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1 lntroduction
In this paper, we consider N-person noncooperative games with uncertain data. For them,

distribution-free models based on the worst-case analysis attract much attention in recent years [1, 13].
In such models, each player makes a decision according to the idea of robust optimization [5, 6, 8].
Originally, robust optimization is a technique for handling optimization problems with uncertain
parameters, in which those uncertain parameters are assumed to belong to so-called uncertainty sets,
and then the objective function is minimized (or maximized) by taking into account the worst possible
case. An equilibrium resulting from the robust optimization by each player is called a robust Nash
equilibrium, and the problem of finding a robust Nash equilibrium is called a robust Nash equilibrium
problem. Hayashi, Yamashita, and Fukushima [13] defined the concept of robust Nash equilibria for
bimatrix games. Under the assumption that uncertain sets are expressed by means of the Euclidean
or the Frobenius norm, they showed that each player’s problem reduces to a second-order cone
program (SOCP) [2] and the robust Nash equilibrium problem can be reformulated as a second-order
cone complementarity problem (SOCCP) [11, 12]. In this paper, we extend the definition of robust
Nash equilibria in [1] and [13] to N-person non-cooperative games with nonlinear cost functions. In
particular, we show existence of robust Nash equilibria under the assumption that each player’s cost
function is convex with respect to his strategy, while [1] and [13] only considered the linear case.
Moreover, we give some sufficient conditions for uniqueness of a robust Nash equilibrium. In order to
solve certain classes of robust Nash equilibrium problems, we reformulate them to second-order cone
complementarity problems.

Throughout the paper, we use the following notations. For a set $X,$ $\mathcal{P}(X)$ denotes the set consisting
of all the subsets of X. $\Re_{+}^{n}$ denotes the nonnegative orthant in $\Re^{rl}$ , that is, $\Re_{+}^{n};=\{x\in\Re^{n}|Xi\geq 0(i=$

$1,$
$\ldots,$

$n)\}$ . For a vector $x\in\Re^{n},$ $||x||$ denotes the Euclidean norm defined by $||x||$ $:=\sqrt{x^{T}x}$ . For a ma-
trix $M=(M_{ij})\in\Re^{nxm},$ $||M||_{F}$ is the Frobenius norm $de!ined$ by $||M||_{F}$ $:=( \sum_{i=l}^{n}\sum_{j=1}^{m}(M_{\iota’j})^{2})^{1/2}$ .

2 Robust Nash equilibrium
In this paper, we consider an $N$ -person non-cooperative game in which each player tries to minimize

his own cost. Let $x^{i}\in\Re^{m_{i}}$ , $Si\subseteq\Re^{m_{i}}$ , and $f_{i}$ : $\Re^{m_{i}}x\Re^{m-j}arrow\Re$ be player $i$ ’s strategy, strategy set,
and cost function, respectively. Moreover, we denote

$\mathcal{I}:=\{1, \ldots, N\}$ , $\mathcal{I}_{-i};=\mathcal{I}\backslash \{i\}$ ,
$m:= \sum_{j\in \mathcal{I}}m_{j}$

,
$m_{-i}:= \sum_{j\in \mathcal{I}_{-j}}m_{j}$

,

$x:=(x^{j})_{j\in \mathcal{I}\in\Re^{m}}$ , $x^{-i}:=(x^{j})_{j\in \mathcal{I}_{-j}}\in\Re^{\prime n_{-j}}$ ,

$S:= \prod_{j\in \mathcal{I}}S_{j}\subseteq\Re^{m}$
,

$s_{-i}:= \prod_{j\in \mathcal{I}_{-i}}s_{j}\subseteq\Re^{ln-i}$
.
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When the complete information is assumed, each player $i$ decides his own strategy by solving the
following optimization problem with the opponents’ strategy $x^{-i}$ fixed:

minimize $f_{i}(x^{i}, x^{-i})$

$x^{\dot{\iota}}$ (2.1)
subject to $x^{i}\in S_{i}$ .

