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EXISTENCE AND ASYMPTOTICS FOR A
CAHN-HILLIARD/ALLEN-CAHN PARABOLIC EQUATION

GEORGIA KARALI AND TONIA RICCIARDI

ABSTRACT. We consider the existence and asymptotic behavior of solutions to a mean
field partial differential equation of Cahn-Hilliard/Allen-Cahn type. This equation arises
in the description of pattern formation mechanisms for a prototypical model of surface
processes that involves multiple microscopic mechanisms.

1. INTRODUCTION

This note is concerned with the mathematical study of the following mean field partial
differential equation which was recently derived in [4]:

w = e2D(—A)(du+ L) 4 Ay 4 L
(L1) . -

u(0, ) = uo(z),

where f(u) = —W'(u), W is a double-well potential with wells +1, D > 0 is the diffusion
constant and 0 < € < 1 is a small parameter. A typical choice for W is W (u) = (u? —1)2.
Equation (1.1) is associated with the effect of multiple microscopic mechanisms such
as surface diffusion and adsorption/desorption which are typically involved in surface
processes, on macroscopic cluster interface morphology and evolution. We note that
equation (1.1) may be viewed as a combination of the well-known Cahn-Hilliard (CH)
and Allen-Cahn (AC) equations. We recall that the former model can describe surface
diffusion including particle/particle interactions, while the latter describes a simplified
model of adsorption to and desorption from the surface. It is worth mentioning that in
the model described by (1.1) the mobility is completely different from the one of the AC
equation. This implies in particular that the diffusion speeds up the mean curvature flow,
see [4]. It is known that the AC and CH equations can serve as diffuse interface models for
limiting sharp interface motion. The AC equation serves as a diffuse interface model for
antiphase grain boundary coarsening in the sense that the singular limit of the equation
yields a geometric problem in which a sharp interface separating two phase variants evolves
according to motion by mean curvature (V = k), see [1, 2, 6]. On the other hand, the CH
equation was constructed to describe mass conservative phase separation. By considering
an appropriate singular limit (¢ — 0) it can describe the motion of interphase boundaries
separating two phases of differing composition during the later stages of coarsening.

Here, we are interested in the mathematical structure of the fourth-order evolution
equation (1.1). As e will not play any role in our considerations, we set € = 1. In this
case, equation (1.1) takes the form

(1.2) ut = —DA(Au + f(u)) + Au+ f(u).
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We note that setting D = 0 in (1.1) we obtain the standard second-order AC equation.
Hence, a natural question is: do solutions to the CH/AC equation resemble to solutions of
the AC equation, at least when D <« 17 We observe that the leading differential operator
in (1.2) is given by —DA? + A. Therefore, the limit D — 0 corresponds to dropping the
higher order derivative, and therefore the asymptotic behavior of solutions as D — 0 is
not a priori obvious. An analogous situation was considered also in [5] in the context of
Maxwell-Chern-Simons vortices, where it is shown that due to “good signs”, the formal
limit may be rigorously justified. Moreover, such asymptotics is used to extend certain
properties of the limit second order equation deriving from the maximum principle to the
whole fourth-order equation (for small values of D), which are used to prove a multiplicity
result by techniques typical of second order problems. In Section 2 we show that, actually,
for any fixed D > 0 we can construct a sequence of stationary “genuine” CH/AC solutions
which converge to an AC solution. We do not know whether a similar result holds for
the full evolution equation. On the other hand, in Section 3, as a first step towards the
analysis of (1.1), we show that (1.1) admits a nice structure which allows to approximate
solutions by a Galerkin ansatz, adapting some ideas from (3]. Similarly as in [5], a relevant
feature of (1.2) is that it may be formulated as a system of two second order equations
with “good signs”. Namely, setting v = Au+ f(u) in (1.2), we see that (1.2) is equivalent
to the following system of second order equations:

u = —DAv+v
(1.3)
v = Au+ f(u).

Several estimates in the sequel, as well as the Galerkin ansatz, rely on the equivalence of
(1.2) and (1.3).

