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1 Introduction

This paper is motivated by recent studies on group symmetries in semidefinite programs
(SDPs) and sum of squares (SOS) and SDP relaxations [1, 4, 6, 7, 8]. Acommon and
essential problem in these studies can be stated as follows: Given afinite set of $n\cross n$ real
symmetric matrices $A_{1},$ $\ldots,A_{m}$ , find an $n\cross n$ orthogonal matrix $P$ that provides them
with asimultaneous block-diagonal decomposition, i.e., such that $P^{T}A_{1}P,$ $\ldots,P^{T}A_{m}P$

become block-diagonal matrices with acommon block-diagonal structur$e$ . Here $A_{1},$ $\ldots,A_{m}$

correspond to data matrices associated with an SDP. As diagonal-blocks of the decomposed
matrices get smaller, the transformed SDP could be solved more efficient$l$ $b^{y}$ existing
software packages developed for SDPs [2, 14, 15, 18]. Naturally we are interested in a
finest decomposition.

There are two different but closely related theoretical hameworks with which we can
address our problem of finding ablock-diagonal decomposition for afinite set of given $n\cross n$

real symmetric matrices. The one is group representation theory[11, 13] and the other
matrix $*-a1^{g}ebra[16].$ They are not only necessary to answer the fundamental theoretical
question of the existence of such afinest $bloCk- diag_{onaldecom}position$ but also useful in
its computation. Both frameworks have been utilized in the literature.

Kanno et al. [8] introduced aclass of group symmetric SDPs, which arise hom topology
optimization problems of trusses, and derived symmetry of central paths which play afun-
damental role in the primal-dual interior-point method [17] for solving them. Gatermann
and Parrilo [6] $investi^{g}ated$ the problem of $\min imizing$ a $group_{S}ymmetricpo1^{y}nomia1$.
Theroosed to reduce the size of SOS and SDP relaxations for the $P^{roblemb^{yex}ploit-}$

$ing$ the group symmetry and $decomp_{o\sin}g$ the SDP. On the other hand, de Klerk et al. [3]
applied the theory of matrix $*-a1^{g}ebra$ to reduce the size of aclass of $group_{S}ymmetric$

SDPs. Instead of decomposing agiven SDP $b^{y}$ using its group symmetry, their method
transforms the problem to an equivalent SDP through $a*-a1^{g}ebra$ isomorphsm. $\backslash We$ also
refer to Kojima et al. [9] as apaper where matrix $*-a1^{g}ebra$ was studied in connection with
SDPs. Jansson et al. [7] brought group symmetries into equality-inequality constrained
polynomial $optimization$ problems and their SDP relaxation. More recently, de Klerk and
Sotirov [4] dealt with quadratic aesignment problems, and showed how to $exploit$ their
group symmetries to reduce the size of their SDP relaxations (see Remark 3.1).
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All existing studies [1, 4, 6, 7] on group symmetric SDPs mentioned above assume that
the $a1^{g}ebraic$ structure such as group symmetry and matrix $*-a1^{g}ebra$ behind agiven SDP
is known in advance before computing adecomposition of the SDP. Such an $a1^{g}ebraic$

structure arises naturally from the $ph^{y}sica1$ or geometrical structure $under1^{y}ing$ the SDP,
so the assumption is certainly practical and reasonable. lVhen we assume symmetry
of an SDP with reference to agroup $G$ , to be specific, we are in fact considering the
class of SDPs that $enjoy$ the same grou$p^{}$ ymmetry. As aconsequence, the resulting
transformation matrix $P$ is universal in the sense that it is valid for the decomposition
of all SDPs belonging to the class. Whereas this universality may often be desirable
in practice, we should be aware of the obvious fact that the given SDP is just aspecific
instance in the class. This means that the given problem may possibly satisfy an additional
$a1^{g}ebraic$ structure which is not captured by the assumed group symmetry but which
can be exploited for afurther decomposition. Such an additional $a1^{g}ebraic$ structure is
often induced $hom$ sparsity of the data matrices of the SDP, as we see in the topology
optimization problem of trusses in Section 4.

In this $paper$ we $propose$ anumerical method for finding afinest simultaneous block-
diagonal decomposition of afinite number of $n\cross n$ real symmetric matrices $A_{1},$ $\ldots,A_{m}$ .
The method does not reuiy algebraic structure to be known in advance, and is
based on numerical linear $a1^{g}ebraiccomputations$ such as eienvalue comutation. It is
ffee hom group representation theory or matrix $*-a1^{g}ebra$ during its execution, although
its validity relies on matrix $*-algebra$ theory. This main feature of our method makes
it possible to $compute$ afinest block-diagonal decomposition by taking into account the
underlying physical or geometrical symmetry, the sparsi$t^{}$ of the given matrices, and some
other implicit or overlooked symmetry.

