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Abstract
In this paper, we study necessary and sufficient conditions for the existence

of a pure-strategy Nash equilibrium. It is well known that any non-cooperative
n-person game in strategic form has a mixed-strategy Nash equilibrium. On the
other hand, a purestrategy Nash equilibrium does not always exist. Wherein,
there are few results considering sufficient conditions for the existence of a pure-
strategy Nash equilibrium; see Topkis [9], Iimura [1] and Sato and Kawasaki [6].
These results imply that monotonicity of best responses is one of the most im-
portant assumptions for its existence. They, however, do not cover studies on
necessary conditions for its existence. Hence, in this paper, we first extend the
class of games having a monotonicity condition and show that the games be
longing the class have a pure-strategy Nash equilibrium. Next, we prove that
the extended monotonicity is a necessary condition for the existence of a pure-
strategy Nash equilibrium in the case of two.person.

1 lntroduction
In this paper, we study necessary and sufficient conditions for the existence of a pure-
strategy Nash equilibrium. A Nash equilibrium is one of the most important solution
concepts in non-cooperative games, and Nash [4], [5] has shown that if each player use
mixed-strategy, then any non-cooperative game has it. A pure-strategy Nash equilib-
rium, on the other hand, does not always exist. Hence we consider how games have
it. As answers of this problem, there are few known results. The first result is due to
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Topkis [9]. He has introduced so-called supermodular games. He first got the mono-
tonicity of the greatest and least element of each player’s best response, by assuming
the increasing differences for each player’s payoff function. Next, relying on Tarski’s
fixed point theorem [8], he showed the existence of a pure-strategy Nash equilibrium
in supermodular games. Sato and Kawasaki [6] has introduced so-called monotone
games. They provided a discrete fixed point theorem, and as its application, showed
that any monotone game has a pure-strategy Nash equilibrium. These papers’ idea is
that monotonicity of best responses ensures the existence of a pure-strategy Nash equi-

librium. However, these results were concemed with only sufficiency for the existence
of a pure-strategy Nash equilibrium. This paper, on the other hand, shall consider not
only sufficiency but also necessity for the existence.

Also, Iimura [1] has given a class of games having a pure-strategy Nash equilibrium
as an application of the discrete fixed point theorem [2]. The discrete fixed point

theorem plays on integrally convex sets (see Murota [3]) and relies on Brouwer’s fixed
point theorem. However, these result also was concemed with only sufficiency for the
existence of a pure-strategy Nash equilibrium.

Our paper is organized as follows: In Section 2, we shall discuss on the sufficient
conditions for the existence of a pure-strategy Nash equilibrium. We first summarize
the result of Sato and Kawasaki [6]. Next, we extend the result to deal with a wide
range of non-cooperative n-person games. Here we remark that the result of this section
is not only an extension of monotone games but also central rule of the next section. In
Section 3, we shall show that the monotonicity condition is on necessity for the existence
of a pure-strategy Nash equilibrium in the case of two-person. In order to show this
fact, we use the directed graph representation of set-valued mappings.

Throughout this paper, we represent a strategic form game as $G=\{N, \{S_{i}\}_{i\in N}, \{p_{i}\}_{i\in N}\}$ ,
where

$\bullet$ $N$ $:=\{1, \ldots, n\}$ is the set of players.
$\bullet$ For any $i\in N,$ $S_{i}$ denotes the finite set, with a total order $\leqq_{i}$ , of player $i$ ’s pure

strategies. An element of this set is denoted by $s_{i}$ .
$\bullet$

$p_{i}$ : $S$ $:= \prod_{j=1}^{n}S_{j}arrow \mathbb{R}$ denotes the payoff function of player $i$ .
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2 Sufficiency for the existence of a pure-strategy Nash

equilibrium

2.1 Known results: Monotone game
In this subsection, we review the sufficient condition for the existence of a pure-strategy
Nash equilibrium, which has been originally introduced by Sato and Kawasaki [6]. In
the paper, the authors have provided the class of non-cooperative games that so-called
monotone games, and shown that the games have a pure-strategy Nash equilibrium.
Their crucial assumption is monotonicity for best responses of games. The definition of
the class of games is as follows:

Deflnition 2.1 (Monotone game) $G$ is said to be a monotone game if, for any $i\in N$ ,
$s_{-i}^{0},$ $s_{-i}^{1}\in S_{-i}$ with $s_{-i}^{0}\preceq s_{-i}^{1}$ and for any $t_{i}^{1}\in f_{i}(s^{\underline{0}_{i}})$ , there exists $t_{i}^{2}\in f_{i}(s_{-i}^{1})$ such
that $\epsilon_{i}t_{i}^{1}\leqq\epsilon_{i}t_{i}^{2}$ .

