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1 Introduction
The digital subscriber line (DSL) is widely used for the device of the broadband Internet ac-
cess. Since the DSL system transports the digital data through the existing telephone cables,
the installation cost is rather low. On the other hand, the crosstalk, which is the inter-user
electromagnetic interference due to the structure of the telephone cable with common bundled
copper wires, is the dominant source of the data loss in DSL system.

Dynamic spectrum management (DSM) is one of effective techniques to mitigate such a loss,
in which the center office controls the powers allocated to each user so that the crosstalk is
cancelled out and the total system throughput improves. Recently, many researchers study the
possible application of DSM techniques to not only DSL but also the wireless network system,
etc. One of the most popular measure for evaluating the total throughput is sum rate (the sum
of all users’ data rates). However, the sum rate function is non-concave for allocated powers,
and hence, the problem of maximizing the sum rate may have many local maxima and usual
optimization techniques are not suitable.

Many researchers have tried to employ algorithms for solving sum rate maximization prob-
lem. Cherubini et al. proposed a simulated annealing method [5], but its convergence is rather
slow. Recently, some researchers proposed optimal spectrum balancing (OSB) algorithms based
on duality theory [1, 4, 9, 13]. In these algorithms, the authors aim to solve the dual problem
instead of the original sum rate maximization problem. Although the dual problem can be
decomposed to smaller-dimensional problems and their objective functions are convex, it is diffi-
cult to solve it exactly since the evaluation of the dual objective function involves a non-concave
maximization. Moreover, the duality gap may still exist when the crosstalk is strong.

Based on the game theoretical ideas, several kinds of water-filling algorithms were proposed
[3, 6, 10-12]. Among them, the most popular one is the iterative water-filling algorithm (IWFA),
which maximizes a certain user’s data rate by the water-filling procedure in each step, and by
repeating the water-filling steps successively, one can finally obtain the power allocation which
may give rise to a good sum rate. In actual, the obtained solution is the Nash equilibrium where
each player’s payoff function is correspondent to his/her data rate. If the crosstalk is small
enough, then the uniqueness of Nash equilibrium is guaranteed [11] and IWFA finds the unique
Nash point efficiently. However, when the crosstalk is strong, obtained solution by IWFA is not
good enough, and it often fails to converge to the Nash equilibrium.

Main purpose of the paper is to propose an algorithm which is efficient for sum rate maxi-
mization problem with strong crosstalk, and to give a theoretical background which justify the
efficiency of our algorithm. The key concept is FDMA (Frequency Division Multiple Access),
which means that the power is allocated exclusively to one user for each tone. In the modern
DSL system, the discrete multitone (DMT) modulation is employed, in which the feasible fre-
quency band is divided to several tones so that the data stream is carried parallely according
to the powers allocated to each tone. The number of tone is 256 for Asymmetric DSL (ADSL)
and 4096 for Very high bit rate DSL (VDSL). Usually, the number of tone is much greater than
that of users.

In this paper, we show that, if the crosstalk coefficients are larger than certain values (ap-
proximately 1/2), then the optimal solution of sum rate maximization problem becomes FDMA.
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One may think it is trivial since the crosstalk interference is active only when different users’
powers coexist in the same tone. However, it is not easy to estimate the crosstalk criterion
whether the optimal power allocation is FDMA or not. In actual, if the crosstalk is small
enough, then a widespread and non-tone-monopolistic power allocation tends to be better than
tone-monopolistic power allocation, since each user’s achievable data rate is $co$ncave for his$/her$

own power vector.
We also propose some algorithms based on the greedy method and the dual decomposition,

which give a sufficiently large sum rate under assumption that the optimal solution is FDMA.
The numerical results indicate that our algorithms calculate the solution in a sufficiently short
time, and show better performance than IWFA when the crosstalk coefficients and/or the power
budgets are large enough.

This paper is organized as follows. In Section 2, we describe the system model and give some
mathematical preliminaries. In Section 3, we derive a sufficient condition under which the global
optimum of the sum-rate maximization problem possesses the FDMA structure. In Section 4,
we further provide a sufficient condition for the existence of a local maxima of the sum-rate
function (subject to individual power constraints) that has the FDMA structure. In Section
5, we establish the NP-hardness of the sum-rate maximization problem and propose a simple
distributed algorithm and two polynomial time combinatorial search algorithms for finding a
FDMA solution with maximal sum-rate. Numerical results are reported in Section 6, and the
concluding remarks are given in Section 7.

Throughout the paper, we use the following notations. We denote the set of frequency tones
and users by $\mathcal{N}$ and $\mathcal{K}$ , respectively, i.e,, $\mathcal{N}$ $:=\{1_{t}\ldots, N\}$ and $\mathcal{K}$ $:=\{1, \ldots, K\}$ . Also, we use
superscript $n$ to denote the frequency tone index and subscript $k$ to denote the user index.

2 Channel model and sum-rate maximization
We first describe the frequency selective Gaussian interference channel model and the mathe-
matical formulation of the sum-rate maximization problem.