A tuple $(\overline{x}^{1},\overline{x}^{2}, \ldots , \overline{x}^{N})$ satisfying $x^{\neg} \in\arg\min_{x^{i}\in S;}f_{i}(x^{ii}\overline{x})$ for each player $i=1,$ $\ldots$ , $N$ is
called a Nash equilibrium. In other words, if each player $i$ chooses the strategy $\overline{x}^{i}$ , then no player has
an incentive to change his own strategy. The Nash equilibrium is well-defined only when each player
can estimate his opponents’ strategies and evaluate his own cost exactly. In the real situation, however,
any information may contain uncertainty such as observation errors or estimation errors. Thus, in this
paper, we focus on games with uncertainty.

To deal with such uncertainty, we introduce uncertainty sets $U_{i}$ and $X_{i}(x^{-i})$ , and assume the fol-
lowing statements for each player $i\in \mathcal{I}$ :

(A) Player $i$ ’s cost function involves a parameter $\hat{u}^{i}\in\Re^{v_{l}}$ , i.e., it can be expressed as $f_{i}^{\hat{u}^{i}}$ : $\Re^{m_{i}}x$

$\Re^{m-l}arrow\Re$ . Although player $i$ do not know the exact value of $\hat{u}^{i}$ itself, he can estimate that it
belongs to a given nonempty set $U_{i}\subseteq\Re^{v_{l}}$ .

(B) Although player $i$ knows his opponents’ strategies $x^{-i}$ , his actual cost is evaluated with $x^{-i}$

replaced by $\hat{x}^{-i}=x^{-i}+\delta x^{-i}$ , where $\delta x^{-i}$ is a certain error or noise. Player $i$ cannot know the
exact value of $\hat{x}^{-i}$ . However, he can estimate that $\hat{x}^{-i}$ belongs to a ceitain nonempty set $X_{j}(x^{-i})$ .

Then, each player is required to address the following family of problems involving uncertain param-
eters $\hat{u}^{i}$ and $\hat{x}^{-i}$ :

minimize $f_{i}^{\hat{u}^{j}}(x^{t},\hat{x}^{-i})$

$x^{i}$ (2.2)
subject to $x^{j}\in S_{i}$ ,

where $\hat{u}^{i}\in U_{i}$ and $\hat{x}^{-i}\in X_{i}(x^{-i})$ . We further assume that each player chooses his strategy according
to the following criterion:

(C) Player $i$ tries to minimize his worst cost under assumptions (A) and (B).

From assumption (C), each player considers the worst cost function $\overline{f_{\dot{\iota}}}$ ; $\Re^{m_{i}}x\Re^{m-i}arrow(-\infty, +\infty]$

defined by

$\tilde{f_{i}}(x^{i}, x^{-i})$ $:= \sup\{f_{i}^{\hat{u}^{i}}(x^{i},\hat{x}^{-i})|\hat{u}_{i}\in U;,\hat{x}^{-\dot{\iota}}\in X_{i}(x^{-l})\}$ , (2.3)

and solves the following worst cost minimization problem:

nunimize $\tilde{f_{i}}(x^{i}, x^{-i})$

$X^{j}$ (2.4)
subject to $x^{j}\in S_{i}$ .

Note that (2.4) is regarded as a complete information game with cost functions $\tilde{f_{i}}$ . Based on the above
discussions, we define the robust Nash equilibrium.

Definltion 2.1. Let $\tilde{f_{i}}$ be defined by (2.3) for $i=1,$ $\ldots$ , N. A tuple $(\overline{x}^{i})_{i\in \mathcal{I}}$ is called a robust Nash
equilibrium ofgame (2.2), if $\overline{x}^{i}\in\arg\min_{x^{i}\in S_{l}}\tilde{f_{i}}(x^{i},\overline{x}^{-i})$for all $i$ , i. e., a Nash equilibrium of game
(2.4). The problem offinding a robust Nash equilibrium is called a robust Nash. equilibrium problem.
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3 Existence of robust Nash equilibria
In this section, we give sufficient conditions for the existence of a robust Nash equilibria. Note that

$X_{i}(x^{-\iota})$ given in (B) can be regarded as a set-valued mapping $X_{i}$ $($ . $)$ with variable $x^{-i}$ .
In what follows, we suppose that $X_{i}(\cdot),$ $U_{i},$

$f^{u^{i}}$ and $S_{i}$ in (A) and (B) satisfy the following assump-
tion.

Assumption 1. For every $i\in \mathcal{I}$, the following statements hold.