Further, in the paper, the authors have shown that the games have a pure-strategy
Nash equilibrium.

Proposition 2.2 ([6]) Any monotone non-cooperative n-person game $G$ has a Nash
equilibrrium of pure strategies.

Here we present an example of monotone games in the case of two-person game, that
is, bimatrix game. In the rest of this section, we use the following notation:

$\bullet$ $A=(a_{ij})$ is a payoff matrix of player 1 (Pl), that is, $u_{1}(i,j)=a_{ij}$ .
@ $B=(b_{ij})$ is a payoff matrix of player 2 (P2), that is, $u_{2}(i,j)=b_{ij}$ .
$\bullet$ $S_{1}$ $:=\{1, \ldots, m_{1}\}$ is the set of pure strategies of Pl, where $m_{1}\in N$ .
$\bullet$ $S_{2}$ $:=\{1, \ldots, m_{2}\}$ is the set of pure strategies of P2, where $m_{2}\in \mathbb{N}$ .
$\bullet$ For any $j\in S_{2},$ $I(j)$ $:= \{i^{*}\in S_{1}:a_{ij}=\max_{i\in S_{1}}a_{ij}\}$ is the set of best responses

of Pl.
$\bullet$ For any $i\in S_{1},$ $J(i)$ $:= \{j^{*}\in S_{2}:b_{ij^{*}}=\max_{j\in S_{2}}b_{ij}\}$ is the set of best responses

of P2.
$\bullet$ $F(i,j)$ $:=I(j)xJ(i)$ denotes the set of best responses of $(i,j)\in S_{1}\cross S_{2}$ .
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$\bullet$ A pair $(i^{*},j^{*})$ is a Nash equilibrium of pure strategies if $(i^{*},j^{*})\in F(i^{*},j^{*})$ .

Then Definition 2.1 reduces to Definition 2.3 below.

Deflnition 2.3 (Monotone bimatrix game) $A$ is said to be a monotone $mat\dot{m}$ if for
any $j^{0},j^{1}\in S_{2}$ such that $\epsilon_{2}j^{0}<\epsilon_{2}j^{1}$ and for any $i^{1}\in I(j^{0})$ , there exists $i^{2}\in I(j^{1})$

such that $\epsilon_{1}i^{1}\leqq\epsilon_{1}i^{2}$ . Also, $B$ is said to be a monotone matriv if for any $i^{0},$ $i^{1}$ such that
$\epsilon_{1}i^{0}<\epsilon_{1}i^{1}$ and for any $j^{1}\in J(i^{0})$ , there exists $j^{2}\in J(i^{1})$ such that $\epsilon_{2}j^{1}\leqq\epsilon_{2}j^{2}$ . When
both $A$ and $B$ are monotone matrices, the game is said to be a monotone bimatrix game.

Example 2.4 The following are monotone matrices for $(\epsilon_{1}, \epsilon_{2})=(1,1)$ , where framed
numbers correspond to best responses, and circled numbers correspond to the Nash
equilibrium.

$A=($ , $B=(_{\frac}^{\frac{\fbox{ }26}{\fbox{}6\fbox{}3\fbox{}5}})$ .

Indeed, the following inequalities show that $A$ and $B$ are monotone matrices.

$I(1)=\{2\}$ $I(2)=\{3\}$ $I(3)=\{3\}$

$($V (V 俺

2 $\leqq$ 3 $\leqq$ 3

$J(1)=\{1\}$ $J(2)=\{2\}$ $J(3)=\{1,3\}$

俺 $(v$ り

1 $\leqq$ 2 $\leqq$ 3.

Moreover, since $(i,j)=(3,3)$ belongs to the set of best responses to itself, (3, 3) is a
pure-strategy Nash equilibrium.