Suppose that there are $K$ users sharing a common spectrum which is divided into $N$ frequency
tones numbered by $\{$ 1, 2, $\ldots,$

$N\}$ . Let $S_{k}^{n}\geq 0$ be the transmission power for user $k$ at tone $n$ .
Then, assuming that the interference is treated as white noise, we can write user $k$ ’s achievable
data rate $R_{k}^{n}$ at tone $n[2]$ as

$R_{k}^{n}(S_{1}^{n}, \ldots, S_{K}^{n}):=\log(1+\frac{S_{k}^{n}}{\sigma_{k}^{n}+\sum_{l\neq k}\alpha_{lk}^{n}S_{l}^{n}})$ , (2.1)

where $\sigma_{k}^{n}$ denotes the (normalized) background noise power, and $\alpha_{lk}^{n}$ is the (normalized) crosstalk
coefficient from user $l$ to user $k$ at tone $n$ . Due to normalization, we have $\alpha_{kk}^{n}=1$ for all $k$ .

Throughout, we assume that transmitter $k$ ’s power is bounded by the power budget $P_{k}>0$ ,
i.e.,

$\sum_{n=1}^{N}S_{k}^{n}\leq P_{k}$ , for $k\in \mathcal{K}$ .

For a given power allocation $\{S_{k}^{n}\}$ , transmitter $k$ ’s total achievable data rate is given by $\sum_{n=1}^{N}R_{k}^{n}$

and the total sum-rate is given by $\sum_{k=1}^{K}\sum_{n=1}^{N}R_{k}^{n}$ . Hence, the sum-rate maximization problem
can be written as follows:

$\{S_{1}^{n},\ldots,S_{K}^{n}\}_{n=1}^{N}maximize$

$\sum_{k=1}^{K}\sum_{n=1}^{N}\log(1+\frac{S_{k}^{n}}{\sigma_{k}^{n}+\sum_{l\neq k}\alpha_{lk}^{n}S_{l}^{n}}I$

subject to $\sum_{n=1}^{N}S_{k}^{n}\leq P_{k}$ , $S_{k}^{n}\geq 0$ $n\in \mathcal{N},$ $k\in \mathcal{K}$ . (2.2)
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It can be easily seen that user $k$ ’s total achievable data rate $\sum_{n=1}^{N}R_{k}^{n}$ is concave for user $k$ ’s
power vector $(S_{k}^{1}, \ldots, S_{k}^{N})$ when other users’ power vectors are fixed. However, the total sum-
rate function $\sum_{k=1}^{K}\sum_{n=1}^{N}R_{k}^{n}$ is in general non-concave even if other users’ powers are fixed,
since user $k$ ’s power $S_{k}^{n}$ appears in the denominators of other users’ data rate function.

When interference is absent (or small), it can be easily checked [7] that signal spreading across
spectrum is optimal. In other words, if the crosstalk coefficients are sufficiently small, then all
frequency tones should be utilized by all users. On the other hand, if the crosstalk coefficients are
large, then the communication system becomes interference limited, and spectrum sharing is no
longer optimal. Intuitively, FDMA should yield a larger sum-rate in this case. Mathematically,
FDMA property is defined as follows:

Definition 2.1 A feasible solution $\{S_{1}^{n}, \ldots, S_{K}^{n}\}_{n=1}^{N}$ of the sum-rate maximization problem (2.2)
is said to have FDMA property, if the following implication holds for all $(n, k)\in \mathcal{N}x\mathcal{K}$ :

$S_{k}^{n}>0$ $\Rightarrow$ $S_{l}^{n}=0$ , $\forall l\neq k$ .

To simplify our notations, we let $S^{n},$ $S_{k}$ , and $S$ denote the power vectors at tone $n$ , for user
$k$ , and in the whole system, respectively, i.e.,

$S^{n}:=(S_{1}^{n}, \ldots, S_{K}^{n})\in\Re^{K}$ , $S_{k}:=(S_{k}^{1}, \ldots, S_{k}^{n})\in\Re^{N}$ , and $S:=(S_{1}^{1}, \ldots, S_{K}^{N})\in\Re^{NK}$ .

We denote the power budget vector by $P$ , i.e., $P:=(P_{1}, \ldots, P_{K})\in\Re^{K}$ . Also, we denote the
noise plus interference power for user $k$ at tone $n$ , and the sum of all users’ data rates at tone
$n$ by $X_{k}^{n}$ and $f^{n}$ , respectively, i.e.,

$X_{k}^{n}( S^{n}):=\sigma_{k}^{n}+\sum_{l\neq k}\alpha_{lk}^{n}S_{l}^{n}$
, $f^{n}(S^{n})$ $:= \sum_{k=1}^{K}R_{k}^{n}(S^{n})=\sum_{k=1}^{K}\log(1+\frac{S_{k}^{n}}{X_{k}^{n}})$ . (2.3)

Note that $X_{k}^{n}$ and $f^{n}$ depend on $S^{n}$ only. The following index sets which will be convenient for
describing the FDMA property of a feasible power vector.