Our method is based on the following ideas. We consider the matrix $*-a1^{g}ebra\mathcal{T}$

generated $b^{y}A_{1},$ $\ldots,A_{m}$ with the identity matrix $I_{n}$ , and make use of awell-known fun-
damental fact (see Theorem 2.1) about the decomposition of $\mathcal{T}$ into simple components
and irreducible components. The key observation is that the decomposition into simple
components can be computed from the $ei^{g}envalue$ (or spectral) decomposition of aran-
dom symmetric matrix in $\mathcal{T}$ , where it is mentioned that asimilar $techni^{q}ue$ is employed
$b^{y}$ Eberly and Giesbrecht [5]; see Remark 3.2 for details. Once the simple components
are identified, the decomposition into irreducible components can be obtained by “local”
coordinate changes within each eigenspace, to be $expl\dot{u}ned$ in Section 2. In this paper we
focus on the case where each irreducible component is isomorphic to afull matrix $a1^{g}ebra$

of some order, whereas the other cases, technical$l^{}$ more involved, are treated in [10].
This paper is organized as follows. Section 2describes the theoretical background of our

$a1^{g}orithm$ based on matrix $*-a1^{g}ebra$ . An $a1^{g}orithm$ for $computing$ the finest simultaneous
block-diagonalization is presented in Section 3. Numerical results of SDP problems arising
ffom topology optimization of symmetric trusses are shown in Section 4.
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2 Mathematical Basis

2.1 Matrix $*$-algebras

Let $\mathcal{M}_{n}$ denote the set of $n\cross n$ real matrices. A subset $\mathcal{T}$ of $\mathcal{M}_{n}$ is said to be a $*-$

subalgebra (or a $matr’ix*$ -algebra) over $\mathbb{R}$ if (i) $I_{n}\in \mathcal{T}$ and (ii) $A,$ $B\in \mathcal{T},$ $\alpha,$
$\beta\in \mathbb{R}\Rightarrow$

$\alpha A+\beta B,$ AB, $A^{T}\in \mathcal{T}$ . We say that $\mathcal{T}$ is simple if $\mathcal{T}$ has no ideal other than $\{O\}$ and
$\mathcal{T}$ itself, where an ideal of $\mathcal{T}$ means $a*$-subalgebra $\mathcal{I}$ of $\mathcal{T}$ such that $A\in \mathcal{T},$ $B\in \mathcal{I}\Rightarrow$

AB, $BA\in \mathcal{I}$ . A linear subspace $W$ of $\mathbb{R}^{n}$ is said to be invariant with respect to $\mathcal{T}$ , or
$\mathcal{T}$-invariant, if $AW\subseteq W$ for every $A\in \mathcal{T}$ . We say that $\mathcal{T}$ is irreducible if no $\mathcal{T}$-invariant
subspace other than $\{0\}$ and $\mathbb{R}^{n}$ exists. If $\mathcal{T}$ is irreducible, it is simple.

From a standard result of the theory of matrix $*$-algebra (e.g., [16, Chapter X]) we
can see the following structure theorem for a matrix $*$-subalgebra; see [9, Theorem 5.4]
for more details. Note that, for an orthogonal matrix $P$ , the set of transformed matrices
$P^{T}\mathcal{T}P=\{P^{T}AP|A\in \mathcal{T}\}$ forms another $*$ -subalgebra.

Theorem 2.1. Let $\mathcal{T}$ be $a*$ -subalgebra of $\mathcal{M}_{n}$ .
(A) There exist an orthogonal matrix $\hat{Q}\in \mathcal{M}_{n}$ and $simple*$ -subalgebras $\mathcal{T}_{j}$ of $\mathcal{M}_{\hat{n}_{j}}$ for

some $\hat{n}_{j}(j=1,2, \ldots, \ell)$ such that

$\hat{Q}^{T}\mathcal{T}\hat{Q}=$
$\{$ diag $(S_{1},$ $S_{2},$

$\ldots,$
$S_{\ell}):S_{j}\in \mathcal{T}_{j}(j=1,2,$

$\ldots,$
$\ell)\}$ .

(B) If $\mathcal{T}$ is simple, there exist an orthogonal matrix $P\in M_{n}$ and an irreducible $*-$

subalgebra $\mathcal{T}’$ of $\mathcal{M}_{\overline{n}}$ for some $\overline{n}$ such that

$P^{T}\mathcal{T}P=\{$diag $(B,$ $B,$
$\ldots,$

$B):B\in \mathcal{T}^{l}\}$ .

(C) If $\mathcal{T}$ is irreducible, we have one of the following three cases.
(i) $\mathcal{T}=\mathcal{M}_{n}$ .
(ii) There exists an orthogonal matrix $P\in \mathcal{M}_{n}$ such that

$P^{T}\mathcal{T}P=\{\{\begin{array}{llll}C(v_{11},w_{11}) . C(v_{1\check{n}},w_{1\overline{n}}) \vdots \vdots C(v_{\check{n}1}w_{\dot{n}1}) \cdots C(v_{\dot{n}\hslash)} w_{\dot{n}\hslash})\end{array}\}I^{7}$

where $v_{ij}$ and $w_{ij}$ run over $\mathbb{R}$ for $i,j=1,$ $\ldots,\check{n}=n/2_{l}$ and

$C(v, w)=\{\begin{array}{ll}v w-w v\end{array}\}$ for $v,$ $w\in \mathbb{R}$ .

