbb{Z}$ on $A_{X}$ . We define
$B_{X}$ to be the crossed product $A_{X}x_{\alpha}(\mathbb{Z}/2\mathbb{Z})$ . Note that for a subset $F$ of $X$ , we
can consider $A_{F}$ and $B_{F}$ as subalgebras of $A_{X}$ and $B_{X}$ , respectively. We are going
to see that $B_{X}$ can be seen as a twisted group $C^{*}$-algebra.

We set
$Y$. $:=Y\cup\{\bullet\}=(X\cross\{+, -\})\cup\{\bullet\}$ ,

and
$Z$. $:=\{((x, +), (x, -)) : x\in X\}\cup\{(\bullet, (x, -)) : x\in X\}\subset Y^{2}$ .

Then the twisted group $C^{*}$-algebra $C^{*}(G_{Y}.;c_{Z}.)$ is generated by $C^{*}(G_{Y};c_{Z})\subset$

$C^{*}(G_{Y}.;c_{Z}.)$ and the self-adjoint unitary $u$. $\in C^{*}(G_{Y}.;c_{Z}.)$ . For each $x\in X$ , we
have

Ad $u.|_{C^{*}(\{u_{(x,+)},u_{(x,-)}\})}=$ Ad $u_{(x,+)}|_{C^{r}(\{u_{(x,+)},u_{(x,-)}\})}=\alpha|_{C^{s}(\{u_{(x,+)},u_{(x,-)}\})}$

Hence the universalities show the following.

Lemma 5.8 There is an isomorphism $fl\cdot om$ the crossed product $B_{X}=A_{X}\rangle\triangleleft\alpha(\mathbb{Z}/2\mathbb{Z})$

to the twisted group $C^{*}$-algebm $C^{*}(G_{Y}.;c_{Z}.)$ preserving $A_{X}=C^{*}(G_{Y};c_{Z})$ and send-
ing the implementing unitary of $\alpha$ in $B_{X}$ to $u$. $\in C^{*}(G_{Y}.;c_{Z}.)$ .

In [FKl], we prove the following.

Theorem 5.9 For an infinite $X$ , the crossed product $B_{X}=A_{X}x_{\alpha}(\mathbb{Z}/2\mathbb{Z})$ is a
unital AM algebm of chamcter density $|X|$ . It is $UHF$ if and only $if|X|=\aleph_{0}$ .

This shows (3) of Theorem 3.1. We sketch its proof in Section 7. In this section,
we give an idea of the proof of Theorem 3.1 using twisted group $C^{*}$-algebras.
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Proposition 5.10 For an infinite set $X$ , there is an isomorphism $\iota:G_{Y}arrow G_{Y}$.
such that $c_{Z}=c_{Z}$. $o(\iota\cross\iota)$ if and only $if|X|=\aleph_{0}$ .

Proof. Suppose $|X|=\aleph_{0}$ . Then one can identify $X$ and $\mathbb{N}$ . Let $\iota:G_{Y}arrow G_{Y}$. be the
group homomorphism such that $\iota(\{(0, +)\})=$ $\{\bullet$ $\}$ and

$\iota(\{(n, +)\})=\{\bullet,$ $(0, +),$ $(1, +),$
$\ldots,$

$(n-1, +)\}\in G_{Y}$.
$\iota(\{(n, -)\})=\{(n-1, -),$ $(n, -)\}\in G_{Y}$.

for $n\in \mathbb{N}=X$ . Then it is routine to check that $\iota$ is an isomorphism satisfying
$c_{Z}=c_{Z}$. $o(\iota\cross\iota)$ .

Next suppose $|X|>\aleph_{0}$ and assume that there is an isomorphism $\iota:G_{Y}arrow G_{Y}$.
such that $c_{Z}=c_{Z}$. $\circ(\iota\cross\iota)$ . We are going to derive a contradiction. Take a
finite subset $F_{1}\subset X$ such that $\{\bullet$ $\}$ $\in\iota(G_{F_{1}x\{+,-\}})$ . Next take a finite subset
$F_{1}’\subset X$ such that $\iota(G_{F_{1\cross\{+,-\}}})\subset G_{(F_{1}’x\{+,-\})\cup\{\cdot\}}$ . Then take a finite subset $F_{2}\subset X$

containing $F_{1}$ and satisfying $G_{(F_{1}’x\{+,-\})\cup\{\cdot\}}\subset\iota(G_{F_{2}x\{+,-\}})$ . Inductively, we will
find two increasing sequences $\{F_{n}\}_{n=1}^{\infty}$ and $\{F_{n}’\}_{n=1}^{\infty}$ of finite subsets of $X$ such that

