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Abstract

We prove that the earth mover’s distance problem reduces to a problem with half the
number of constraints regardless of the ground distance, and propose a further reduced
formulation when the ground distance comes from a graph with a homogeneous neighborhood
structure.

1 Introduction

Earth mover’s distance (EMD in short) proposed by Rubner et al. [4] is a mathematical measure
of the dissimilarity between two distributions. In a recent issue Ling and Okada [3] proposed a
new formulation $EMD- L_{1}$ to compute EMD when the $L_{1}$ ground distance is used. It significantly
simplifies the original formulation of EMD. Motivated by their work, we propose in this paper,
a reduced EMD formulation and prove its equivalence to the original EMD problem via the
flow decomposition theorem regardless of the ground distance employed. We also show that
the number of variables of the reduced EMD formulation is reduced from $O(m^{2})$ to $O(m)$

for a histogram with $m$ locations when the ground distance is derived from a graph with a
homogeneous neighborhood structure.

2 Earth Mover’s Distance

Let us consider two histograms $\{p_{(i,j)}|1\leq i\leq m_{1},1\leq j\leq m_{2}\}$ and $\{q_{(i,j)}|1\leq i\leq m_{1},1\leq$

$j\leq m_{2}\}$ defined on the two-dimensional coordinate system. Histogram is a mapping from a set
of grid locations $(i, j)$ to the set of non-negative weights $p_{(i,j)}$ or $q_{(i,j)}$ , which can be seen a mass
of earth (supply) and a collection of holes (demand), respectively. For example, digital imaging
can be seen as a histogram if luminosity of each pixel corresponds to the weights. Then, by
measuring the least distance to fill the holes with earth, EMD provides the dissimilarity of the
two histograms. With the assumption that the total supply and demand are equal, i.e.,

$\sum_{(i,j)\in N}p_{(i,j)}=\sum_{(i,j)\in N}q_{(i,j)}$
, (2.1)
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where $\mathcal{N}$ $:=\{(i, j)|1\leq i\leq m_{1},1\leq j\leq m_{2}\}$ , EMD is computed as an optimal value of the
following well-known transportation problem of Hitchcock type:

(EMD)

minimize $\sum$ $\sum d_{(i,j)(k,l)}f_{(i,j)(k,l)}$

subject to
$\sum^{(i,j)\in \mathcal{N}(k,l)\in \mathcal{N}}f_{(i,j)(k,l)}=p_{(i,j)}$ for all $(i,j)\in \mathcal{N}$

$\sum_{(k_{r}l)\in J\int}^{(k,l)\in \mathcal{N}}f_{(kl)(i,j)}\}=q_{(i,j)}$ for all $(i,j)\in \mathcal{N}$

$f_{(i,j)(k,l)}\geq 0$ for all $(i,j),$ $(k, l)\in \mathcal{N}$ ,

where $f_{(i,j)(k,l)}$ is a flow from location $(i, j)$ to location $(k, l)$ . The objective function coefficient
$d_{(i,j)(k,l)}$ is a distance between location $(i, j)$ and location $(k, l)$ , and referred to as the ground
distance. Let $m=m_{1}\cross m_{2}$ . For $k=1,2,$ $\ldots,$ $m$ let $E_{k}$ be the $m\cross m$ zero matrix with its
kth row replaced by the m-dimensional row vector $e:=(1,1, \ldots, 1)$ . Let $A$ denote the $m\cross m^{2}$

matrix $[E_{1}|E_{2}|\ldots|E_{m}]$ and $B$ denote the matrix $[I|I|\ldots|I]$ of the same size, where $I$ is
the $m\cross m$ identity matrix. By an appropriate definition of row vector $d$ , column vectors $p$ and
$q$ , and variable column vector $f$ , problem (EMD) is rewritten as follows:

minimize $df$

subject to $Af=p$(EMD) $Bf=q$
$f\geq 0$ .

In the sequel we consider

minimize $dg$

(R) subject to $(A-B)g=p-q$
$g\geq 0$ ,

which we call problem (R), standing for the reduced (EMD), and we denote the optimal value
of a problem by $v(\cdot)$ .
Lemma 2.1.

$v(EMD)\geq v(R)$ .