Deflnition 2.2 For a feasible solution $S$ of problem (2.2), we define the following sets.

$\mathcal{T}(S);=\{(n, k)|S_{k}^{n}>0\}\subseteq \mathcal{N}\cross \mathcal{K}$ ,
$\mathcal{T}_{k}(S_{k}):=\{n|S_{k}^{n}>0\}\subseteq \mathcal{N}$ ,

$\mathcal{T}^{n}(S^{n}):=\{k|S_{k}^{n}>0\}\subseteq \mathcal{K}$.

Note that $\mathcal{T}_{k}(S_{k})$ denotes the set of all tones used by user $k$ , and $\mathcal{T}^{n}(S^{n})$ denotes the set of all
users using tone $n$ .

3 Sum-rate optimality of FDMA
As mentioned earlier, we expect that an FDMA-type power allocation will maximize the sum-
rate when the crosstalk coefficients are sufficiently large. In this section we show the validity
of this claim and derive an explicit bound on the crosstalk coefficients which will ensure the
existence of an optimal FDMA type solution. For more detailed theories and proofs, see [8].

Let us first introduce a condition on a feasible power allocation vector S.

Condition 1 There holds

(a) $\min_{k\in \mathcal{K}}|\mathcal{T}_{k}(S_{k})|\geq C$ , for some integer $C\geq 2$ .

(b) $\sum_{n=1}^{N}S^{n}=P$ .
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In other words, every user uses at least two tones and exhausts his power budget. Moreover, we
assume that the global maximum satisfies this condition.

Assumption A Any global maximum of problem (2.2) satisfies Condition 1 for some $C\geq 2$ .

Assumption A is difficult to veri $\mathfrak{b}^{r}$ since the global maximum is not known a priori. However,
in a practical DSL system, the number of tones $N$ is usually much larger than the number of
users $K$ , i.e., $K\ll N$ , and the power budget for each user is sufficiently high. In such cases,
Condition 1(a) is supposed to be satisfied with a large $C$ . The following proposition shows
that, when all the crosstalk coefficients are greater than or equal to 1/2, the lower bound $C$ of
$\min_{k\in \mathcal{K}}|\mathcal{T}_{k}(S_{k})|$ can be evaluated by using the constants in the problem only.

Proposition 3.1 Suppose $\alpha_{lk}^{n}\geq\frac{1}{2}$ for all $l,$ $k\in \mathcal{K}$ and $n\in \mathcal{N}$ . Let $C\in[2, N]$ be an arbitrary
integer. If there exists another integer $m\in[C, N]$ such that

$1+ \frac{\rho 0}{m}>(1+\frac{\rho_{M}}{C-1})^{\frac{C-1}{m}}(1+\frac{K\rho_{a}}{N-m+1})$ , (3.1)

where

$\rho_{0}:=\min_{(n,kx\mathcal{K}}\frac{P_{k}}{\sigma_{k}^{n}}$ , $\rho_{M}:=\max\frac{P_{k}}{\sigma_{k}^{n}}(n,k)\in Nx\mathcal{K}$
$\rho_{a}:=\frac{\pi 1\sum^{K}{}_{k=1}P_{k}}{\min_{(n,k)\in \mathcal{N}x\mathcal{K}}\sigma_{k}^{n}}$ ,

then $\min_{k\in \mathcal{K}}|\mathcal{T}_{k}(S_{k})|\geq C$ for any global maximizer $S$ of the sum-rate maximization problem
(2.2).

We now show that, if Assumption A holds and the normalized crosstalk coefficients are
sufficiently greater than 1/2, then optimal spectrum sharing strategy must be FDMA.

Theorem 3.1 Suppose that Assumption A holds. Then, any global maximum of problem (2.2)
must be FDMA, provided that

$\alpha_{lk}^{n}>\frac{1}{2}$ and $\alpha_{lk}^{n}\alpha_{kl}^{n}>\frac{1}{4}(1+\frac{1}{C-1})^{2}$

for all $n\in \mathcal{N}$ and $(k, l)\in \mathcal{K}\cross \mathcal{K}$ with $k\neq l$ .

When $C$ is sufficiently large, say, $C>100$ , we have $1+U^{\frac{1}{-1}}\approx 1$ . In this case, the condition
$\alpha_{lk}^{n}\alpha_{kl}^{n}>\frac{1}{4}(1+e^{\underline{\underline{1}}_{\overline{1}}})^{2}$ is essentially implied by the condition $\alpha_{lk}^{n}>\frac{1}{2}$ . Thus, Theorem 3.1 shows
that if the normalized crosstalk coefficients are sufficiently greater than 1/2, then the optimal
spectrum sharing strategy must be FDMA.