(iii) There exists an orthogonal matrix $P\in \mathcal{M}_{n}$ such that

$P^{T}\mathcal{T}P=\{[H(v_{\dot{n}1},w_{\check{n}1},x_{\hslash 1\}}y_{\check{n}1})H(v_{11},w_{11},x_{11},y_{11})$

. . .
$H(v_{\check{n}\check{n}},w_{\check{n}\check{n}},x_{\hslash\check{n}},y_{\hslash\tilde{n}})H(v_{1\dot{n}},w_{1\dot{n}},x_{1\dot{n}},y_{1\hslash}):]\}$ ,
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where $v_{ij},$ $w_{ij},$ $x_{ij}$ and $y_{ij}$ run over $\mathbb{R}$ for $i,j=1,$ $\ldots,\check{n}=n/4$ and

$H(v, w, x, y)=\{\begin{array}{llll}v -w -x -yw v -y xx y v -wy -x w v\end{array}\}$ for $v,$ $w,$ $x,$ $y\in \mathbb{R}$ .

It follows from the above theorem that, with a single orthogonal matrix $P$ , all the
matrices in $\mathcal{T}$ can be transformed simultaneously to a block-diagonal form as

$P^{T}AP= \bigoplus_{j=1}^{\ell}\bigoplus_{i=1}^{\overline{m}_{j}}B_{j}=\bigoplus_{j=1}^{\ell}(I_{\overline{m}_{j}}\otimes B_{j})$ (2.1)

with $B_{j}\in \mathcal{T}_{j}’$ , where $\mathcal{T}_{j}^{l}$ denotes the irreducible $*$-subalgebra of $\mathcal{M}_{\overline{n}_{j}}$ corresponding to the
simple subalgebra $\mathcal{T}_{j}$ . The structural indices $\ell,\overline{n}_{j},\overline{m}_{j}$ and the algebraic structure of $\mathcal{T}_{j}’$ for
$j=1,$ $\ldots$ , $\ell$ are uniquely determined by $\mathcal{T}$ . It may be noted that $\hat{n}_{j}$ in Theorem 2.1 (A)
is equal to $\overline{m}_{j}\overline{n}_{j}$ in the present notation. Conversely, for any choice of $B_{j}\in \mathcal{T}_{j}^{l}$ for
$j=1,$ $\ldots,$

$\ell$ , the matrix of (2.1) belongs to $P^{T}\mathcal{T}P$ .
We denote by

$\mathbb{R}^{n}=\bigoplus_{j=1}^{\ell}U_{j}$ (2.2)

the decomposition of $\mathbb{R}^{n}$ that corresponds to the simple components. In other words,
$U_{j}={\rm Im}(\hat{Q}_{j})$ for the $nx\hat{n}_{j}$ submatrix $\hat{Q}_{j}$ of $\hat{Q}$ that corresponds to $\mathcal{T}_{j}$ in Theorem 2.1 (A).
Although the matrix $\hat{Q}$ is not unique, the subspace $U_{j}$ is determined uniquely and $\dim U_{j}=$

$\hat{n}_{j}=\overline{m}_{j}\overline{n}_{j}$ for $j=1,$ $\ldots,$
$\ell$ .

In this paper we assume that $\mathcal{T}$ is generated by symmetric matrices and that

Case (i) always occurs in Theorem 2.1(C). (2.3)

It is mentioned that an algorithm that works without this assumption is given in [10].

2.2 Simple components from eigenspaces
We denote by $S_{n}$ the set of $n\cross n$ symmetric real matrices. Let $A_{1},$

$\ldots,$
$A_{m}\in S_{n}$ , and $\mathcal{T}$

be the $*$-subalgebra over $\mathbb{R}$ generated by $\{I_{n}, A_{1}, \ldots, A_{m}\}$ . Note that (2.1) holds for every
$A\in \mathcal{T}$ if and only if (2.1) holds for $A=A_{p}$ for $p=1,$ $\ldots,$ $m$ .

A key observation for our algorithm is that the decomposition (2.2) into simple compo-
nents can be computed from the eigenvalue (or spectral) decomposition of a single matrix
$A$ in $\mathcal{T}\cap S_{n}$ if it is free from degeneracy in eigenvalues.

Let $A$ be a symmetric matrix in $\mathcal{T},$
$\alpha_{1},$

$\ldots,$
$\alpha_{k}$ be the distinct eigenvalues of $A$ with mul-

tiplicities denoted as $m_{1},$ $\ldots,$ $m_{k}$ , and $Q=[Q_{1}, \ldots, Q_{k}]$ be an orthogonal matrix consisting
of the eigenvectors, where $Q_{i}$ is an $n\cross m_{i}$ matrix for $i=1,$ $\ldots,$

$k$ . Then we have

$Q^{T}AQ=$ diag $(\alpha_{1}1_{m_{l}}, \ldots, \alpha_{k}I_{m_{k}})$ . (24)
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Put $K=\{1, \ldots, k\}$ and for $i\in K$ define $V_{i}={\rm Im}(Q_{i})$ , which is the eigenspace correspond-
ing to $\alpha_{i}$ .

Let us say that $A\in \mathcal{T}\cap S_{n}$ is genenc in eigenvalue structure (or simply genemc)
if all the matrices $B_{1},$

$\ldots,$
$B_{\ell}$ appearing in the decomposition (2.1) of $A$ are free from

multiple eigenvalues and no two of them share a common eigenvalue. For a generic matrix
$A$ the number $k$ of distinct eigenvalues is equal to $\sum_{j=1}^{l}\overline{n}_{j}$ and the list (multiset) of their
multiplicities $\{m_{1}, \ldots, m_{k}\}$ is the union of $\overline{n}_{j}$ copies of $\overline{m}_{j}$ over $j=1,$ $\ldots,$

$\ell$ .
The eigenvalue decomposition of a generic $A$ is consistent with the decomposition (2.2)

into simple components of $\mathcal{T}$ , as follows.