Proof. Straightforward from the fact that a fea.sible solution of (EMD) is a feasible solution of
(R). $\square$

3 Equivalence of the Two Problems

First note that the matrix $A-B$ is of the form

$[E_{1}-I|E_{2}-I|\ldots|E_{m}-I]$ ,
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and that this is the incidence matrix of a complete directed graph without a self loop on node
set $\mathcal{N}$ We denote its arc set by $\mathcal{D}$ . We classify the nodes according to the sign of $p_{(i,j)}-q_{(i,j)}$ ,
namely

$\mathcal{N}_{+}:=\{(i,j)\in \mathcal{N}|p_{(i,j)}-q_{(i,j)}>0\}$

$\mathcal{N}_{0}:=\{(i,j)\in \mathcal{N}|p_{(i,j)}-q_{(i,j)}=0\}$

$\mathcal{N}_{-}:=\{(i,j)\in \mathcal{N}|p_{(i,j)}-q_{(i,j)}<0\}$ .

Following the convention of network flow theory (see for example [1]), we refer to a node in each
set as deficit node, balanced node and excess node, respectively. Problem (R) is known as an arc
flow formulation of network flow problem and a feasible solution $g$ of (R) is called an arc flow.
Another formulation, a path-and-cycle flow formulation, of the network flow problem starts with
enumerating all directed paths between any pair of nodes and all directed cycles. The decision
variables are the flow value on each path and cycle.

Theorem 3.1 (Theorem 3.5 (Flow Decomposition Theorem), [1]). Every arc flow can be rep-
resented as a path-and-cycle fiow (though not necessarily uniquely) such that every directed path
with positive flow connects a deficit node to an excess node.

Let $\Pi$ and $\Gamma$ be the set of all directed paths and the set of all directed cycles of the network
$(\mathcal{N}, \mathcal{D})$ , respectively. Applying the above theorem to problem (R), we obtain the following
corollary.

Corollary 3.2. Let $g$ be a feasible solution of $(R)$ . Then for each directed path $\pi\in\Pi$ there is
a non-negative path flow value $f(\pi)$ , and for each directed cycle $\gamma\in\Gamma$ there is a non-negative
cycle flow value $f(\gamma)$ with the following two properties:

1. For every arc $((i,j)(k, l))\in \mathcal{D}$ it holds that

$g_{(i,j)(k,l)}= \sum_{)}f(\pi)+\sum_{\gamma\pi:((ij)(k,l))\in\pi\in\Pi:((i,j)(k,l))\in\gamma\in\Gamma}f(\gamma)$
. (3.1)

2. $f(\pi)$ is positive only when path $\pi$ connects a node in $\mathcal{N}_{+}$ to a node in $\mathcal{N}_{-}$ .

The arc-path incidence vector of a directed path $\pi$ is the vector $\delta(\pi)$ of components

$\delta_{(i,j)(k,l)}(\pi):=\{\begin{array}{l}1when ((i, j)(k, l))\in\pi 0 otherwise.\end{array}$

The arc-cycle incidence vector of a directed cycle $\gamma$ , denoted by $\delta(\gamma)$ , is defined in the same
way. Then (4.4) is rewritten as

$g= \sum_{\pi\in\Pi}f(\pi)\delta(\pi)+\sum_{\gamma\in\Gamma}f(\gamma)\delta(\gamma)$
.

Let

$g’= \sum_{\pi\in\Pi}f(\pi)\delta(\pi)$
. (3.2)
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Lemma 3.3. If $g$ is a feasible solution of $(R)$ , the following statements hold.

1. $g’$ is a feasible solution of $(R)_{f}$

2. $dg’\leq dg$ .

Proof. Straightforward from the fact that $(A-B)\delta(\gamma)=0$ for every $\gamma\in\Gamma,$ $d\geq 0$ and the
construction (3.2) of $g’$ . $\square$

Take a pair of nodes $(i,j)\in \mathcal{N}_{+}$ and $(k, l)\in \mathcal{N}$-and let $\Pi((i,j)(k, l))$ be the set of all
directed paths connecting $(i,j)$ to $(k, l)$ , i.e., starting at $(i,j)$ and ending at $(k, l)$ . Let $g”$ be the
vector of components

$g_{(i_{1}j)(k,l)}^{J/}:=\{\begin{array}{ll}\sum_{\pi\in\Pi((i,j)(k,l))}f(\pi) when (i,j)\in \mathcal{N}_{+} and (k, l)\in\mathcal{N}_{-}0 otherwise.\end{array}$ (3.3)

Figure 1 shows the node set $\mathcal{N}$ and some path-flows and a cycle-flow. The broad arrow from
$(i,j)$ to $(k, l)$ shows $g_{(i,j)(k,l)}’’$ .