2. THE STATIONARY PROBLEM: CONVERGENCE OF CH/AC 10 AC

It is readily seen that under doubly periodic or Neumann boundary conditions, the
stationary solutions to the CH/AC equation are exactly the stationary solutions to the
AC equation obtained by taking D = 0. Indeed, stationary solutions to (1.3) satisfy

~DAv+v=20
v = Au+ f(u).

Multiplying by v and integrating, under periodic or Neumann boundary conditions we
have that D [, |[Vu|>+ [, v? = 0. It follows that v = 0 and wu satisfies the stationary AC

equation Au + f(u) = 0.
Therefore, in this section we focus on Dirichlet boundary conditions. Let & C R™ be a
bounded domain. We consider the Dirichlet problem

—DA(Au+ f(u)) +Au+ f(u) =0 in Q

u=1 on Of.
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By setting v = Au+ f(u), we are led to consider the system
( —DAv +v=0 in

~Au=—~v+ f(u) in Q
(2.4) 4
u=1 on J0

\ v =1 on ON.

The main result in this section is the following.

Proposition 2.1. For any D > 0 there exists a sequence of solutions (up)nen to the
stationary CH/AC equation

—DA(Au+ f(u)) + Au+ f(u) =0 in
(2.5)
u=1 on 0N
and a solution u to the stationary AC equation
Au+ f(u)=0 in
u=1 on 0O}

such that u, — u strongly in H(Q).
In order to prove Proposition 2.1 we need some lemmas.

Lemma 2.1. Let (u,v) be a solution to system (2.4). Then ||[v]joo = ||¥|lcc and there
exists a continuous function A : [0, +00) — [1,+00), A(0) = 1 such that |jullec < A|%oo-

Proof. Let § € Q : v(g) = mMaxv. Then —Aw(g) > 0 which implies

0= —DAv(G) +v(7) = v().

Hence, v cannot attain a positive interior maximum and therefore v < ||%||oo. Similarly,
lety € 0 v(y) = mgn v. Then —Awv(y) < 0 which implies

0= ~Diw(y) +v(p) < v(y)
That is, v cannot attain a negative interior minimum and v > —||¢||os. Hence the estimate
for v is established.
In order to obtain the estimate for u we recall that f(u) = —4u(u? — 1) and f(u) =
—f(—u). Since u = 1 on 90 we have that mgxu > 1.

Let Z € Q:u(Z) = max u. Then 0 < —Au(Z) = —v(Z) + f(u(Z)), which implies

f(u(@)) 2 v(Z) 2 —|1¢¥l.
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Let g : (~00,0] — [1,+00) be such that f(g(t)) =t for all t € (—00,0). Then, since
u(Z) > 1, we have u(Z) < g(—||¥|lo). Similarly, let z € Q: u(z) = mﬁinu. Then
0> —Au(z) = —v(z) + f(u(z)). We have

flu(z)) £ v(z) < [¥lleor F(—ulz)) = —flu(z)) = ~I1¥lle

and therefore
-u(z) < 9(—1¥lle), u(z) = —g(—1¥]lo0)-

In conclusion, we have

lullo < 9(—1¥]loo)
and the proof is completed by taking A(t) = g(—t). O

Lemma 2.2. For all ¢ : 002 — R sufficiently smooth, there exists a solution to system
(2.4).

Proof. For all ¥ € C*(00) there exists a unique solution v to the problem

~DAv+v=0 in
v="19 on Of.

Now we need to solve
{ —Au=—-v—-W'(u) in Q

u=1 on Of.

Let w = u — 1. Then w satisfies

—Aw=—-v-W/ (w+1) in Q
w=0 on Of.

Solutions to the problem above correspond to critical points in H}(f2) for the functional

I{w) :=/n{%|Vw|2+W(w+l)+vw}.