Proposition 2.2. Let $A\in \mathcal{T}\cap S_{n}$ be generic in eigenvalue structure. For any $i\in$

$\{1, \ldots, k\}$ there exists $j\in\{1, \ldots, \ell\}$ such that $V_{i}\subseteq U_{j}$ . Hence there exists a partition of
$K=\{1, \ldots, k\}$ into $\ell$ disjoint subsets:

$K=K_{1}\cup\cdots\cup K_{\ell}$ (2.5)

such that
$U_{j}= \bigoplus_{i\in K_{j}}V_{i}$

, $j=1,$ $\ldots,$
$\ell$ . (2.6)

Note that $m_{i}=\overline{m}_{j}$ for $i\in K_{j}$ and $|K_{j}|=\overline{n}_{j}$ for $j=1,$ $\ldots$ , $\ell$ .
The partition (2.5) of $K$ can be determined as follows. Define a binary relation $\sim$ on

$K$ by:
$i\sim i’$ $\Leftrightarrow$ $\exists p(1\leq p\leq m):Q_{i}^{T}A_{p}Q_{i’}\neq O$ , (2.7)

where $i,$ $i’\in K$ . By convention we define $i\sim i$ for any $i\in K$ .

Proposition 2.3. The partition (2.5) coincides with the partition of $K$ into equivalence
classes of the tmnsitive closure of the binary relation $\sim$ .

A generic matrix $A$ can be obtained as a random linear combination of generators of
$\mathcal{T}$ , as follows. For a real vector $r=(r_{1}, \ldots, r_{m})$ put $A(r)=r_{1}A_{1}+\cdots+r_{m}A_{m}$ . We denote
by span$\{\cdots\}$ the set of linear combinations of the matrices in the braces.

Proposition 2.4. If span$\{I_{n}, A_{1}, \ldots , A_{m}\}=\mathcal{T}\cap S_{n}$ , there exists an open dense subset $R$

of $\mathbb{R}^{m}$ such that $A(r)$ is generi$c$ in eigenvalue structure for every $r\in R$ .

We may assume that the coefficient vector $r$ is normalized, for example, to $\Vert r\Vert_{2}=1$ ,
where $\Vert r\Vert_{2}=\sqrt{\sum_{p=1}^{m}r_{p}^{2}}$ . Then the above proposition implies that $A(r)$ is generic for
almost all values of $r$ , or with probability one if $r$ is chosen at random.

2.3 Transformation for irreducible components
Once the transformation matrix $Q$ for the eigenvalue decomposition of a generic matrix $A$ is
known, the transformation $P$ for $\mathcal{T}$ can be obtained through ”local” transformations within
eigenspaces corresponding to distinct eigenvalues, followed by a ”global” permutation of
rows and columns.
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Proposition 2.5. Let $A\in \mathcal{T}\cap S_{n}$ be generic in eigenvalue structure, and $Q^{T}AQ=$

diag $(\alpha_{1}I_{m_{1}}, \ldots, \alpha_{k}I_{m_{k}})$ be the eigenvalue decomposition as in (2.4). Then the transforma-
tion matnx $P$ in (2.1) can be chosen in the form of

$P=Q$ . diag $(P_{1}, \ldots, P_{k})\cdot\Pi$ (2.8)

with orthogonal matrices $P_{i}\in \mathcal{M}_{m_{i}}$ for $i=1,$ $\ldots,$
$k$ , and a permutation matrix $\Pi\in \mathcal{M}_{n}$ .

Proof. For simplicity of presentation we focus on a simple component, which is tantamount
to assuming that for each $A’\in \mathcal{T}$ we have $P^{T}A’P=I_{\overline{m}}\otimes B^{l}$ for some $B’\in \mathcal{M}_{k}$ , where
$\overline{m}=m_{1}=--$ $=m_{k}$ . Sinoe $P$ may be replaced by $P(I_{\overline{m}}\otimes S)$ for any orthogonal $S$ ,
it may be assumed further that $P^{T}AP=I_{\overline{m}}\otimes D$ , where $D=$ diag $(\alpha_{1}, \ldots , \alpha_{k})$ , for the
particular generic matrix $A$ . Hence $\Pi P^{T}AP\Pi^{T}=D\otimes I_{\overline{m}}$ for a permutation matrix $\Pi$ .
Comparing this with $Q^{T}AQ=D\otimes I_{\overline{m}}$ and noting that $\alpha_{i}$ ’s are distinct, we see that
$P\Pi^{T}=Q$ . diag $(P_{1}, \ldots, P_{k})$for some $\overline{m}x\overline{m}$ orthogonai matrices $P_{1},$

$\ldots,$
$P_{k}$ . 口

3 Algorithm for Simultaneous Block-Diagonalization
On the basis of the theoretical considerations in Section 2, we propose in this section an al-
gorithm for simultaneous block-diagonalization of given symmetric matrices $A_{1},$

$\ldots,$
$A_{m}\in$

$S_{n}$ by an orthogonal matrix $P$ :