Figure 1: Reduction procedure

Lemma 3.4. If $g$ is a feasible solution of $(R)$ , the following statements hold.

1. $g”$ is a feasible solution of $(R)$ ,

2. $g_{(k,l)(i,j)}^{\prime;}=0$ for all $(i,j)\in \mathcal{N}_{+}$ and $(k, l)\in \mathcal{N}$,

3. $g_{(i,j)(k,l)}’’=g_{(k,l)(i,j)}’’=0$ for all $(i,j)\in \mathcal{N}_{0}$ and $(k, l)\in \mathcal{N}$,

4. $g_{(i,j)(k,l)}’’=0$ for all $(i,j)\in \mathcal{N}_{-}$ and $(k, l)\in \mathcal{N}$, and

5. $dg”\leq dg’$ .
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Proof. The first four claims are readily seen by Corollary 3.2 (2) and the construction (3.3) of
$g”$ . Let $s(\pi)$ and $t(\pi)$ denote the starting node and the terminal node of path $\pi$ , respectively.
The last claim is seen as follows.

$dg’= \sum_{(i,j)\in \mathcal{N}}\sum_{(k,l)\in \mathcal{N}}d_{(i,j)(k,l)}g_{(i,j)(k,l)}’$

$= \sum_{(i,j)\in N}\sum_{(k,l)\in N}d_{(i,j)(k,l)}\sum_{\pi:((i,j)(k,l))\in\pi\in\Pi}f(\pi)$

$= \sum_{\pi\in\Pi}f(\pi)\sum_{((i,j)(k,l))\in\pi}d_{(i,j)(k,l)}$

$\geq\sum_{\pi\in\Pi}f(\pi)d_{\epsilon(\pi)t(\pi)}$

$= \sum_{(i,j)\in \mathcal{N}(k}\sum_{l)\in N}d_{(i,j)(k,l)}\sum_{\pi\in\Pi((i,j)(k,l))}f(\pi)$

$=$ $\sum$ $\sum d_{(i,j)(k,l)}g_{(i,j)(k,l)}’’$

$(i,j)\in \mathcal{N}(k,l)\in \mathcal{N}$

$=dg”$ ,

where the inequality is due to the triangle inequality of distance $d_{(i,j)(k,l)}$ . $\square$

By the above lemma and the equality constraint of (R)

$\sum_{(k,l)\in N}g_{(i,j)(k,l)}-\sum_{(k,l)\in N}g_{(k,l)(i,j)}=p_{(i,j)}-q_{(i,j)}$

we see

$\sum g_{(i,j)(k,l)}’’=p_{(i,j)}-q_{(i,j)}$ for $(i,j)\in \mathcal{N}_{+}$ (3.4)
$(k,l)\in N$

$\sum_{(k,l)\in \mathcal{N}}g_{(i,j)(k,l)}’’=\sum_{(k,l)\in \mathcal{N}}g_{(k,l)(i,j)}’’=0$
for $(i,j)\in \mathcal{N}_{0}$ (3.5)

$\sum_{(k,l)\in \mathcal{N}}g_{(k,l)(i,j)}’’=-p_{(i,j)}+q_{(i,j)}$
for $(i,j)\in \mathcal{N}_{-}$ . (3.6)

Finally add $q_{(i,j)}$ flow to $g_{(i,j)(i,j)}’’$ for $(i, j)\in \mathcal{N}_{+},$ $p_{(i,j)}$ flow to $g_{(i,j)(i,j)}’’$ for $(i, j)\in \mathcal{N}_{-}$ , and
$p_{(i,j)}=q_{(i,j)}$ flow to $g_{(i,j)(i,j)}’’$ for $(i, j)\in \mathcal{N}_{0}$ to make $g^{l//}$ . Since $d_{(i,j)(i,j)}=0$ , we obtain the
following lemma.