(a) Thefunction $G_{i}$ : $\Re^{\prime n}lx\Re^{m_{-t}}x\Re^{v_{i}}arrow\Re$ defined by $G_{i}(x^{i}, x^{-i}, u^{i})$ $:=f_{i}^{u^{i}}(x^{\iota’}, x^{-i})$ is continu.
$ous$.

(b) The set-valued mapping $X_{i}$ : $\Re^{m_{-i}}arrow \mathcal{P}(\Re^{m_{-i}})$ is continuous, and $X_{i}(x^{-i})$ is nonempty and
compactfor any $x^{-i}\in S_{-i}$ .

(c) The set $U_{i}\subseteq\Re^{\nu_{i}}$ is nonempty and compact.
(d) The set Si is nonempty, compact and convex, andfunction $f_{i}^{u^{i}}(\cdot, x^{-i})$ : $\Re^{m}iarrow\Re$ is convex on $S_{i}$

for anyfixed $x^{-i}$ and $u^{i}$ .

Under Assumption 1, the function $\tilde{f_{i}}(x^{i}, x^{-i})$ defined by (2.3) has the following properties:
$\bullet$ $\tilde{f_{i}}(x^{i}, x^{-i})$ is continuous and finite at any $(x^{j}, x^{-i})\in S_{i}xS_{-i}$ .
$\bullet$ For any fixed $x^{-i}\in S_{-i}$ , function $\tilde{f_{i}}(\cdot, x^{-i})$ : $\Re;n_{j}arrow\Re$ is convex on $S_{i}$ .

The continuity and finiteness of $\tilde{f_{i}}$ can be verified from [4, Theorem 1.4.16], while the convexity of
$\tilde{f_{i}}(\cdot, x^{-i})$ follows from [7, Proposition $1.2.4(c)$].

The following lemma is a well-known result for N-person non-cooperative games.

Lemma 3.1. [3, Theorem 9.1.1] Suppose that, for every player $i\in \mathcal{I},$ $(i)$ the strategy set Si is
nonempty, convex and compact, (ii) the cost function $f_{i}$ : $\Re^{m}ix\Re^{m-i}arrow\Re$ is continuous, and
(iii) $f_{i}(\cdot, x^{-i})$ is convexfor any $x^{-i}\in S_{-i}$ . Then, game (2.1) has at least one Nash equilibrium.

By this lemma, we obtain the following theorem for the existence of a robust Nash equilibrium in game
(2.2). For the proof of the following theorem, refer to [14].

Theorem 3.2. Suppose that Assumption 1 holds. Then, game (2.2) has at least one robust Nash
equilibrium.

4 Uniqueness of the robust Nash equilibrium
In the previous section, we have studied sufficient conditions for existence of robust Nash equilibria.

Under such conditions, there exist a number of robust Nash equilibria in general, and it is difficult to
find them all. In this section, we therefore smdy conditions for uniqueness of a robust Nash equilib-
rium.

For complete information games, Rosen [15] gave some conditions for the uniqueness of a Nash
equilibrium. Those conditions are essentially equivalent to the strict monotonicity of the vector-valued
function involved in the equivalent variational inequality problem (VIP) [9]. Moreover, such a vector-
valued function is defined by using the derivatives of all players’ cost functions. However, since the
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worst cost function $\tilde{f_{i}}$ defined by (2.3) is in general nondifferentiable, the VIP reformulation approach
cannot be applied directly. This fact prompts us to consider the generalized VIP (GVIP), which is de-
fined by means of a set-valued mapping. Then, by using the uniqueness results for Gr, we establish
sufficient conditions for the uniqueness of a robust Nash equilibrium.

