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If $H$ and $G$ are any discrete groups, the standard wreath product of $H$ by $G$ is
the semidirect product

$HlG=H^{(G)}\aleph G$ ,
where $H^{(G)}$ denotes the direct sum of copies of $H$ indexed by $G$ , and $G$ acts by
shifting. If $H$ and $G$ are finitely generated, so is the wreath product $HlG$ .

A discrete group $\Gamma$ has the Haagerup Property if the constant function 1 can
be pointwise approximated by positive definitive functions on $\Gamma$ . When $\Gamma$ is
countable, Akemann and Walter [AW] proved that this holds if and only if there
exists a metrically proper action of $\Gamma$ on a Hilbert space by affine isometries.

A nice feature about Haagerup groups is that they satisfy the strongest form
of the Baum-Connes conjecture, namely the conjecture with coefficients $[$HK$]$ .

On the other hand, in known examples, there was a striking coincidence be-
tween the class of groups with the Haagerup Property and the class of groups
with the complete metric approximation property [CH], and it was conjectured
by Cowling that the two properties are actually equivalent.

Then it was proved by Ozawa and Popa that [OP] if $H$ is any non-trivial group
and $G$ is any non-amenable group, then $HlG$ does not satisfy the complete metric
approximation property.

In contrast, we prove, disproving one implication in Cowling’s conjecture

Theorem 1 (joint with Y. Stalder and A. Valette). Let $H,$ $G$ be any groups
with the Haagerup Property. Then the wreath product $H1G$ has the Haagerup
Property as well.

This applies in the case of the wreath product of a non-trivial finite cyclic group
and a non-abelian free group, so that Ozawa-Popa’s result shows that it does not
satisfy the complete metric approximation property. The Haagerup Property for
this example is established in [CSV], and the redaction for the general case is
currently in preparation. In both cases, the proof relies on a characterization of
the Haagerup Property by the existence of a proper action on a space with walls,
or a space with measured walls. It is currently unknown how to translate the
proof of the stability of the Haagerup Property by wreath products, in terms of
unitary representations.
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