Lemma 3.5. If $g$ is a feasible solution of $(R)$ , the following statements hold.

1. $g”’$ is a feasible solution of $(EMD)$ ,

2. $dg”’=dg”$ .

Combining the above lemmas, we have the following inequality.

Lemma 3.6.

$v(EMD)\leq v(R)$ .
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By Lemma 2.1 and 3.6 we see that problem (R) yields the same optimal objective function
value as problem (EMD) does.

Theorem 3.7.

$v(EMD)=v(R)$ .

Note that this equality holds no matter what distance $d_{(i,j)(k,l)}$ is postulated on $\mathcal{N}$

4 Problem Reduction Based on Homogeneous Neighborhood
Structure

Suppose we are given a connected undirected graph, denoted by $\mathcal{G}$ , with node set $\mathcal{N}$ and edge
set $\mathcal{E}$ without a self-loop. The edge connecting nodes $(i,j)$ and $(k, l)$ is denoted by $[(i, j)(k, l)]$
and is assigned a positive value $p_{[(i,j)(k,l)]}$ called length.

For each pair of nodes $(i,j)$ and $(k, l)$ let $d_{(i,j)(k,l)}^{\ell}$ be the shortest length of paths between
the pair. It is known and easily seen that $d_{(i,j)(k,l)}^{\ell}$ provides a distance defined on $\mathcal{N}$

For each node $(i,j)\in \mathcal{N}$ we define

$\mathcal{N}_{\mathcal{G}}(i,j):=\{(k, l)\in \mathcal{N}|[(i,j)(k, l)]\in \mathcal{E}\}$ , (4.1)

and refer to $\mathcal{N}_{\mathcal{G}}(i,j)$ as node $(i,j)$ ’s neighborhood on $\mathcal{G}$ .
Deflnition 4.1. Let $\mathcal{H}$ be a finite subset of integer grid points of $\mathbb{R}^{2}$ without $(0,0)$ and $\ell_{(i,j’)}^{\mathcal{H}}$

be a positive number for $(i’,j’)\in \mathcal{H}$ . Graph $\mathcal{G}=(\mathcal{N}, \mathcal{E}, \ell)$ is said to have the homogeneous
neighborhood stru cture of $(\mathcal{H}, \ell^{\mathcal{H}})$ when

1. $\mathcal{N}_{\mathcal{G}}(i, j)=\mathcal{N}\cap\{(i+i’,j+j’)|(i’,j’)\in \mathcal{H}\}$ for all $(i, j)\in \mathcal{N}$, and

2. $\ell_{[(i,j)(k,l)]}=l_{(k-i,l-j)}^{\mathcal{H}}$ for all $(k, l)\in \mathcal{N}_{\mathcal{G}}(i,j)$ and $(i,j)\in \mathcal{N}$

Two graphs together with corresponding homogeneous neighborhood structures are shown
in Figure 2.

The distance $d^{\ell}$ defined by the upper graph $\mathcal{G}$ , Manhattan graph, with the neighborhood
structure $\mathcal{H}=\{(-1,0),$ $(0, -1),$ $(0,1),$ $(1,0)\}$ and

$l_{(i,j’)}^{?t}=1$ for all $(i’,j’)\in \mathcal{H}$ (4.2)

is the $L_{1}$ distance on $\mathcal{N}$, while the other graph, Union Jack graph, with the neighborhood
structure $\mathcal{H}=\{(-1,0), (-1, -1), (0, -1), (1, -1), (1,0), (1,1), (0,1), (-1,1)\}$ and $\ell_{(i,j)}^{\mathcal{H}}=1$ for
all $(i’, j’)\in \mathcal{H}$ defines the $L_{\infty}$ distance. Bertsimas et al. [2] proposed the D-norm for $y\in \mathbb{R}^{n}$

and $\rho\in[1, n]$ as the optimal value of the linear program

maximize
$\sum_{j=1n}u_{j}|y_{j}|n$

subject to
$\sum_{j=1}u_{j}\leq\rho$

; $0\leq u_{j}\leq 1$ for $j=1,$ $\ldots,$
$n$ .
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neighborhood structure
for $L_{1}$

neighborhood strucmre
for D-norm

Figure 2: Graph and neighborhood structure defining a distance on $\mathcal{N}$

The Union Jack graph with

$\ell_{(i’,j’)}^{\mathcal{H}}=\{\begin{array}{l}1 for (i’,j’)\in\{(-1,0), (0, -1), (1,0), (0,1)\}\rho for (i’,j’)\in \{(-- 1, -1), (1, -1), (1,1), (-1,1)\}\end{array}$ (4.3)

defines the D-norm, which gives, by setting the parameter $\rho$ appropriately $(e.g. \rho=\sqrt{2})$ , an
in-between of $L_{1}$ and $L_{2}$ .