$\iota(G_{F_{n}x\{+,-\}})\subset G_{(F_{n}’x\{+,-\})\cup\{\cdot\}}\subset\iota(G_{F_{\mathfrak{n}+1}x\{+,-\}})$

holds for all $n$ . Let us define countable sets $F,$ $F’\subset X$ by $F= \bigcup_{n=1}^{\infty}F_{n}$ and
$F‘= \bigcup_{n=1}^{\infty}F_{n}’$ . Then we have $\iota(G_{F\cross\{+,-\}})=G_{(F’\cross\{+,-\})\cup\{\cdot\}}$ . We have

$\{g\in G_{Y}:c_{Z}(g, f)=1$ for all $f\in G_{Fx\{+,-\}}\}=G_{(X\backslash F)\cross\{+,-\}}$

and $G_{Y}=G_{Fx\{+,-\}}\cross G_{(X\backslash F)x\{+,-\}}$ . Since $\iota$ satisfies $c_{Z}=c_{Z}$. $\circ(\iota\cross\iota)$ , the subgroup
$G_{(F’x\{+,-\})\cup\{\cdot\}}\subset G_{Y}$. should satisfy the same property. Namely we should have
$G_{Y}$. $=G_{(F’x\{+,-\})\cup\{\cdot\}}\cross G’$ where

$G’:=\{g\in G_{Y}$. : $c_{Z}.(g, f)=1$ for all $f\in G_{(F’x\{+,-\})\cup\{\cdot\}}\}$ .
It is not difficult to see that $g\in G’$ if and only if

$g=\{(x, +) : x\in A\}\cup\{(x, -) : x\in B\}$

for finite subsets $A,$ $B\subset X\backslash F$
‘ such that the cardinality of $B$ is even. Since $|X|>\aleph_{0}$ ,

one can find $x\in X\backslash F’$ . Then $\{(x, -)\}\in G_{Y}$. is not in $G_{(F’x\{+,-\})\cup\{\cdot\}}\cross G’$ . This
is a contradiction. $\square$

This proposition explains the second statement of Theorem 5.9. In fact, this
gives the proof for the “if” part, and one can show the “only if” part in a similar
way to the proof of Proposition 5.10 (see Section 7). It is not difficult to see the
first statement of Theorem 5.9, but we just see that $B_{X}$ is LM below. We use the
proof of this proposition in Section 7.
Proposition 5.11 For an infinite set $X$ , the twisted group $C^{*}$-algebm $C^{*}(G_{Y.;}c_{Z}.)\cong$

$B_{X}$ is an inductive limit of CAR algebras, and hence $LM$.

Proof. Let $[X]^{\aleph_{0}}$ be the directed set of all subsets $Y\subset X$ with $|Y|=\aleph_{0}$ directed
by the inclusion. We see that $\{B_{Y}\}_{Y\in[X]^{N_{0}}}$ is a directed family of $B_{X}$ with dense
union. By Proposition 5.10, $B_{Y}$ is isomorphic to $A_{Y}$ which is the CAR algebra for
all $Y\in[X]^{\aleph_{0}}$ . We are done.
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6 LM algebra which is not AM
In the previous section, we see how the difference between $\aleph_{0}$ and the cardinal
greater than $\aleph_{0}$ affects the property UHF. In this section, we try to explain how the
difference between $\aleph_{1}$ and the cardinal greater than $\aleph_{1}$ affects the property AM.

In the proof for the fat that a separable LM algebra is AM, the point is to use
a sequence rather than a general directed set. This argument can be generalised to
show that an LM algebra with character density at most $\aleph_{1}$ is AM $((1)$ of Theo-
rem 3.1) because of the following lemma.

Lemma 6.1 A set $X$ can be written as a union of totally ordered (by the inclusion)
family of countable subsets if and only $if|X|\leq\aleph_{1}$ .

Proof. If $|X|=\aleph_{1}$ , then we can identify $X$ with the smallest uncountable ordinal
$\omega_{1}$ . For each $x\in\omega_{1}$ , we define $C_{x}=\{y\in\omega_{1} : y<x\}$ . Then $\{C_{x}\}_{x\in\omega_{1}}$ is a totally
ordered (even well ordered) family of countable subsets whose union is whole $\omega_{1}$ .

Let $X$ be a set with $|X|>\aleph_{1}$ , and suppose that $X$ can be written as a union of
totally ordered family $\{C_{\lambda}\}_{\lambda\in\Lambda}$ of countable subsets of $X$ . We are going to derive
a contradiction. Take $Z\subset X$ with $|Z|=\aleph_{1}$ . For each $x\in Z$ , choose $\lambda_{x}\in\Lambda$ such
that $x\in C_{\lambda_{x}}$ . Since the cardinality of $\bigcup_{x\in Z}C_{\lambda_{x}}\subset X$ is $\aleph_{1}$ , we can choose $y\in X$

such that $y\not\in C_{\lambda_{x}}$ for all $x\in Z$ . Take $\lambda\in\Lambda$ with $y\in C_{\lambda}$ . Since $C_{\lambda}$ is countable,
one can choose $z\in Z$ with $z\not\in C_{\lambda}$ . Then we have neither $C_{\lambda_{z}}\subset C_{\lambda}$ nor

$C_{\lambda}\subset C_{\lambda_{l\fbox{}}-}$

.
This is a contradiction.