We have
I(w) > /ﬂ IVl = lollsllwllz > el Vul? - C

for some a,C > 0. Therefore, I is bounded below and coercive. Hence, I admits a global
minimum corresponding to a solution for (2.4). a

Lemma 2.3. There erists C = C(||¢|lo, |2|) such that

/ Vul? < Gl ll)-
Q
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Proof. Since u = 1 on 902, multiplying by u and integrating (2.4), we obtain

’/Q“Auz'AQ%+L'V“'2=—Lvu+Af(u)u,

A]VU|2=AQg—$—/r20u+Lf(u)u.

On the other hand, integrating over Q we have

(26) ng—i:/{)Au=Lv—/szf(u).

Therefore, we derive
/Q;vm?:/nvu—u)—/nf(u)(l ).

Now, in view of the L*™-estimates of Lemma 2.1, we derive

so that

/n Vul* < 1Qll[vlleolll ~ ulloo + 1 () (1 = wlleolR] < C(J[]loos 1€2),

as asserted. a
Now we can prove Proposition 2.1.

Proof of Proposition 2.1. We write (2.5) in a system form
v=Au+ f(u) in Q
—DAv+v=0 in Q
u=1 on Of.

In view of Lemma 2.2, there exist solutions (u,, v,) to the problem

( —Aup, = —v, + f(u,) in Q
—-DAv, +v, =0 in €
< Uy, =1 on 9N
(| Up =1 on ON.

Then by elliptic regularity, v, — 0 in C* Vk > 0. In view of Lemma 2.1 and Lemma 2.3,
the sequence u, is bounded in H'. Hence, there exists u € H!, u = 1 on 89 in the sense
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of H}, such that u, — u weakly in H!, strongly in L? and a.e. Consequently, for any

© € H'(Q)), we obtain:
[ vuve= [ sy
Q Q

That is, u satisfies the AC equation. Finally, by similar arguments as above, we note that

/Ivun|2=7 6un —/unAun
0 aq On Q

= o= [ )= vt [unttun) == [ 101+ [us+o)

On the other hand,

/qu|2 / /uAu—/Au(l—u /f(u)—i—/uf(u)

Therefore, ||un||gr — ||u||g and the H'-convergence is strong. a

3. EXISTENCE OF SOLUTIONS: A GALERKIN APPROXIMATION

In this section for simplicity we restrict ourselves to the case where Q is a bounded
interval, and f € C%(R) is a general nonlinearity such that ||f||cz < co. We consider
Neumann boundary conditions on Q. We set Sy = 00 x (0,T), Sir = Q2 x (0,T). We
prove the following.

Theorem 3.1. Let T > 0, ||f|lcz < oo and suppose that ug € H*(Q). There exists a
pair of functions (u,v) such that u,v € L>®(0,T; HY(Q)) N C([0,T); H*, A < 1, u; €
L*(0, T; H(2)), u(0) = uo in L*(), us|sy = uzls; = 0 in L*(Sr), and (u,v) satisfies
(1.3) in the following weak sense:

[ o= ff, 7o [
//QTutcp=d nTVvap%—//QTvcp

for all ¢ € L?(0,T; H*(Q)).

Let ¢, ¢ € N denote the eigenfunction of —d?/dz? on ) corresponding to the eigenvalue
A; with Neumann boundary conditions such that

— o 1,[), = \Y; in Q, O0:1; = 0 on 9N.
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Then, [, %i<%;. = 0 and we further assume that Jo¥i; =8 for 0 = A\; < Ay <
For every N € N we consider (u",v") defined by the Galerkin ansatz

i=1

N N
(3'7) 'uN($7t) = Zafv(t)wi(xL UN(CE’It) = Zbﬁv(t)iﬁ,(l‘),

where a;, b; are subject to the conditions

)
/UN¢j=/AuN¢j+/f(uN)¢j, j=1,2,...,N
Q Q Q
(3.8) 4 /u;’"¢,~=—D/AvN¢j+/vaj, j=12,...,N
Q Q Q
/uN(x,O)wj=/uow,-, j=1,2,...,N.
\ Q (e} .