For a given set-valued mapping $\mathcal{F}$ : $\Re^{n}arrow$ $\mathcal{P}(\Re^{n})$ and a nonempty closed convex set $\Omega$,
GVIP$(\mathcal{F}, \Omega)$ is to find a vector $x\in\Omega$ such that

GVIP$(\mathcal{F}, \Omega)$ : ヨ$\xi\in \mathcal{F}$(x), $\{\xi,$ $y-x)\geq 0$ $\forall y\in\Omega$ . (4.1)

If the set-valued mapping $\mathcal{F}$ is given by $\mathcal{F}(x)=\{F(x)\}$ for a vector-valued function $F$ : $\Re^{n}arrow\Re^{n}$ ,
then the GVIP reduces to the following VIP:

VIP$(F, \Omega)$ : $\{F(x), y-x\}\geq 0$ $\forall y\in\Omega$ . (4.2)

It is well known that if the function $F$ is strictly monotone, then VIP (4.2) has at most one solution [9].
In fact, a similar result holds for GVIP [10]. Recall that the set-valued mapping $\mathcal{F}$ : $\Re^{n}arrow \mathcal{P}(\Re^{n})$ is
said to be monotone (strictly monotone) on a nonempty convex set $\Omega\subseteq\Re^{n}$ if

$(x-y,$ $\xi-\eta\}\geq(>)0$

for all $x,$ $y\in\Omega(x\neq y)$ and $\xi\in \mathcal{F}(x),$ $\eta\in \mathcal{F}(y)$ .

ProposItlon 4.1. Suppose that the set-valued mapping $\mathcal{F}$ : $\Re^{n}arrow \mathcal{P}(\Re^{n})$ is strictly monotone on S).

Then, GVIP (4.1) has at most one solution.

Next, we reformulate a robust Nash equilibrium problem as a GVP. Specifically, the robust Nash
equilibrium problem (2.4) is equivalent to GVIP$(\tilde{\mathcal{F}}, \Omega)$ with $\tilde{\mathcal{F}}$ : $\Re^{m}arrow \mathcal{P}(\Re^{m})$ and $\Omega$ defined by

$\overline{\mathcal{F}}(x):=(\partial_{i}\tilde{f_{i}}(x^{j}, x^{-i}))_{i\in \mathcal{I}}$ (4.3)

and $\Omega:=S=S_{1}x\cdots xS_{N}$ , respectively. Here, $\partial_{j}\overline{f_{i}}$ denotes the subdifferential of $\tilde{f_{i}}$ with respect to
player $i$ ’s strategy $x^{i}$ .

If Assumption 1 holds, then there exists at least one robust Nash equilibrium from Theorem 3.2.
Moreover, by Proposition 4.1, if the set-valued mapping $\tilde{\mathcal{F}}$ defined by (4.3) is strictly monotone, then
game (2.2) has a unique robust Nash equilibrium.

Next, we give sufficient conditions for $\tilde{\mathcal{F}}$ to be strictly monotone. To this end, we introduce the
following assumption:

Assumption 2. For each $i\in \mathcal{I}$, the following conditions hold:

(a) The set $X_{j}(x^{-i})$ is given by $X_{i}(x^{-i})=x^{-i}+D_{i}$ for a nonempty compact set $D_{i}\subseteq\Re^{m_{-i}}$ .
(b) Function $f_{i}^{u^{l}}$ is expressed as $f_{i}^{u’}(x^{i}, x^{-i})$ $:=g_{i}^{u^{i}}(x^{i})+ \sum_{j\in \mathcal{I}_{-j}}(x^{j})^{T}A_{ij}x^{j}$ with a convexfiunction

$g_{i}^{u^{i}}$ : $\Re^{m}iarrow\Re$ and matrices $A_{ij}\in\Re^{mxm_{1}}i(j\in \mathcal{I}_{-i})$ .
(c) Either of the following statements holds:

(c-i) For any $u^{i}\in U_{i}$ and $i\in \mathcal{I}$, the fiinction $g_{i}^{u^{i}}$ is strongly convex with modulus $\gamma$ $>$

$-\lambda_{\min}(\overline{A}_{0})$ , where $\lambda_{\min}(\overline{A}_{0})$ denotes the minimum eigenvalue of $\overline{A}0$ $:=(A_{0}+A_{0}^{T})/2$ with

$A_{0}:=[_{A_{N1}}^{A_{21}}0$ $A_{N2}A0^{12}$

$.\cdot.\cdot$ .
$A_{2N]}^{1N}A_{\dot{0}}$ .
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(c-ii) $U_{i}$ is a singleton, i. e., $U_{i}=\{u^{t}\}$ , and the set-valued mapping $\mathcal{F}$ : $\Re^{m}arrow \mathcal{P}(\Re^{\prime\prime\iota})$ defined
$by$

$\mathcal{F}(x):=(\partial_{j}f_{i}^{lr^{l}}(x^{i}, x^{-i}))_{i\in \mathcal{I}}$ (4.4)

is strictly monotone.