Combining this lemma with several arguments, one can show (1) and (2) of
Theorem 3.1, In the rest of this section, we give the construction of an LM algebra
which is not AM using twisted crossed product.

Let $X$ be a set, and $[X]^{2}$ be the set of all subsets of $X$ with cardinality 2. For
$\xi=\{x, y\}\in[X]^{2}$ let $A_{\xi}$ be the CAR algebra. We fix four self-adjoint unitaries
$v_{x,y},$ $v_{y,x},$ $w_{x,y},$ $w_{y,x}$ in $A_{\xi}$ such that $v_{x,y}w_{x,y}=-w_{x,y}v_{x_{2}y},$ $v_{y,x}w_{y,x}=-w_{y,x}v_{y,x}$ and
$((v_{x)y}v_{y,x})^{n})_{n\in Z}$ is linearly independent. Such self-adjoint unitaries exist.

We define a UHF algebra $A_{[X]^{2}}$ by $A_{[X]^{2}}=\otimes_{\xi\in[X]^{2}}A_{\xi}\cong\otimes_{[X]^{2}x\aleph_{0}}M_{2}(\mathbb{C})$ . We
define a twisted action $(\alpha, c)$ of the group $G_{X}$ defined in Definition 5.3 on $A_{[X]^{2}}$ by

$\alpha_{g}=\bigotimes_{x\in gandy\not\in g}$
Ad $v_{x,y}$ .

and
$c(g, h)=( \prod_{x\in g\backslash handy\in h\backslash g}v_{x,y}v_{y,x})(\prod_{x\in g\cap handy\in gh}v_{x,y}v_{y,x})$

.

for $g,$ $h\in G_{X}$ . Recall that $gh$ is defined to be the symmetric difference between two
finite subsets $g$ and $h$ of $X$ . Note that the product above is finite. One can show
the following.

Lemma 6.2 The pair $(\alpha, c)$ is a twisted action of $G_{X}$ on $A_{[x]^{2}}$ .
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Proof. Since $v_{x,y}$ and $v_{z_{t}t}$ commute unless $x=t$ and $y=z$ , this is a routine compu-
tation.

Let $B_{[x]^{2}};=A_{[X]^{2}}n_{(\alpha,c)}G_{X}$ be the twisted crossed product. In [FKl], the
following is proved.

Theorem 6.3 If $X$ is $infinite_{f}$ then the $C^{*}$-algebm $B_{[X]^{2}}$ is a direct limit of CAR
algebras and it is therefore $LM$. It is AM if and only $if|X|>\aleph_{1}$ .

It is not difficult to see that $B_{[X]^{2}}$ is a direct limit of CAR algebras. To show
that it is not AM if $|X|>\aleph_{1}$ we need the detailed computation and a version of
Lemma 6.1. For the detail, see [FKl].

7 AM algebra which is not UHF
In this section, we give a strategy to prove that a given $C^{*}$-algebra is not UHF. We
need to introduce several notions.

Definition 7.1 A directed family $\{A_{\lambda}\}_{\lambda\in\Lambda}$ of subalgebras of a $C^{*}$-algebra $A$ is said
to be $\sigma$ -complete if for every countable directed $Z\subseteq\Lambda$ there exists $\lambda_{0}\in\Lambda$ such that

$A_{\lambda_{0}}\overline{\bigcup_{\lambda\in\Lambda}A_{\lambda}}$ .

The element $\lambda_{0}\in\Lambda$ in the definition above is the supremum of $Z$ in $\Lambda$ . One can
easily check the following two lemmas.

Lemma 7.2 Every $C^{*}$-algebm $A$ has a $\sigma$ -complete directed family of sepamble sub-
algebras with dense union.

Lemma 7.3 Let $A$ be a $C^{*}$-algebm, and let $\{A_{\lambda}\}_{\lambda\in\Lambda}$ be a $\sigma$-complete directed family
of sepamble subalgebras of $A$ with dense union. For $ever^{v}y$ sepamble subalgebm $A_{0}$

of $A$ there exists $\lambda\in\Lambda$ such that $A_{0}\subset A_{\lambda}$ .