$P^{T}A_{p}P= \bigoplus_{j=1}^{\ell}\bigoplus_{i=1}^{j}B_{pj}=\overline{m}\bigoplus_{j=1}^{\ell}(I_{\overline{m}_{j}}\otimes B_{pj})$ , $p=1,$ $\ldots,$ $m$ , (3.1)

where $B_{pj}\in \mathcal{M}_{\overline{n}_{j}}$ for $j=1,$ $\ldots,$
$\ell$ and $p=1,$ $\ldots,$ $m$ . Our algorithm consists of two

parts corresponding to (A) and (B) of Theorem 2.1 for the $*$ -subalgebra $\mathcal{T}$ generated
by $\{I_{n}, A_{1}, \ldots, A_{m}\}$ . The former (Section 3.1) corresponds to the decomposition of $\mathcal{T}$

into simple components and the latter (Section 3.2) to the decomposition into irreducible
components. Recall that we assume (2.3).

3.1 Decomposition into simple components

We present here an algorithm for the decomposition into simple components. Algo-
rithm 3.1 below does not presume span$\{I_{n}, A_{1}, \ldots, A_{m}\}=\mathcal{T}\cap S_{n}$ , although its correctness
relies on this condition.

Algorithm 3.1.

Step 1: Generate random numbers $r_{1},$ $\ldots,$ $r_{m}$ $($with $\Vert r\Vert_{2}=1)$ , and set $A= \sum_{p=1}^{m}r_{p}A_{p}$ .

Step 2: Compute the eigenvalues and eigenvectors of $A$ . Let $\alpha_{1},$
$\ldots,$

$\alpha_{k}$ be the distinct
eigenvalues of $A$ with their multiplicities denoted by $m_{1},$ $\ldots,$ $m_{k}$ . Let $Q_{i}\in \mathbb{R}^{nxm\{}$
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be the matrix consisting of orthonormal eigenvectors corresponding to $\alpha_{i}$ , and
define the matrix $Q\in \mathbb{R}^{nxn}$ by $Q=(Q_{i}|i=1, \ldots, k)$ . This means that

$Q^{T}AQ=$ diag $(\alpha_{1}I_{m_{1}}, \ldots, \alpha_{k}I_{m_{k}})$ .

Step 3: Put $K=\{1, \ldots, k\}$ , and let $\sim$ be a binary relation on $K$ defined by

$i\sim i^{l}$ $\Leftrightarrow$ $\exists p(1\leq p\leq m)$ : $Q_{i}^{T}A_{p}Q_{i’}\neq O$ , (3.2)

where $i,$ $i’\in K$ . Let
$K=K_{1}\cup\cdots\cup K_{\ell}$ (3.3)

be the partition of $K$ consisting of the equivalence classes of the transitive closure
of the binary relation $\sim$ . Define matrices $Q[K_{j}]$ by $Q[K_{j}]=(Q_{i}|i\in K_{j})(j=$

$1,$ . . , $)\ell)$ , and set $\hat{Q}=(Q[K_{1}], \ldots, Q[K_{\ell}])$ . Compute $\hat{Q}^{T}A_{p}\hat{Q}(p=1, \ldots)m)$ ,
which results in a simultaneous block-diagonalization with respect to the parti-
tion (2.5).

For the correctness of the above algorithm we have the following.

Proposition 3.2. If the matrit A generated in Step 1 is genernc in eigenvalue structure,
the orthogonal matrix $\hat{Q}$ constructed by Algorithm 3.1 gives the transformation matrix $\hat{Q}$

in Theorem 2.1 $(A)$ for the decomposition of $\mathcal{T}$ into simple components.

Proposition 2.4 implies that the matrix $A$ in Step 1 is generic with probability one if
span$\{I_{n}, A_{1}, \ldots, A_{m}\}=\mathcal{T}\cap S_{n}$ . This condition, however, is not always satisfied by the
given matrices $A_{1},$

$\ldots$ , $A_{m}$ . In such a case we can generate a basis of $\mathcal{T}\cap S_{n}$ as follows.
First choose a linearly independent subset, say, $\mathcal{B}_{1}$ of $\{I_{n}, A_{1}, \ldots, A_{m}\}$ . For $k=1,2,$ $\cdots$

let $\mathcal{B}_{k+1}(\supseteq \mathcal{B}_{k})$ be a linearly independent subset of $\{(AB+BA)/2|A\in \mathcal{B}_{1}, B\in \mathcal{B}_{k}\}$ .
If $\mathcal{B}_{k+1}=\mathcal{B}_{k}$ for some $k$ , we can conclude that $\mathcal{B}_{k}$ is a basis of $\mathcal{T}\cap S_{n}$ . Note that the
dimension of $\mathcal{T}\cap S_{n}$ is equal to $\sum_{j=1}^{\ell}\overline{n}_{j}(\overline{n}_{j}+1)/2$ , which is bounded by $n(n+1)/2$ . It is
mentioned here that $S_{n}$ is a linear space equipped with an inner product $A$ $\bullet$ $B=$ tr(AB)
and the Gram-Schmidt orthogonalization procedure works.

Proposition 3.3. If a basis of $\mathcal{T}\cap S_{n}$ is computed in advance, Algorithm 3.1 gives, with
probability one, the decomposition of $\mathcal{T}$ into simple components.