Next, we restrict ourselves on the two-user case $(K=2)$ and show the optimality of FDMA
strategy under a weaker condition than that of Theorem 3.1. Specifically, we show that the con-
dition $\min\{\alpha_{12}^{n}, \alpha_{21}^{n}\}>\frac{1}{2}$ can be dropp$ed$ when $K=2$ , and the optimality of FDMA strategies

is ensured under the condition $\alpha_{21}^{n}\alpha_{12}^{n}>\frac{1}{4}(1+\frac{1}{C-1})^{2}$ alone.

Theorem 3.2 Suppose that $K=2$ and Assumption $A$ holds for some $C\geq 2$ . If

$\alpha_{12}^{n}\alpha_{21}^{n}>\frac{1}{4}(1+\frac{1}{C-1})^{2}$

for all $n\in \mathcal{N}$, then the global manimum of sum-rate maximization problem (2.2) is FDMA.
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Before closing this section, we provide a proposition where the condition $\alpha_{lk}^{n}\geq 1/2$ in
Proposition 3.1 is replaced by $\alpha_{12}^{n}\alpha_{21}^{n}>1/4$ . Although the proposition gives a lower bound $C$

for $\min_{k\in \mathcal{K}}|\mathcal{T}_{k}(S_{k})|$ , it may not be sufficiently tight.

Proposition 3.2 Suppose that $K=2$ and $\alpha_{12}^{r\iota}\alpha_{21}^{n}>1/4$ for all $n\in \mathcal{N}$ . Let $C\in[2, N]$ be
an arbitrary integer. If there exists another integer $m\in[C, N]$ such that (3.1) holds, then

$\min_{k\in \mathcal{K}}|\mathcal{T}_{k}(S_{k})$ I $\geq C$ for any global maximizer $S$ of problem (2.2).

4 Existence of a locally optimal FDMA solution
The goal of this section is to derive some weaker sufficient conditions which will guarantee the
existence of a FDMA type local maxima. Although these conditions do not guarantee the global
optimum to be FDMA, the numerical results in Section 6 show that, under such conditions,
FDMA type power allocations often show better performance than the solutions obtained by
the iterative water-filling algorithm (IWFA).

Let us define the set of FDMA type frequency allocations by

$RA4$ $:= \{\mathcal{L}|\min_{k\in \mathcal{K}}|\mathcal{L}_{k}|\geq 1,$ $\bigcup_{k=1}^{K}\mathcal{L}_{k}=\mathcal{N}$, and $\mathcal{L}_{k}\cap \mathcal{L}_{l}=\emptyset$ $(\forall k\neq l)\}$ .

Here $\mathcal{L}_{k}$ represents the set of frequency tones allocated to user $k$ . For any $\mathcal{L}\in\Phi \mathcal{M}$ , we consider
the following $\mathcal{L}$-restricted sum-rate maximization problem (denoted by SRMP $(\mathcal{L})$ ):

SRMP $(\mathcal{L})$

$\max imize\sum_{n=1,N}^{N}f^{n}(S^{n})\{s_{k}^{1},,s_{k}^{N}\}_{k=1}^{K}=\sum_{k=1}^{K}\sum_{n\in \mathcal{L}_{k}}\log(1+\frac{S_{k}^{n}}{\sigma_{k}^{n}})$

subject to $\sum_{n=1}S^{n}\leq P,$
$S_{k}^{n}\geq 0(n\in \mathcal{L}_{k}),$ $S_{k}^{n}=0(n\not\in \mathcal{L}_{k})$ , ん $\in \mathcal{K}$ ,

where the equality for the objective function (sum-rate function) is valid since FDMA require-
ment implies that there is no interference among users. Notice that SRMP $(\mathcal{L})$ is a concave
maximization, and does not involve any crosstalk coefficient $\alpha_{lk}^{n}$ . Moreover, SRMP $(\mathcal{L})$ is com-
pletely separable with respect to each user $k$ , implying that SRMP $(\mathcal{L})$ can be decomposed into
the following $K$ independent rate maximization problems:

$\max.\cdot mize\sum_{n\in \mathcal{L}_{k}}\log\{S_{k}^{1},..,S_{k}^{N}\}(1+\frac{S_{k}^{n}}{\sigma_{k}^{n}})$

RMP $(\mathcal{L}_{k})$

subject to
$\sum_{n\in \mathcal{L}_{k}}S_{k}^{n}\leq P_{k},$

$S_{k}^{n}\geq 0(n\in \mathcal{L}_{k}),$ $S_{k}^{n}=0(n\not\in \mathcal{L}_{k})$ ,

It is known that each user’s rate maximization problem RMP $(\mathcal{L}_{k})$ can be solved by the water-
filling procedure [3,6, 10-12]. To focus our analysis on the interference in the system, we make
the following high signal to noise ratio assumption.

Assumption $B$ For all $k\in \mathcal{K}$ , there holds

$\gamma_{k}:=\frac{P_{k}+\sum_{n\in \mathcal{L}_{k}}\sigma_{k}^{n}}{|\mathcal{L}_{k}|}>\max_{n\in \mathcal{L}_{k}}\sigma_{k}^{n}$ . (4.1)

Under Assumption $B$ , the water level (see [3,6, 10-12]) is equal to $\gamma_{k}$ , and the global maximum
of SRMP $(\mathcal{L})$ can be described explicitly.