Under the above assumption, we have the following lemma. For the proof of the lemma, refer to
[14].

Lemma 4.2. Suppose that Assumption 2 holds. Then, the set-valued mapping $\tilde{\mathcal{F}}$ defined by (4.3) is
strictly monotone.

By the above lemmas, we obtain the following theorem on the uniqueness of a robust Nash equilib-
rium. For the proof of the theorem, refer to [14].

Theorem 4.3. Suppose that Assumptions 1 and 2 $hou$ Then, game (2.2) has a unique robust Nash
equilibrium.

5 SOCCP formulatlon of robust Nash equilibrium problem
In this section, we focus on the game in which each player takes a mixed strategy and minimizes a

convex quadratic cost function with respect to his own strategy. We show that the robust Nash equilib-
rium problem then reduces to an SOCCP. We also discuss the existence and uniqueness properties by
using the results obtained heretofore.

Here, we consider an SOCCP [11, 12] of the form
$\mathcal{K}\ni M\zeta+q1N\zeta+r\in \mathcal{K}$, $C\zeta=d$ (5.1)

with variable $\zeta\in\Re^{l+\tau}$ and constants $M,$ $N\in\Re^{lx(l+\tau)},$ $q,$ $r\in\Re^{l},$ $C\in\Re$ ‘ $x(l+\tau)$ and $d\in$
$\Re^{\tau}$ . SOCCP can be solved by some existing algorithms such as a smoothing and regularization
method [12].

Throughout this section, the cost functions and the strategy sets are given as follows.
(i) Player $i$ ’s cost function $f_{i}^{\hat{u}^{j}}$ is given by

$f_{j}^{\hat{u}^{I}}(x^{i}, \hat{x}^{-\iota})=\frac{1}{2}(x^{i})^{T}\hat{A}_{ii}x^{i}+(x^{i})^{T}(\sum_{j\in \mathcal{I}_{-i}}\hat{A}_{ij}\hat{x}^{j}+\hat{c}^{i})$, (5.2)

where $\hat{A}_{ij}\in\Re^{\prime n_{f}xm_{j}}(j\in \mathcal{I})$ and $\hat{c}^{i}\in\Re^{n\iota}i$ are given constants involving uncertainties.
(ii) Player $i$ takes a mixed strategy, i.e.,

$\ovalbox{\tt\small REJECT}=\{x^{j}|x^{i}\geq 0, e_{m_{i}}^{T}x^{i}=1\}$ , (5.3)

where $e_{m_{i}}$ denotes the vector $($ 1, 1, $\ldots,$
$1)^{T}\in\Re^{m}i$ .

We call $\hat{A}_{ij}$ and $\hat{c}^{i}$ a cost matrix and a cost vector, respectively. Note that these constants correspond
to the cost function parameter $\hat{u}^{i}$ , i.e.,

$\hat{u}^{i}=$ vec $[\hat{A}_{i1}\cdots\hat{A}_{iN}\hat{c}^{i}]\in\Re^{m(m+1)}i$ (5.4)
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where vec denotes the vectorization operator that creates an nm-dimensional vector $[(p_{1}^{c})^{T}$

. . . $(p_{m}^{C})^{T}]^{T}$ from a matrix $P\in\Re^{nxm}$ with column vectors $p_{1}^{c},$
$\ldots$ , $p_{1n}^{c}$ .

5.1 Uncertainty in the opponents’ strategy
In this subsection, we consider the case where each player knows the cost matrices and vectors ex-

actly but the opponents’ strategies uncertainly. More specifically, we suppose the following assumption
holds.

Assumption 3. For each $i\in \mathcal{I}$, uncertainty sets $X_{i}(\cdot)$ and $U_{i}(i\in \mathcal{I})$ are $given\cdot as$ follows.
(a) $X_{i}(x^{-i})= \prod_{j\in \mathcal{I}_{-t}}X_{ij}(x^{j})$ , where $X_{ij}(x^{j})$ $:=\{x^{j}+\delta x^{ij}|||\delta x^{ij}||\leq\rho_{ij}, e_{m_{j}}^{T}\delta x^{ij}=0\}$ with a

given constant $\rho_{ij}\geq 0$ .
(b) $U_{j}$ is a singleton, i. e., $U_{i}$ $:=\{u^{i}\}=$ $\{$vec $[A_{i1}\cdots A_{iN}c^{i}]\}$. Moreover, $A_{ii}$ is symmetric and

positive semidefinite.