3.2 Decomposition into irreducible components

According to Theorem 2.1 (B), the block-diagonal matrices $\hat{Q}^{T}A_{\tau}\hat{Q}$ obtained by Algo-
rithm 3.1 can further be decomposed. By construction we have $\hat{Q}=Q\hat{\Pi}$ for some permu-
tation matrix $\hat{\Pi}$ . In the following we assume $\hat{Q}=Q$ to simplify the presentation.

By Proposition 2.5 this finer decomposition can be obtained through a transformation
of the form (2.8), which consists of $\iota$‘local coordinate changes” by a family of orthogonal
matrices $\{P_{1}, \ldots, P_{k}\}$ , followed by a permutation by $\Pi$ .
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The orthogonal matrices $\{P_{1}, \ldots, P_{k}\}$ should be chosen in such a way that if $i,$ $i^{l}\in K_{j}$ ,
then

$P_{i}^{T}Q_{i}^{T}A_{p}Q_{i’}P_{i’}=b_{ii^{l}}^{(pj)}I_{\overline{m}_{j}}$ (3.4)

for some $b_{ii’}^{(pj)}\in \mathbb{R}$ for $p=1,$ $\ldots,$ $m$ . Note that the solvability of this system of equations
in $P_{i}$ and $b_{ii’}^{(pj)}(i, i’=1, \ldots, k;j=1, \ldots, \ell;p=1, \ldots, m)$ is guaranteed by (3.1) and
Proposition 2.5. Then with $\overline{P}=Q$ . diag $(P_{1}, \ldots, P_{k})$ and $B_{pj}=(b_{ii}^{(pj)}|i, i’\in K_{j})$ we have

$\tilde{P}^{T}A_{p}\tilde{P}=\bigoplus_{j=1}^{\ell}(B_{pj}\otimes I_{\overline{m}_{j}})$ (3.5)

for $p=1,$ $\ldots m\dot{\prime}$ . Finally we apply a permutation of rows and columns to obtain (3.1).
The family of orthogonal matrices $\{P_{1}, \ldots, P_{k}\}$ satisfying (3.4) can be computed as

follows. Recall from (3.2) that for $i,$ $i’\in K$ we have $i\sim i’$ if and only if $Q_{i}^{T}A_{p}Q_{i}/\neq O$ for
some $p$ . It follows from (3.4) that $Q_{i}^{T}A_{p}Q_{i}i\neq O$ means that it is nonsingular.

Fix $j$ with $1\leq j\leq\ell$ . We consider a graph $G_{j}=(K_{j}, E_{j})$ with vertex set $K_{j}$ and edge
set $E_{j}=\{(i, i^{l})|i\sim i‘\}$ . This graph is connected by the definition of $K_{j}$ . Let $T_{j}$ be a
spanning tree, which means that $T_{j}$ is a subset of $E_{j}$ such that $|T_{j}|=|K_{j}|-1$ and any
two vertices of $K_{j}$ are connected by edges in $T_{j}$ . With each $(i, i’)\in T_{j}$ we can associate
some $p=p(i, i^{l})$ such that $Q_{i}^{T}A_{f}Q_{i’}\neq O$ .

To compute $\{P_{i}|i\in K_{j}\}$ , take any $i_{1}\in K_{j}$ and put $P_{i_{1}}=I_{\overline{m}_{j}}$ . If $(i, i’)\in T_{j}$ and $P_{i}$

has been determined, then let $\hat{P}_{i}/=(Q_{i}^{T}A_{p}Q_{\iota/})^{-1}P_{i}$ with $p=p(i, i^{l})$ , and normalize it to
$P_{i^{l}}=\hat{P}_{i}//\Vert q\Vert$ , where $q$ is the first-row vector of $\hat{P}_{i^{l}}$ . Then $P_{i}/$ is an orthogonal matrix that
satisfies (3.4). By applying the above procedure in an appropriate order of $(i, i’)\in T_{j}$ we
can obtain $\{P_{i}|i\in K_{j}\}$ .
Remark 3.1. The idea of using arandom linear combination in constructing simultaneous
block-diagonalization can also be found in arecent paper of de Klerk and Sotirov [4]. Their
method., called “block diagonalization heuristic” in Section 5.2 of [4], is different $hom$ ours
in two major points.

First, the method of [4] assumes explicit knowledge about the underlying group $G$ ,
and works with the representation matrices, say, $T(g)$ . Through the eigenvalue (spectral)
decomposition of arandom linear combination of $T(g)$ over $g\in G$ , the method finds an
orthogonal matrix $P$ such that $P^{T}T(g)P$ for $g\in G$ are simultaneously block-diagonalized.
Then $G$-symmetric matrices $A_{p}$ will also be block-diagonalized.

Second, the method of [4] is not designed to produce the finest possible decomposition
of the matrices $A_{p}$ , as is recognized by the authors themselves. The constructed block-
diagonalization of $T(g)$ is not necessarily the irreducible decomposition, and this is why
the resulting decomposition of $A_{p}$ is not guaranteed to be finest possible. We could,
however, apply the algorithm of Section 3.2 of the present paper to obtain the irreducible
decomposition of the representation $T(g)$ . Then, under the assumption (2.3), the resulting
decomposition of $A_{p}$ will be the finest decomposition that can be obtained by exploiting
the G-symmetry.
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Figure 1: A cubic (or $T_{d}$-symmetric) space truss.