System (3.8) yields the following initial value problem for aj-" t),7=12,...,N:

dalY (t)

= (DX + Dl-xaf ) + [ 7
(3.9) .

af¥ (0) =Luoi/’j,

while bY is determined by ay,j=1,2,..., N, by the equation

(3.10) ') = =Xl @)+ [ fy

By standard arguments, it is readily seen that problem (3.9) has a local solution. We
want to show that a global solution (a');=12,. n exists on (0,T) for any T > 0. Namely,
we have the following.

Proposition 3.1. Let T > 0. There exists a solution (aJ , b Mij=1,2,..~ globally defined on
(0,T).
The main ingredients for the proof of Proposition 3.1 are the following estimates.

Proposition 3.2. Let u" be defined by (3.7)-(3.9). Then, the following identity holds:

61) g fer D [@ir [ =D [ st - [ s,

In particular, we have the following estimates:

(i) SUD¢e(0,1) fn (uiv)z < 2T fn utz),:c;
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11 Dfo fﬂ(uxa:x +2f0 fQ 2 Se2COTfQuf2),2’

where Co = || flic, (1 + 2| fllc,)-

We first prove a lemma.

Lemma 3.1. The following identities hold:

(1) ‘/S;ﬂﬁf,z = /\z

N

(i) fn () = 3NV
N

i) [ (L) =Y Nal)?
Q2 i=1
N

) [ (ke = 3N (al'Y

(V) Z )‘2 Nd}] = uj:zvx:c:c

Jj=1

Proof. (i). We readily have that

/Q YR, = — /Q Yetbime = M /Q R =X

(ii). Using the orthogonality conditions on %; and (i), we have

Jar= [ (Ea tmx) Z<a @) [ (i —gx (@) (8)
(iii). Similarly as above, we have
/ﬂ (uge)® = /Q (gaﬁ"wm / (- Z,\a"’w,f / EAQ(aN) P2 = ;V(aN)?.

(iv). We note that

.m::c Za' Viggz = — ZA a; ww



95

Therefore, recalling (i) and the orthogonality conditions we obtain

JACA = [ Z/\anwﬁ Z [ Ataty gAg(ay)z.

(v). Note that ¥jze00 = —AjWjze = A3;. Therefore,

N N N
2_N N N N
Z(’\j) aj P; = Zaj Vjzzar = (Z a5 ¥j)eaze = Upgae-
i=1 j=1 Jj=1

O

Proof of Proposition 3.2. Multiplying (3.9) by — ), aN (t) and adding over j = 1,2,.-- , N,
we have

I
(=
>

|3
)
“’2
l\’Jz
o
>
+
=
>4
“.N
T
Sz
".3
3’

8
2

N
Rt

+
=
S~
=

S

3
&

By making use of Lemma 3.1-(iv) we obtain

ZAa(aNV S = [

j=1

In view of Lemma 3.1-(4%)

N
A2(gM)2 = Ny2
> @) JACA
Also by Lemma 3.1—(%)
N
S X2(ad) = [ S nwad ) = [l s
j=1 J=1
and furthermore

N N
3™ Ajal / £y = / > el = - / > e ) = - [ ru.

=1
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Hence, we obtain that

5t 19w+ D [ @i+ [ =D [ fe ) - [ 5

and hence (3.11) is established.
In order to obtain the estimates we use a Gronwall argument. Integrating by parts, we

may write:
/ f :m:zz = / f (u :ca:z

/Q‘f(uN)UiVx = —/nf’(uN)(Uiv)z-

Hence, for any m # 0 we have:

[

<lfller |5 [0+ o [ ity
and consequently

1d Ny\2 / N \2 / 2
o [ (ug )"+ D [ (upe)*+ [ u

2 1
<Diflle - [ iy + DILIE [,y 4 sl [ e

Q
Choosing m? = || fll¢c1, we derive
1d Ny2 D Ny2
e < 1| — .
st 0+ 3 [+ [ <iflo (1o +1) fw)
At this point a standard Gronwall argument concludes the proof. O