In Assumption 3(a), the condition $e_{m_{j}}^{T}\delta x^{ij}=0$ is provided so that $e_{m_{j}}^{T}(x^{j}+\delta x^{ij})=1$ holds for
$x^{j}\in S_{j}$ . Under this assumption, the worst cost function $\tilde{f_{i}}$ can be expressed explicitly as follows:

$\tilde{f_{i}}(xi, x-j)=\frac{1}{2}(x^{i})^{T}A_{ii}x^{;}+(x^{i})^{T}\sum_{j\in \mathcal{I}_{-t}}A_{ij}x^{j}+(c^{i})^{T}x^{i}+\sum_{j\in \mathcal{I}_{-i}}\rho_{ij}||\overline{A}_{ij}^{T}x^{i}||$ , (5.5)

where $\tilde{A}_{ij}$ $:=A_{ij}(I_{m}J-m_{j}^{-1}e_{m_{j}}e_{m_{j}}^{T})$ .

5.1.1 Reformulation as SOCCP
We first show that the robust Nash equilibrium problem reduces to the SOCCP (5.1). By using

the explicit expression (5.5) of $\tilde{f_{i}}$ and auxiliary variables $y_{ij}\in\Re(j\in \mathcal{I}_{-i})$, player $i$ ’s worst cost
minimization problem (2.4) can be reformulated as the following SOCP:

$\min_{x^{i}}i,mize\mathcal{Y}jj$ $\frac{1}{2}(x^{i})^{T}A_{\iota’i}x^{i}+(x^{j})^{T}\sum_{j\in \mathcal{I}_{-l}}A_{ij}x^{j}+(c^{j})^{T}x^{i}+\sum_{j\in \mathcal{I}_{-i}}\rho_{ij\mathcal{Y}ij}$

subject to $||\tilde{A}_{ij}^{T}x^{i}||\leq y_{ij}(j\in \mathcal{I}_{-i})$ , $x^{i}\geq 0$ , $e_{m_{i}}^{T}x^{i}=1$ .

Moreover, the Karush-Kuhn-Tucker (KKT) conditions of this problem can be written as the following
SOCCP:

$\mathcal{K}^{m_{j}+1}\ni[_{\lambda}^{\mu}\#]\perp\{\begin{array}{ll}l 00 \tilde{A}_{ij}^{T}\end{array}\}[_{x^{l}}^{y_{i}}\dot{J}]\in \mathcal{K}^{m_{j}+1}(j\in \mathcal{I}_{-i})$

$\Re_{+}^{m;}\ni x^{i}\perp A_{ii}x^{i}+\sum_{j\in \mathcal{I}_{-i}}(A_{ij}x^{j}-\tilde{A}_{ij}\lambda^{ij})+c^{i}+e_{m}$ , $si\in\Re_{+}^{m_{i}}$ , $e_{n_{i}}^{T}x^{i}=1$ ,

$\mu_{ij}=\rho_{ij}(j\in \mathcal{I}_{-i})$ ,

where $\lambda^{ij}\in\Re^{m_{j}}$ and $si\in\Re$ are Lagrange multipliers, and $\mu_{ij}\in\Re$ are auxiliary variables. Notic-
ing that the above KKT conditions hold for all players simultaneously, the robust Nash equilibrium
problem can be reformulated as the SOCCP (5.1).
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5.1.2 Exlstence and uniqueness of robust Nash equi $\ovalbox{\tt\small REJECT} lbrlum$

Next, we study existence and uniqueness of the robust Nash equilibrium under Assumption 3. In
the following analyses, we make use of the results from Theorems 3.2 and 4.3. For the proofs of the
following theorems, refer to [14].

Theorem 5.1. Suppose that the cost functions and the strategy sets are given by (5.2) and (5.3),
respectively. Suppose further that Assumption 3 holds. Then, there exists at least one robust Nash
equilibrium.