$\{\begin{array}{ll}S_{k}^{n}=\gamma_{k}-\sigma_{k}^{n} (\forall n\in \mathcal{L}_{k})S_{k}^{n}=0 (\forall n\not\in \mathcal{L}_{k})\end{array}$ (4.2)
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for $k=1,$ $\ldots,$
$K$ .

The following proposition gives sufficient conditions under which problem (2.2) has a FDMA
local maximum.

Proposition 4.1 Let the tone allocation set be given by $\mathcal{L}\in \mathcal{J}D\mathcal{M}$ , and $\gamma_{k}$ be defined by (4.1).
Suppose that Assumption $B$ holds. If

$\frac{1}{\sigma_{k}^{n}+\alpha_{lk}^{n}(\gamma_{l}-\sigma_{l}^{n})}-\alpha_{kl}^{n}(\frac{1}{\sigma_{l}^{n}}-\frac{1}{\gamma_{l}})\leq\frac{1}{\gamma_{k}}$ (4.3)

for any $(k, l)\in \mathcal{K}\cross \mathcal{K}$ with $k\neq l$ and $n\in \mathcal{L}_{l}$ , then the global maximum (4.2) of SRMP $(\mathcal{L})$ is
a local maximum of sum-mte maximization problem (2.2).

Although the condition (4.3) can be verified beforehand, it involves all possible combinations
for $k,$ $l$ and $n$ , and concerns only a given tone allocation $\mathcal{L}$ . This makes it inconvenient to apply
Proposition 4.1 in practice. In the following corollary result, we simplify the conditions of
Proposition 4.1 so as to improve its applicability in practice.

Theorem 4.1 Let $C$ be an arbitrary integer such that $1\leq C\leq N/K$ , and denote $P_{M}$ $:=$

$\max_{k}P_{k},$ $P_{0}$ $:= \min_{k}P_{k},$ $\sigma_{M}$ $:= \max_{n,k}\sigma_{k}^{n},$ $\sigma_{0}$ $:= \min_{n,k}\sigma_{k}^{n},$ $\alpha_{0}$ $:= \min_{n,k,l(k\neq l)}\alpha_{lk}^{n},$ $A_{0}$ $:=$

$\min_{n,k,l(k\neq l)}\alpha_{lk}^{n}\alpha_{kl}^{n},$ $\gamma_{M};=P_{M}/C+\sigma_{M},$ $\gamma_{0}:=P_{0}/(N-(K-1)C)+\sigma_{0}$ . Suppose that the
following inequalities hold:

$\gamma_{0>\sigma}M$ , (4.4)
$A0\gamma_{M}(\gamma-\sigma)^{2}+\alpha o(\gamma_{M}\sigma 0+\gamma_{0}\sigma_{M})(\gamma 0-\sigma M)\geq\sigma M\gamma o(\gamma_{M}-\sigma 0)$. (4.5)

Then, for any tone set $\mathcal{L}\in iD\mathcal{M}$ such that $\min_{k\in \mathcal{K}}$ I $\mathcal{L}_{k}|\geq C$ , the global maximum of SRMP $(\mathcal{L})$

is a local maximum of sum-rate maximization problem (2.2). Moreover, if

$P_{0} \geq(N-(K-1)C)(\frac{1}{A_{0}}+\frac{1}{\sqrt{0}}+1)\sigma M$ , (4.6)

then (4.5) holds.

Although condition (4.6) is more restrictive than (4.5), it is more intuitive and easier to
apply in practice. Compared to our earlier results (Theorems 3.1 and 3.2), Theorem 4.1 shows
the existence of a FDMA type local maxima for the sum-rate maximization problem (2.2) even
when the crosstalk coefficients are small (but positive), so long as users’ power budgets are
sufficiently large.

5 Finding an optimal FDMA bandwidth allocation
In this section, we focus our attention on the more practical issue of how to design an optimal
FDMA scheme for a multiuser communication system. The latter entails allocating the available
set of frequency tones to the users in the system. Let us denote the set of FDMA solutions by

$S=\{S\geq 0|S_{k}^{n}S_{l}^{n}=0, \forall k\neq l, \forall n\}$ ,

where the condition $S_{k}^{n}S_{l}^{n}=0$ signifies that no frequency tone can be shared by any two users.
Then, the optimal FDMA frequency allocation problem can be described as follows:

maximizes $\sum_{k=1}^{K}\sum_{n=1}^{N}\log(1+\frac{S_{k}^{n}}{\sigma_{k}^{n}})$

subject to $S\in S$ , $\sum_{n=1}^{N}S_{k}^{n}\leq P_{k}$ , $k=1,$ $\ldots$ , K. (5.1)
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where $S$ denotes the $(NK)$-dimensional vector with entries equal to $S_{k}^{n}$ . Notice that, due to
the FDMA condition, the interference term $\sum_{l\neq k}\alpha_{lk}^{n}S_{l}^{n}$ is absent from the sum-rate objective
function. This makes the objective function concave. However, problem (5.1) remains a non-
convex problem due to the nonconvex constraint $S\in S$ . The following result shows that the
optimization problem (5.1) is NP-hard, even in the case of two users.