Next, we show that structure of monotone games by introducing a directed graphic
representation of set-valued mappings. Since $S$ is the product of finite sets $S_{i}’ s$ , it is also
finite, say, $S=\{s^{1}, \ldots, s^{m}\}$ . For any non-empty set-valued mapping $F$ from $S$ to itself,
we define a directed graph $D_{F}=(S, A_{F})$ by $A_{F}=\{(s^{i}, s^{j}):s^{j}\in F(s^{i}), s^{i}, s^{j}\in S\}$ .
For any selection $f$ of $F$ , that is, $f(s)\in F(s)$ for all $s\in S$ , we similarly define a directed
graph $D_{f}$ . For any $s\in S$ , we denote by od$(s)$ and id $(s)$ the outdegree and indegree of
$s$ , respectively. Then, od$(s)\geq 1$ for $D_{F}$ , and od$(s)=1$ for $D_{f}$ .
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Deflnition 2.5 (Cycle of length l) A set-valued mapping $F$ is said to have a directed
cycle of length $l$ if there exists $l$ distinct points $\{s^{i_{1}}, s^{i_{2}}, \ldots, s^{i_{1}}\}$ of $S$ such that $s^{i_{1}}\in$

$F(s^{i_{l}})$ and $s^{i_{k+1}}\in F(s^{i_{k}})$ for all $k\in\{1, \ldots, l-1\}$ .

Example 2.6 Let $S=\{s^{1}, s^{2}, s^{3}, s^{4}\}$ and define a non-empty set-valued mapping $F$ as
follows:

$F(s^{1}):=\{s^{2}, s^{4}\},$ $F(s^{2}):=\{s^{4}\},$ $F(s^{3}):=\{s^{1}\},$ $F(s^{4}):=\{s^{4}\}$ .

Then the directed graph corresponding to $F$ is given by Figure 1.

Fig. 1 The directed graph corresponding to $F$

Here we note that the existence of a Nash equilibrium corresponds to of a directed
cycle of length 1. Hereafter, in particular, we call a directed cycle of length 1 a loop, for
short. Then the directed graph corresponding to the game in Example 2.4 is given by
Figure 2. FYom the figure, we can observe that monotone games are ensured to exist a
loop on a pass starting from the minimum element (1, 1); see Figure 3. However, the
pass having a loop need not to start from the minimum element. Moreover, we can
reorder the pure-strategies of each player. Thus, there is still room for extend the class
of monotone games. This is discussed in the next subsection.

2.2 An extension of the class of monotone games
In this subsection, we extend the class of monotone games, which introduced by Sato
and Kawasaki [6], and show the games belonging to the class have a pure-strategy Nash
equilibrium. We call a game belonging to the class a partially monotone game.
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$($2, $1)\bulletarrow\bullet(2,2)\bullet(s_{\dot{\bullet}\acute{c}_{O}^{2)(3,.,3)}}(\iota^{\bullet}t_{1)(t^{\bullet\bullet}}^{\iota_{1_{2)(13)}^{arrow\bullet}}})(3,(23)$

Fig 3 The directed graph has aloop,Fig. 2 The directed graph correspond-
which is a pure-strategy Nash equilib-ing to the game in Example 2.4.
rium.

Deflnition 2.7 $G$ is said to be a partially monotone game if there exist a selection $f$

of $F$ , non-empty subsets $T_{i}\subset S_{i}$ , and bijections $\sigma_{i}$ from $T_{i}$ into itself $(i\in N)$ such that
at least one of $T_{i}$ ’s has two or more elements, $f(T)\subset T$ , and

$S-i\preceq_{\sigma_{-i}}t_{-i}\Rightarrow f_{i}(s_{-i})\leqq_{\sigma_{i}}f_{i}(t_{-i})$ (2.1)

for any $i\in N$ .

Theorem 2.8 ([7]) Any partially monotone non-cooperative n-person game has a pure-
strategy Nash equilibrium.

Next, we show an example of the partially monotone game in the case of two-person,
that is, the partially monotone bimatrix game. In the rest of this section, we use the
notation defended in the last section.