Let $A=\otimes_{x\in X}M_{n(x)}(\mathbb{C})$ be an infinite dimensional UHF algebra where $n:Xarrow$

$\mathbb{Z}_{\geq 2}$ is a map from an infinite set $X$ to the set $\mathbb{Z}_{\geq 2}$ . Let $[X]^{\aleph_{0}}$ be the directed set of
all subsets $Y\subset X$ with $|Y|=\aleph_{0}$ directed by the inclusion. For $Y\in[X]^{\aleph_{0}}$ , we define
$D_{Y}=\otimes_{x\in Y}M_{n(x)}(\mathbb{C})\subset A$ . Then $\{D_{Y}\}_{Y\in[X]^{\aleph_{0}}}$ is a $\sigma$-complete directed family of
separable subalgebra with dense union.

Definition 7.4 For a subalgebra $A_{0}$ of a $C^{*}$-algebra $A$ , we denote by $Z_{A}(A_{0})$ the
relative commutant (or centmlizer) of $A_{0}$ inside $A$ ;

$Z_{A}(A_{0})$ $:=\{a\in A$ : $ab=ba$ for all $b\in A_{0}\}$ .
We avoid the common notation $A’\cap B$ for $Z_{B}(A)$ in order to increase the

readability of certain formulas. Let $D_{Y}\subset$ $A$ be as above for a UHF algebra
$A=\otimes_{x\in X}M_{n(x)}(\mathbb{C})$ . Then we have $Z_{A}(D_{Y})=\otimes_{x\in X\backslash Y}M_{n(x)}(\mathbb{C})$ , and hence $A$

is generated by $D_{Y}$ and $Z_{A}(A_{\lambda})$ . Now we are ready to prove the following.
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Proposition 7.5 Let $A$ be a unital C’-algebra, and $\{A_{\lambda}\}_{\lambda\in\Lambda}$ be a $\sigma$ -complete di-
rected system of sepamble subalgebms of $A$ with dense union. If $A$ is a $UHF$ algebm,
then there exists $\lambda\in\Lambda$ such that $A$ is genemted by $A_{\lambda}$ and its relative commutants
$Z_{A}(A_{\lambda})$ .

Proof. Suppose $A$ is a UHF algebra and let $\{D_{Y}\}_{Y\in[X]^{\aleph_{0}}}$ be the $\sigma$-complete directed
family of separable subalgebra with dense union defined above. Using Lemma 7.3,
one can show that there exist $\lambda\in\Lambda$ and $Y\in[X]^{\aleph_{0}}$ such that $A_{\lambda}=D_{Y}$ in a similar
way to the proof of Proposition 5.10. We are done. 口

In [FKl], we prove much stronger statement than the proposition above. Namely,
under weaker assumption we can prove that there are many $\lambda\in\Lambda$ such that $A$ is
generated by $A_{\lambda}$ and its relative commutants $Z_{A}(A_{\lambda})$ . By controlling this set of $\lambda$ ,
we can prove Theorem 3.4. For the detail see [FK2]. Using this proposition, we can
now sketch the proof of Theorem 5.9.

Proof of Theorem 5.9. In Section 5, we explain the first statement. It is clear
from this that $B_{X}$ is UHF if $|X|=\aleph_{0}$ . It remains to show that $B_{X}$ is not UHF if
$|X|>\aleph_{0}$ . Let $X$ be a set with $|X|>\aleph_{0}$ . The family $\{B_{Y}\}_{Y\in[X]^{N_{0}}}$ defined in the proof
of Proposition 5.11 is a $\sigma$-complete directed system of separable subalgebras of $B_{X}$

with dense union. One can show that if $Y\neq X$ , then $B_{X}$ is not generated by $B_{Y}$ and
its relative commutants $Z_{B_{X}}(B_{Y})$ in a similar way to the proof of Proposition 5.10.
Thus by Proposition 7.5 $Bx$ is not UHF. 口

Using a similar criterion, we construct examples of unital LM algebras which are
not UHF using Jiang-Su algebra, and also examples of unital AM algebras which
are not UHF using crossed products in [FKl]. These two types of examples have
different properties than the ones in Theorem 5.9. In particular, the latter type
shows the following which answers one question raised by Masamichi Takesaki in
my talk at RIMS.

Theorem 7.6 There exists a unital AM algebm faithfully represented on a sepamble
Hilbert space which is not $UHF$.

The following problem is still open.

Problem 7.7 Is there an $LM$ algebm faithfully represented on a sepamble Hilbert
space which is not $AM’$?

Since $\chi(B(\ell^{2}(\mathbb{N}))=2^{N_{0}}$ , there is no such a $C^{*}$-algebra by (1) of Theorem 3.1 if
we assume the continuum hypothesis $2^{\aleph_{0}}=\aleph_{1}$ . We do not know what happens if
we do not assume the continuum hypothesis.
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