Theorem 5.1 For $K=2$ , the optimal bandwidth allocation problem (5.1) is NP-hard. Thus,
the geneml sum-rate maximization problem (2.2) is also NP-hard, even in the two-user case.

Given this negative result, we are naturally led to the problem of designing efficient poly-
nomial time algorithms which can approximately maximize the sum-rates. In what follows, we
propose three simple algorithms for computing an approximately optimal FDMA bandwidth
allocations. (Here, we just describe the concrete algorithms and their backgrounds. For more
detailed discussion, refer to [8]. $)$

The first one is based on dual decomposition which tries to minimize Lagrange dual function
subject to the Lagrange multiplier $\lambda\geq 0$ .

Algorithm 1 (Dual decomposition method)

Step $0$ Choose an initial point $\lambda^{(0)}\geq 0$ and a stepsize $\alpha^{(0)}>0$ . Set $\nu=0$ .

Step 1 For all $(n, k)\in \mathcal{N}\cross \mathcal{K}_{f}$ compute

$(\overline{S}_{k}^{n})^{(\nu)}:=\{\begin{array}{ll}\mathcal{P}_{k}((\lambda_{k}^{(\text{の}})^{-1}-\sigma_{k}^{n}) if \lambda_{k}^{(\nu)}>0P_{k} if \lambda_{k}^{(\nu)}=0,\end{array}$

$(M_{k}^{n})^{(\nu)}:= \log(1+\frac{(\overline{S}_{k}^{n})^{(\nu)}}{\sigma_{k}^{n}})-\lambda_{k}(\overline{S}_{k}^{n})^{(\nu)}$ ,

where $\mathcal{P}(\cdot)$ denotes the projection of a real number onto the interwal $[0, P_{k}]$ . Moreover, for
each $k=1,$ $\ldots,$

$K$ , set the FDMA tone assignment according to

$\mathcal{N}_{k}(\lambda^{(\nu)}):=\{n\in \mathcal{N}|(M_{k}^{n})^{(\nu)}=_{k’}\max_{=1,\ldots,K}(M_{k}^{n},)^{(\nu)}\}$ ,

and calculate the subgmdient by

$g_{k}^{(\nu)}:=P_{k}- \sum_{n\in \mathcal{N}_{k}(\lambda^{(\nu)})}(\overline{S}_{k}^{n})^{(\nu)}$
.

Step 2 Update $\lambda^{(\nu)}$ according to

$\lambda_{k}^{(\nu+1)}=[\lambda_{k}^{(\nu)}-\alpha^{(\nu)}g_{k}^{(\nu)}]_{+}$ , $k=1,2,$ $\ldots,$
$K$ ,

where $[\cdot]_{+}$ denotes the positive part of a real number, and $\alpha^{(\nu)}$ is the stepsize calculated by
an appropriate rule.

Step 3 Go to Step 4 if the termination criterion is satisfied. Otherwise, set $\nu$ $:=\nu+1$ , and
return to Step 1.

Step 4 If $\overline{S}^{(\nu)}$ is feasible for problem (5.1), then output it as the solution. Otherwise, choose
V such that $\Vert g^{(\overline{\nu})}\Vert=\min\{\Vert g^{(0)}\Vert, \ldots, \Vert g^{(\nu)}\Vert\}$ , and calculate the optimal power allocation $S$

based on $\mathcal{N}_{1}(\lambda^{(\nabla)}),$ $\ldots,\mathcal{N}_{K}(\lambda^{(\overline{\nu})})$ . Then, output $S$ as the solution.
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We next present an efficient combinatorial greedy local search algorithm which has an overall
complexity of $O(NK)$ . In this algorithm, we fix the order of tones a priori, and then sequentially
allocate each tone to the user who offers the largest rate increment. This algorithm can be written
as follows.

Algorithm 2 (Local search algorithm A)

Step $0Pe ute$ the tones $n_{1},$ $\ldots,$ $n_{N}$ arbitrarily so that $\{n_{1}, \ldots, n_{N}\}=\mathcal{N}$ . Let $\mathcal{L}_{k}^{(0)}=\emptyset$ and
$\overline{R}_{k}^{(0)}$ $:=0$ for each $k=1,$ $\ldots$ , K. Set $\nu$ $;=0$ .

Step 1 For each $k=1,$ $\ldots$ , $K$ , solve RMP $(\mathcal{L}_{k}^{(\nu)}\cup\{n_{\nu+1}\})$ and obtain its optimal value $\overline{R}_{k}’$ .

Step 2 Find a $\overline{k}$ such that

$\overline{k}=\arg\max_{\in k\mathcal{K}}(\overline{R}_{k}’-\overline{R}_{k}^{(\nu)})$ .