Proof of Proposition 3.1. Now we observe that, since A\; = 0 and 9; = const > 0, the
initial value problem for af'(t) takes the form

A (t) = /Q F )y, a¥(0) = /Q wat = ¥y /Q ”

In particular,

6y ()] < flernlQ =: Cy

I

and we derive that

+CT

lay (t)] < ¥
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for all t € (0,T). On the other hand, since Jou™ = af'(t) [, ¥1, we have that

N < Q( /
|/QU|_1/)1| N QUO

In view of Proposition 3.2—(i) and the Poincaré inéquality, we conclude that

”uNHHI(n) < Cpe2CeT

for some C; > 0 independent of N. In view of Lemma 3.1-(ii), we conclude in particular

that [|a)]|Le0,1) < C2¢2%T. Consequently, a} (t) exists globally in (0,7). In turn, in

view of (3.10), b (t) also exists globally in (0, T). a

In order to prove Theorem 3.1 we need some estimates on vV and ud.

Lemma 3.2. Suppose that ||f|lc2 < +o00. Let (uN,vN) be defined by (3.7)-(3.9)=(3.10).
Then, the following estimates hold:

) /OT/Q(v;V)2+/OT/Q(vN>2sc

(i) llug || z2o,r;m-100)) < C

where C = C(T') does not depend on N.

Proof. To this end, we recall that vV = ;vzl bj(t)1;(x), where b;, 7 = 1,2,...,N is
defined by

bj = —Xja; + /n F(u)p;.

Moreover, by similar arguments as in Lemma 3.1, we have

fer= S, Ji

=1 @

O =260 [ov =t = [ s,

Therefore, we have

N N
L == 3o xayey + S [ s,
Q j=1 j=1 Q
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In view of Proposition 3.2, we estimate:

T r /N 1/2 , 1/2
[l (£ ()

7=1

T N 1/2 T N 1/2 T
<([S) ([xmar) <e([ [or?)

=1 =1

N

2 NN
Z)‘jaj b;

=1

1/2

Similarly, we have

N 1/2 , N 1/2
< (ij(b?’)z) (Z )\j(/ﬂf(uN)iﬁj)z) :

j=1

N
D oAb / Fu)y;
j=1 fQ

We note that | [, f(u™)4;)| < C and therefore we may estimate

N N
a2 |
J;AJ(/nf( Jy) SC;/\J

[t

Integration by parts yields

3 [ 1= = [ @ e = = [ - [ 1

Consequently, recalling Proposition 3.2,

/OTA,-/nf(uN)% < |1 fllea (/OT/Q(u;V)u/OT/Q]uQ’I> < C|lfllce.

It follows that

T N
b AW
/(; j;)vb:/f;f(u )¥;

1/2

T [ N 1/2 T N
< (ngmw) <o ;Ajw;v)z)

([ fe)"

We have obtained that

[ fezrse (e ([ o))
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and hence [ [ (vY)2 < C. Now we observe that since A = 0 we have
o Jal%

o= [l =1 [ sl [ 1= Clstom.

Hence, we may estimate

N N
VI SCHRICOES DEVCT

=1

/OT/Q(UN)2SC(1+/OT/Q(1;£’)2>SC

and hence (i) is established.
In order to prove (ii), we denote by Iy : L?(Q2) — span{¢1, %2, ...,¥n} the projection
operator. Let ¢ € L?(0,T; H*(2)). Then, we have:

'/OT/Quiviﬁ=D/OT/S;viV(Hsz)x_,./OT/QUNHNw'

Therefore, in view of Proposition 3.2, we conclude that

It follows that

T
/0 /QU£V¢l < C(D)Yll20,1;H1(02))-

Hence, (ii) is also established. O

Proof of Theorem 3.1. In view of the estimates in Proposition 3.2 and Lemma 3.2, the
proof of Theorem 3.1 readily follows by standard compactness results, as may be found,
e.g., in [7]. O
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