Remark 3.2. Eberly and Giesbrecht [5] proposed an algorithm for the simple-component
decomposition of aseparable matrix algebra (not $a*$-algebra)over an arbitrary infinite
field. Their algorithm is closely related to our algorithm in Section 3.1. In particular,
their “self-centralizing element” corresponds to our “generic element”. Their algorithm,
however, is significantly different from ours in two ways: (i) treating ageneral algebra (not
$a*$-algebra)it employs atransformation of the form $S^{-1}AS$ with anonsingular matrix $S$

instead of an orthogonal transformation, and (ii) it uses companion forms and factorization
of minimum polynomials instead of eigenvalue decomposition. The decomposition into
irreducible components, inevitably depending on the underlying field, is not treated in [5].

4 Numerical Example: Cubic Trusses
Use and significance of our method are illustrated here in the context of semidefinite
programming for truss design treated in [12]. Group-symmetry and sparsity arise naturally
in truss optimization problems, as is easily imagined from the cubic truss shown in Fig. 1.
It will be confirmed that the proposed method yields the same decomposition as the
group representation theory anticipates (Case 1 below), and moreover, it gives a finer
decomposition if the truss structure is endowed with an additional algebraic structure due
to sparsity (Case 2 below).

The optimization problem we consider here is as follows. An initial truss configuration
is given with fixed locations of nodes and members. Optimal cross-sectional areas, min-
imizing total volume of the structure, are to be found subject to the constraint that the
eigenvalues of vibration are not smaller than a specified value.

To be more specific, let $n^{d}$ and $n^{m}$ denote the number of degrees of freedom of displace-
ments and the number of members of a truss, respectively. The stiffness matrix is denoted
by $K\in S_{n^{d}}$ . Let $M_{S}\in S_{n^{d}}$ and $M_{0}\in S_{n^{d}}$ denote the mass matrices for the structural
and nonstructural masses, respectively. The ith eigenvalue $\Omega_{i}$ of vibration and the cor-
responding eigenvector $\phi_{i}\in \mathbb{R}^{n^{d}}$ are defined by $K\phi_{i}=\Omega_{i}(M_{S}+M_{0})\phi_{i}(i=1,2, \ldots, n^{d})$ .
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Note that, for a truss, $K$ and $M_{S}$ can be written as $K= \sum_{j=1}^{n^{m}}K_{j}\eta_{j},$ $M_{S}= \sum_{j=1}^{n^{m}}M_{j}\eta_{j}$

with constant symmetric matrices $K_{j}$ and $M_{j}$ , where $\eta_{j}$ denotes the cross-sectional area of
the jth member. With the notation $l=(l_{j})\in \mathbb{R}^{n^{m}}$ for thc vector of member lengths and
$\overline{\Omega}$ for the specified lower bound of the fundamental eigenvalue, our optimization problem
is formulated as

$\min\sum_{j=1}^{n^{m}}l_{j}\eta_{j}$ st. $\Omega_{i}\geq\overline{\Omega}(i=1, \ldots, n^{d}),$ $\eta_{j}\geq 0,$ $(j=1, \ldots, n^{m})$ .

It is pointed out in [12] that this problem can be reduced to the following dual SDP:

$\max-\sum_{j=1}^{n^{m}}l_{j}\eta_{j}$ s.t. $\sum_{j=1}^{n^{m}}(K_{j}-\overline{\Omega}M_{j})\eta_{j}-\overline{\Omega}M_{0}\succeq O$, $\eta_{j}\geq 0(j=1, \ldots, n^{m})$ . (4.1)

We now consider this SDP for the cubic truss shown in Fig. 1. The cubic truss contains
8 free nodes, and hence $n^{d}=24$ . As for the members we consider two cases:

Case 1: $n^{m}=34$ members including the dotted ones;
Case 2: $n^{m}=30$ members excluding the dotted ones.

A regular tetrahedron is constructed inside the cube. The members outside the cube share
the same lengths. A uniform nonstructural mass is located at each node indicated by a
filled circle in Fig. 1. All the remaining nodes are pin-supported.

Thus, the geometry, the stiffness distribution, and the mass distribution of this truss
are all symmetric with respect to the geometric transformations by elements of (full or
achiral) tetrahedral group $T_{d}$ , which is isomorphic to $S_{4}$ , the symmetric group of degree 4.
The $T_{d}$-symmetry can be exploited as follows.

First, we divide the index set of members $\{$ 1, $\ldots,$
$n^{m}\}$ into a family of orbits, say $J_{p}$

with $p=1,$ $\ldots,$ $m$ , where $m$ denotes the number of orbits. We have $m=4$ in Case 1
and $m=3$ in Case 2, where representative members belonging to four different orbits are
shown as (1)$-(4)$ in Fig. 1.