Then, define $\mathcal{L}_{k}^{(\nu+1)}$ and $\overline{R}_{k}^{(\nu+1)}$ by

$\mathcal{L}_{k}^{(\nu+1)}:=\{$ $\mathcal{L}_{k}^{(\nu)}\mathcal{L}_{k}^{(\nu)}\cup\{n_{\nu+1}\}$ $(k\neq^{\overline{\frac{k}{k}}})(k=)$ and $\overline{R}_{k}^{(\nu+1)}:=\{\begin{array}{ll}\overline{R}_{k}’ (k=\overline{k})\overline{R}_{k}^{(\nu)} (k\neq\overline{k})\end{array}$

for each $k=1,$ $\ldots,$
$K$ .

Step 3 Set $\nu$ $:=\nu+1$ . If $\nu=N$ , then terminate. Otherwise, retum to Step 1.

In Step 1, $\overline{R}_{k}’$ can be obtained by the water-filling procedure. In general, the obtained solution
and sum-rate depend on the initial ordering of $\{n_{1}, \ldots, n_{N}\}$ .

In Algorithm 2, we have fixed the order of tones beforehand, and then allocate a tone $n_{\nu+1}$

at the $\nu-$th iteration. However, it is expected that the sum-rate will be improved by considering
all the possible combinations of tones and users at each iteration. A direct implementation of
such a procedure will result in a computational complexity of $O(N^{2}K)$ . However, by sorting
the noise parameters $\{\sigma_{k}^{n}\}$ appropriately, we can reduce its complexity to $O(NK\log N)$ . We
describe the algorithm in the following, where $\mathcal{L}_{k}^{(\nu)},$ $\overline{R}_{k}^{(\nu)}$ , and $\prod^{(\nu)}$ denote user $k$ ’s allocated
tone set, user $k$ ’s temporary data rate, and unallocated tone set at the $\nu$-th iteration.

Algorithm 3 (Local search algorithm B)

Step $0$ For each $k=1,$ $\ldots,$
$K$ , sort the tone indices $\{n_{1}(k), \ldots , n_{N}(k)\}=\mathcal{N}$ so that

$\sigma_{k}^{n_{1}(k)}\leq\cdots\leq\sigma_{k}^{n_{N}(k)}$ .

Let $\mathcal{L}_{k}^{(0)}=\emptyset,$ $R_{k}^{(0)}$ $:=0$ , and $W^{(0)}=\mathcal{N}$ for all $k\in \mathcal{K}$ . Set $\nu$ $:=0$ .
Step 1 For every $k=1,$ $\ldots,$

$K$ , perform the following steps:

Step 1-1 Find a tone $\overline{n}(k)$ $:=n_{i-}(k)$ such that

$i_{-=} \min\{i|n_{i}(k)\in W^{(\nu)}\}$ .

Step 1-2 Solve RMP $(\mathcal{L}_{k}^{(\nu)}\cup\{\overline{n}(k)\})$ and obtain its optimal value $\overline{R}_{k}’$ .
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Step 2 Find a $\overline{k}\in \mathcal{K}$ such that

va $= \arg\max_{\in k\mathcal{K}}(\overline{R}_{k}’-\overline{R}_{k}^{(\nu)})$ .

Define $\mathcal{L}_{k}^{(\nu+1)}$ and $\overline{R}_{k}^{(\nu+1)}$ by

$\mathcal{L}_{k}^{(\nu+1)}:=\{$ $\mathcal{L}_{k}^{(\nu)}\mathcal{L}_{k}^{(\nu)}\cup\{\overline{n}(k)\}$
$(k\neq^{\overline{\frac{k}{k}}})(k=)$ and $\overline{R}_{k}^{(\nu+1)}$

$:=\{\begin{array}{ll}\overline{R}_{k}’ (k=\overline{k})\overline{R}_{k}^{(\nu)} (k\neq\overline{k})\end{array}$

for each $k=1,$ $\ldots$ , K. Then, let $W^{(\nu+1)}$ $:=W^{(\nu)}\backslash \{\overline{n}(\overline{k})\}$ .

Step 3 $If \prod^{(\nu+1)}=\emptyset$ , then terminate. Otherwise, set $\nu$ $:=\nu+1$ and return to Step 1.
In Step $0$ , the computational cost for the sort of $\{n_{1}(k), \ldots, nN(k)\}$ is $O(N\log N)$ for each $k$ .
Step 1-1 implies that tone $\overline{n}(k)\in W^{(\nu)}$ is chosen so that $\sigma_{k}^{\overline{n}(k)}=\min\{\sigma_{k}^{n}|n\in W^{(\nu)}\}$ . In Step
1-2, $\overline{R}_{k}’$ can be obtained by the water-filling procedure. One is tempted to think Algorithm 3
would always yield a better solution than Algorithm 2. While it often does, numerical results in
the next section show that Algorithm 3 sometimes can lead to a worse sum-rate solution than
Algorithm 2.