Example 2.9 Let $S_{1}=S_{2}=\{1,2,3\}$ , and let us consider the following bimatrix game:

$A=( \bigoplus_{2}3|\begin{array}{l}2\copyright 1\end{array}|\copyright\copyright 3)$ , $B=(_{\frac{21\copyright 1\copyright 2}{O\copyright 2}}^{\frac 1}\cdot$

The game defined by $A$ and $B$ is not a monotone game, since $B$ is not a monotone
matrix. By interchanging the second and third columns, $A$ and $B$ are transformed into
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$A$‘ and $B’$ , respectively, as given below:

$A’=( \bigotimes_{2}3|\begin{array}{l}3\copyright\copyright\end{array}|\copyright 21)$ , $B’=( \frac\frac{2\copyright 1}{\copyright 2\copyright 12\copyright}1\cdot$

Here the game defined by $A’$ and $B’$ is not also a monotone game, since both $A’$ and
$B$‘ are not monotone matrices. However, we remove the third row, $A’$ and $B’$ are
transformed into $A”$ and $B^{\prime l}$ , respectively:

$A”=(\copyright 2|\begin{array}{l}3\copyright\end{array}|\copyright 2)$ , $B”=( \frac{2\copyright 1}{12\copyright}I\cdot$

Then the bimatrix game defined by $A”$ and $B”$ is now a monotone game for $(\epsilon_{1}, \epsilon_{2})=$

$(1,1)$ , so we can know that the game has a pure-strategy Nash equilibrium (3, 3) from
Proposition 2.2. In the original bimatrix game, the equilibrium is (2, 2).

The above procedure is equivalent to taking $T_{1}$ $:=\{1,2\}\subset S_{1},$ $\sigma_{1}$ $:=$ id $T_{2}$ $:=S_{2}$ and
$\sigma_{2}$ permutation (2, 3) in Definition 2.7. Thus, the original game is a partially monotone
one. Further, from this example, we can immediately see the class of partially monotone
games is an extension of the class of monotone games.

The extension of this section is central rule to show that the monotonicity condi-
tion is not only sufficiency but also necessity for the existence of a pure-strategy Nash
equilibrium in the case of two-person.

3 Necessity of the monotonicity condition
In this section, we show that the partial monotonicity is necessary for the existence of a
pure-strategy Nash equilibrium in the case of bimatrix games. The main result of this
section is stated by the next theorem:

Theorem 3.1 ([7]) Assume that a bimatriv game has a pure-strategy Nash equilibrium
$s^{*}$ . If one reaches $s^{*}$ following a sequence $s^{1},$

$\ldots,$
$s^{m}=s^{*}$ in $S$ such that $s^{k+1}\in F(s^{k})$

and $F(s^{k})$ is a singleton for all $k=1,$ $\ldots,$ $m-1$ , then there exist non-empty subsets
$T_{i}(i=1,2)$ and bijections $\sigma_{i}(i=1,2)$ from $T_{i}$ into itself such that

$s^{1}\preceq\sigma s^{2}\preceq\sigma\ldots\preceq\sigma s^{m}=s^{*}$ . (31)
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We need the following lemma to prove Theorem 3.1:

Lemma 3.2 ([7]) If $D_{f}$ is connected in the sense of the undirected graph, then $f$ has
only one directed cycle.

Here we remark that, in Theorem 3.1, the fact that the number of player is two is a
crucial assumption. Indeed, if the number of player is more than three, we can present
an counter example as follows:

Example 3.3 Let Pl, P2 and P3 be players; let the player’s strategies be $i\in\{1,2\}$ ,
$j\in\{1,2\}$ and $k\in\{1,2\}$ , respectively; also let each player’s best responses be the
following:

Then, since
$f(2,2,2)=f_{1}(2,2)xf_{2}(2,2)\cross f_{3}(2,2)=(2,2,2)$ ,

this game has a pure-strategy Nash equilibrium (2, 2,2). However, this game is not
a partially monotone game. Because, if we focus on player $3$ ’s best responses, then
there are only four combinations of two bijections on $S_{1}$ and $S_{2}$ . The above table
on P3 corresponds to $(\sigma_{1}, \sigma_{2})=(id, id)$ . Three tables below correspond to $((1,2), id)$ ,
$(id, (1,2))$ , and $((1,2), (1,2))$ , respectively. However, in any case, the best response does
not satisfy (2.1).

Indeed, for example, when we take $(\sigma_{1}, \sigma_{2})=(id, id)$ , for $(i,j)=(1,1)$ and (1, 2), we
have

$($ 1, $1)\leq(1,2)$ but $f_{3}(1,1)=2\not\leqq 1=f_{3}(1,2)$ ,

which implies that the best response does not satisfy (2.1).
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