Suppose the ground distance $d_{(i,j)(k,l)}$ among locations of $\mathcal{N}$ is given as the distance $d_{(i,j)(k,l)}^{\ell}$

for a graph $\mathcal{G}$ with a homogeneous neighborhood structure. Then for two distinct locations $(i,j)$

and $(k, l)$ there is an undirected path of edges $[(i_{0},j_{0})(i_{1},j_{1})],$ $[(i_{1},j_{1})(i_{2},j_{2})],$
$\ldots,$

$[(i_{n-1},j_{n-1})(i_{n},j_{n})]$

such that $(i_{0},j_{0})=(i,j),$ $(i_{n},j_{n})=(k, l)$ ,

$(i_{r+1},j_{r+1})\in \mathcal{N}_{Q}(i_{r},j_{r})$ for $r=0,$ $\ldots,$ $n-1$
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and

$d_{(i,j)(k,l)}= \sum_{r=0}^{n-1}d_{(i_{r},j_{r})(i_{r+1},j_{r+1})}=\sum_{r=0}^{n-1}p_{(i_{r+1}-i_{r},j_{r+1}-j_{r})}\mathcal{H}$ . (4.4)

Add the constraints

$g_{(i,j)(k_{1}l)}=0$ for all $(i,j)\in \mathcal{N}$ and $(k, l)\not\in \mathcal{N}_{\mathcal{G}}(i,j)$

to problem (R) and denote it by (R), i.e.,

(R)

minimize $dg$

subject to $(A-B)g=p-q$
$g\geq 0$

$g_{(i,j)(k,l)}=0$ for all $(i,j)\in \mathcal{N}$ and $(k, l)\not\in \mathcal{N}_{\mathcal{G}}(i,j)$ ,

or equivalently

(R)

minimize
$\sum_{(i,j)\in N(k_{\dagger}l)}\sum_{\in \mathcal{N}g(i,j)}\ell_{(k-i,l-j)}^{\mathcal{H}}g_{(i,j)(k,l)}$

subject to
$\sum_{(k,l)\in \mathcal{N}_{Q}(i,j)}g_{(i,j)(k,l)}-\sum_{(k,l)\in \mathcal{N}_{G(i,j)}}g_{(k_{2}l)(i,j)}=p_{(i,j)}-q_{(i,j)}$

for all $(i,j)\in \mathcal{N}$

$g_{(i_{2}j)(k,l)}\geq 0$ for all $(i,j)\in \mathcal{N},$ $(k, l)\in \mathcal{N}_{Q}(i,j)$ .

We see that problem (R) is equivalent to problem (R).

Lemma 4.2. Suppose that the graph $\mathcal{G}$ has the homogeneous neighborhood structure $(\mathcal{H}, \ell^{\mathcal{H}})$ and
the ground distance $d_{\underline{(}i,j)(k,l)}$ is given as the shortest length of paths in $\mathcal{G}$ . Then every optimal
solution of problem $(R)$ is an optimal solution of problem $(R)$ , and

$v(\overline{R})=v(R)$ .

Proof Let $((i,j)(k, l))$ be an arc of $\mathcal{D}$ . Since the ground distance is given as the shortest length
of paths in $\mathcal{G}$ , there is a series of arcs $((i_{0},j_{0})(i_{1},j_{1})),$ $((i_{1},j_{1})(i_{2},j_{2})),$

$\ldots,$
$((i_{n-1},j_{n-1})(i_{n},j_{n}))$

such that $(i_{0},j_{0})=(i,j),$ $(i_{n},j_{n})=(k, l),$ $(i_{r+1},j_{r+1})\in \mathcal{N}_{\mathcal{G}}(i_{r},j_{r})$ for $r=0,1,$ $\ldots,$ $n-1$ , and
also the equality (4.4) holds.