6 Numerical experiment
In this section, we consider a wireless setup and compare the performance of various spectrum
management algorithms: (1) the dual decomposition method, (2) the local search algorithms,
and (3) the iterative water-filling algorithm (IWFA).

For the dual decomposition method, we choose the initial dual vector $\lambda^{(0)}=(1, \ldots, 1)^{T}$ , and
consider two different stepsize rules:

Stepsize rule A $\alpha^{(\nu)}=1/(v+1)$ .
Stepsize rule $B$ $\alpha^{(\nu)}$

$:=\theta^{(\nu)}(d(\lambda^{(\nu)})-L^{*})/\Vert g^{(\nu)}\Vert^{2}$ , where $L^{*}$ is a known lower bound of the
dual function $d$ , and $\theta^{(\nu)}$ is calculated according to the following rule: (i) $\theta^{(0)}=2$ , (ii)
$\theta^{(\nu+1)}=\theta^{(\nu)}/2$ if $d(\lambda^{(\nu)})\geq d(\lambda^{(\nu-10)})$ for $\nu\geq 10$ , and (iii) $\theta^{(\nu+1)}=\theta^{(\nu)}$ if $d(\lambda^{(\nu)})<$

$d(\lambda^{(\nu-10)})$ or $\nu\leq 9$ .
In implementing this stepsize rule $B$ , we first calculate the sum-rate by the local search algorithm
$B$ , and then use the obtained sum-rate as the lower bound $L^{*}$ . We stop the algorithm when
either $\Vert\lambda^{(\nu+1)}-\lambda^{(\nu)}\Vert\leq 10^{-4}$ or $\nu\geq 300$ .

For IWFA, we let each user choose an initial power level randomly from the interval $[0, \max_{k}P_{k}]$ ,
and terminate the iteration if $\Vert S^{(\nu+1)}-S^{(\nu)}\Vert\leq 10^{-4}$ or $\nu\geq 300$ . As mentioned in Section
1, IWFA maximizes each user’s individual rate in a distributed manner by treating other users’
signals as Gaussian noise. This can be easily implemented using the well-known water-filling
strategy for a single user rate maximization. Since the FDMA concept is not considered in
IWFA, the obtained power spectra are not FDMA in general.

In our simulation, we consider a multiuser wireless communication system in a frequency
selective environment. We define the channel coefficients as $h_{lk}^{n}:=d_{lk}^{-1.8}g_{lk}^{n}$ where $d_{lk}$ denotes
the physical distance between transmitter $l$ and receiver $k$ , and $g_{lk}^{n}$ is a complex normalized
gaussian random variable with zero mean and unit variance. Then, the crosstalk coefficients
and normalized noise power are chosen as $\alpha_{lk}^{n}$ $:=|h_{lk}^{n}|^{2}/|h_{kk}^{n}|^{2}$ and $\sigma_{k}^{n}$ $:=N_{0}/|h_{kk}^{n}|^{2}$ , where the
background noise level is set to $N_{0}=-40dB$ . The programs were coded in MATLAB 7 and
run on a machine with 3. $60GHz$ CPU and $2GB$ RAM.
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Obtained result

Let there be $N=12$ tones shared by $K=4$ users in the system (e.g., the blue tooth setup).
Then we randomly generate 4 pairs of transmitters and receivers so that each transmitter $k$ is
located in the 2-dimensional unit square and $d_{kk}$ (the distance from transmitter $k$ to receiver k)
equals $\Delta>0$ for all $k\in \mathcal{K}^{1}$ Figure 1 shows a simple example, where the solid arrows denote
the desired signal path, and all other edges in the graph (not shown) represent interferences.

We let the distance $d_{kk}=\Delta$ vary from 0.02 to 0.2, and generate 1000 test problems for each
$\triangle$ . As expected, the crosstalk interference becomes stronger when the distance $\Delta$ increases.
For each test problem, we choose power budget $P_{k}$ randomly from the interval [10, 16] $(dB)$ ,
and solve the corresponding spectrum management problem by the dual decomposition method
with stepsize rules A and $B$ (denoted by dual decomposition method A and $B$ respectively), local
search algorithms A and $B$ , and IWFA. The average CPU time among 1000 trials are shown
in Figure 2, which shows that the computational costs of the local search algorithms are much
lower than other algorithms. Figure 3 shows the average of the obtained sum-rates for each $\Delta$ .
It can be seen that, for small $\Delta$ where the crosstalk coefficients are small, IWFA yields higher
sum-rate compared to our FDMA-based methods. This is expected since FDMA is strictly
sub-optimal in low interference environment. However, when $\triangle$ becomes larger, our FDMA-
based methods yield much higher sum-rates than IWFA, confirming the superiority of FDMA
solutions under strong crosstalk conditions. Figure 4 plots the ratios of sum-rates obtained by
our FDMA-based methods relative to that of the local search algorithm A. As the figure shows,
the dual decomposition method $B$ gives the highest average values.
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