Next, with reference to the orbits we aggregate the data matrices as well as the com-
ponents of vector $b$ in (4.1) to $A_{p}(p=0,1, \ldots , m)$ and $b_{p}(p=1, \ldots, m)$ , respectively,
as: $A_{0}=- \overline{\Omega}M_{0)}A_{p}=\sum_{j\in J_{p}}(-K_{j}+\overline{\Omega}M_{j})(p=1, \ldots, m),$ $b_{p}= \sum_{j\in J_{p}}l_{j}(p=1, \ldots, m)$ .
Then (4.1) can be reduced to

$\max-\sum_{p=1}^{m}b_{p}y_{p}s$ t. $A_{0}- \sum_{p=1}^{m}A_{p}y_{p}\succeq O$ , $y_{p}\geq 0(p=1, \ldots, m)$ (42)

as long as we are interested in a symmetric optimal solution. Note that the matrices
$A_{p}(p=0,1, \ldots, m)$ are $T_{d}$-symmetric. The proposed method is applied to $A_{p}(p=$

$0,1,$ $\ldots,$
$m)$ for their simultaneous block-diagonalization. The assumption (2.3) has turned

out to be satisfied.
In Case 1 we obtain the decomposition into $1+2+3+3=9$ blocks, one block of size 2,

two identical blocks of size 2, three identical blocks of size 3, and three identical blocks of
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Table 1: Block-diagonalization of cubic truss optimization problem.

size 4, as summarized on the left of Table 1. This result conforms with the group-theoretic
analysis. In Case 2 sparsity plays a role to split the last block into two, as shown on the
right of Table 1. We now have 12 blocks in contrast to 9 blocks in Case 1. Recall that
the sparsity is due to the lack of the dotted members. It is emphasized that the proposed
method successfully captures the additional algebraic structure introduced by sparsity.

Acknowledgments
The authors thank Etienne de Klerk for communicating [5], Dima Pasechnik for discussion,
and Takanori Maehara for pointing out a flaw in the original proof of Proposition 2.5. This
work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References
[1] Y. Bai, E. de Klerk, D. V. Pasechnik and R. Sotirov: Exploiting group symmetry in

truss topology optimization, CentER Discussion paper 2007-17, Center for Economic
Research, Tilburg University, February 2007.

[2] B. Borchers: CSDP 2.3 user’s guide, a $C$ library for semidefinite programming, Opti-
mization Methods and Software, Vol. 11&12 (1999), pp. 597-611.

[3] E. de Klerk, D.V. Pasechnik and A. Schrijver: Reduction of symmetric semidefinite
programs using the regular $*$-representation, Mathematical Programming, Series $B$ ,
Vol. 109 (2007), pp. 613-624.

[4] E. de Klerk and R. Sotirov: Exploiting group symmetry in semidefinite programming
relaxations of the quadratic assignment problem, CentER Discussion paper 2007-44,
Center for Economic Research, Tilburg University, June 2007.

[5] W. Eberly and M. Giesbrecht: Efficient decomposition of separable algebras, Journal
of Symbolic Computation, Vol. 37 (2004), pp. 35-81.

25



[6] K. Gatermann and P.A. Parrilo: Symmetry groups, semidefinite programs, and sums
of squares, Journal of Pure and Applied Algebra, Vol. 192 (2004), pp. 95-128.

[7] L. Jansson, J.B. Lasserre, C. Riener and T. Theobald: Exploiting symmetries in SDP-
relaxations for polynomial optimization, LAAS-report, Toulouse, September 2006.

[8] Y. Kanno, M. Ohsaki, K. Murota, and N. Katoh: Group symmetry in interior-
point methods for semidefinite program, optimization and Engineering, Vol. 2 (2001),
pp. 293-320.

[9] M. Kojima, S. Kojima and S. Hara: Linear algebra for semidefinite programming,
Research Report B-290, Tokyo Institute of Technology, October 1994; also in RIMS
Kokyuroku 1004, Kyoto University, pp. 1-23, 1997.

[10] T. Maehara and K. Murota: A numerical algorithm for block-diagonal decomposition
of matrix $*$-algebras with general irreducible components, METR 2008-26, Depart-
ment of Mathematical Informatics. University of Tokyo, May 2008.

[11] W. Miller, Jr.: Symmetry Groups and Their Applications, Academic Press, New
York, 1972.

[12] M. Ohsaki, K. Fujisawa, N. Katoh and Y. Kanno: Semi-definite programming for
topology optimization of trusses under multiple eigenvalue constraints, Computer
Methods in Applied Mechanics and Engineering, Vol. 180 (1999), pp. 203-217.

[13] J.-P. Serre: Linear Representations of Finite Groups, Springer-Verlag, Berlin, 1977.

[14] J.F. Sturm: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, optimization Methods and Software, Vol. 11&12 (1999), pp. 625-653.

[15] K.C. Toh, M.J. Todd and R.H. T\"ut\"unc\"u: SDPT3–a MATLAB software package for
semidefinite programming, version 1.3, optimization Methods and Software, Vol. 11
&12 (1999), pp. 545-581.

[16] J.H.M. Wedderburn: Lectures on Matrices, American Mathematical Society, New
York, 1934; Dover, Mineola, N.Y., 2005.

[17] H. Wolkowicz, R. Saigal and L. Vandenberghe: Handbook of Semidefinite Program-
ming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, Boston,
2000.

[18] M. Yamashita, K. Fujisawa and M. Kojima: Implementation and evaluation of
SDPA6.0 (SemiDefinite Programming Algorithm 6.0), optimization Methods and
Software, Vol. 18 (2003), pp. 491-505.

26