Now suppose we are given a feasible flow $g$ of problem (R). The above observation implies
that replacing the arc flow of $g_{(i,j)(k,l)}$ on arc $((i, j)(k, l))$ by the path-flow along $((i_{0},j_{0})(i_{1},j_{1}))$ ,
$((i_{1},j_{1})(i_{2},j_{2})),$

$\ldots,$
$((i_{n-1},j_{n-1})(i_{n},j_{n}))$ does not change the objective function value. Repeat-

ing this procedure if necessary, we will obtain a feasible flow satisfying the additional equality
constraints

$g_{(i,j)(k,l)}=0$ for all $(i,j)\in \mathcal{N}$ and $(k, l)\not\in \mathcal{N}_{\mathcal{G}}(i, j)$

of (R) without changing the objective function value. This completes the proof. ロ

Theorem 4.3. When the graph $\mathcal{G}$ has the homogeneous neighborhood structure $(\mathcal{H}, \ell^{\mathcal{H}})$ and
problem $(EMD)$ employs the shortest length of paths in $\mathcal{G}$ as the ground distance. Then

$v(\overline{R})=v(EMD)$ .
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Proof. Straightforward $hom$ Theorem 3.7 and Lemma 4.2. 口

Let $h$ denote the size of $\mathcal{H}$ , which is four for the Manhattan graph and eight for the Union
Jack graph. Then comparing (R) with (EMD), the number of variables reduces from $m^{2}$ to $mh$ .
This will greatly lighten the computational burden.

5 Experimental Results

We will report on some experimental results to demonstrate the usefulness of EMD and the com-
putational effectiveness of our proposed formulation. The images we used are three sequential
images of a swimmer in Figure 3 each of which consists of $32\cross 32$ pixels. By letting weight $p_{(i,j)}$

(i) (ii) (iii)

Figure 3: Sequential $((iii)arrow(ii)arrow(i))$ swimmer images

be 1 when the grid location $(i,j)$ corresponds to a colored pixel and $0$ otherwise, we construct
the three different $32\cross 32$ histograms and compute the dissimilarity among these histograms by

(a) Frobenius norm $(i.e., \sqrt{\sum_{i--1}^{m_{1}}\sum_{j--1}^{m_{2}}(p_{(i,j)}-q_{(ij)})^{2}})$ ,

(b) (EMD) with $L_{2}$ ground distance,

(c) (R) with Manhattan graph and (4.2), and

(d) (R) with Union Jack graph and (4.3) with $\rho=1.3$ .

All computations are conducted on a personal computer with Core2 CPU $(2.66GHz)$ and $4GB$

memory. Problems (b), (c) and (d) are solved by using CPLEX 10.1, OPL Studio 5.1.
The column Time of Table 1 shows the average time for computing the three values of

dissimilarity, and the columns $\# Var$ and #Const show the number of variables and the number
of constraints of each problem, respectively.

Noteworthy points are in order. Firstly, Frobenius norm (a) provides almost the same value
of dissimilarity to all pairs of histograms, while (b), (c) and (d) give relatively large value of
dissimilarity to the pair $(i)rightarrow(iii)$ and successfully reflect the sequential nature of the images.
Secondly, the values of dissimilarity given by (d) are very close to those by (b). This supports
that Manhattan graph with $\rho=1.3$ sufficiently approximates the $L_{2}$ ground distance. Thirdly,
because of the remarkable reduction of problem size (see the columns #Var and #Const), (c)
and (d) reduce the computational time sharply in contrast to (b). This reduction would be
especially valuable when applied to image retrieval systems that need to compute dissimilarity
of a large number of pairs of images.
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Table 1: Dissimilarity and computational time of Frobenius norm, (EMD) and (R)

6 Conclusion

We have proved that the earth mover’s distance problem reduces to a problem with half the
number of constraints regardless of the ground distance. Furthermore, we have proposed a fur-
ther reduced formulation when the ground distance comes $hom$ a graph with a homogeneous
neighborhood structure. The preliminary experiment has shown that the reduction helps com-
pute the earth mover’s distance efficiently. In this paper we have assumed that the location has
two coordinates such as $(i,j)$ , however, it can be generalized to a higher dimensional coordinate
system with a slight modification.
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