Theorem 5.2. Suppose that the costfiunctions and the strategy sets are given by (5.2) and (5.3), respec-
tively. Suppose fiurther that Assumption 3 holds. Then there exists a unique robust Nash equilibrium,
provided that

$A:=\{\begin{array}{llll}A_{l1} A_{12} \cdots A_{lN}A_{21} A_{22} \vdots| \ddots \vdots A_{N1} \cdots \cdots A_{NN}\end{array}\}\succ 0$. (5.6)

5.2 Uncertainty in the cost matrices and vectors
In this subsection, we consider the case where each player can estimate the opponents’ strategies ex-

actly, but estimates his cost matrices and vectors uncertainly. We first make the following assumption.

Assumption 4. For each $i\in \mathcal{I}$, uncertainty sets $X_{i}(\cdot)$ and $U_{i}(i\in \mathcal{I})$ are given asfollows.
(a) $X_{i}(x^{-l}):=\{x^{-i}\}$ .
(b) $U_{i}$ $:=( \prod_{j_{\in \mathcal{I}}}D_{A_{ij}})xD_{c^{l}}$ with $D_{A_{ij}}$ $:=\{A_{ij}+\delta A_{ij}|||\delta A_{ij}||_{F}\leq\rho_{ij}\}\subseteq\Re^{m_{j}xm_{j}}$ and $D_{c^{f}}$ $:=$

$\{c^{i}+\delta c^{i}|||\delta c^{i}||\leq\gamma_{i}\}\subseteq\Re^{nt_{i}}$ for some nonnegative scalars $\rho_{ij}$ and $\gamma_{i}$ . Moreover, $A_{ii}+\rho_{ji}$ I is
symmetric andpositive semidefinite.

Under this assumption, the worst cost function $\tilde{f_{i}}$ in (2.4) can be rewritten as follows:

$\tilde{f_{i}}(x^{i}, x^{-i})=\frac{1}{2}(x^{i})^{T}(A_{ii}+p_{ii}l)x^{i}+(c^{i})^{T}x^{i}+\sum_{j\in \mathcal{I}_{-i}}((x^{i})^{T}A_{ij}x^{j}+\rho_{ij}||x^{i}\Vert||x^{j}\Vert)+\gamma_{i}||x^{i}||$ .

(5.7)

5.2.1 Reformulation as SOCCP
We first reformulate the robust Nash equilibrium problem as SOCCP (5.1) under Assumption 4. By

using (5.7) and an auxiliary variable $\mathcal{Y}i\in\Re$ , the minimization problem (2.4) can be rewritten as the
following SOCP:

$\min_{x^{l}}imize\mathcal{Y}i$ $\frac{1}{2}(x^{i})^{T}(A_{ii}+\rho_{ii}I)x^{i}+(c^{i})^{T}x^{i}+\sum_{j\in \mathcal{I}_{-i}}((x^{i})^{T}A_{ij}x^{j}+p_{ij}||x^{j}||y_{i})+\gamma_{i}y_{i}$

(5.8)
subject to $||x^{i}||\leq y_{i}$ , $x^{i}\geq 0$ , $e_{n_{i}}^{T},x^{i}=i$ ,
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and its KKT conditions are given by

$\mathcal{K}^{\iota n_{i+l}}\ni[_{x}^{y}:]\perp[\sum_{(A_{ii}+\rho_{ii}l)x^{i}+^{j\in \mathcal{I}_{-j}\rho_{ij}\Vert x^{j}||+\gamma_{i}}\sum_{j\in \mathcal{I}_{-j}}A_{ij}x^{j}+e_{m_{i}}s_{i}-\lambda^{i}+c^{\dot{l}}}]\in \mathcal{K}^{m;+1}$

(5.9)

$\Re_{+}^{m_{i}}\ni\lambda^{i}\perp x^{i}\in\Re_{+}^{m\prime}$ , $e_{m_{i}}^{T}x^{i}=1$ ,

where $\lambda\in\Re^{m}i$ and $St\in\Re$ are Lagrange multipliers. It is not straightforward to reformulate the robust
Nash equilibrium problem as SOCCP (5.1), since the KKT conditions (5.9) contains the nonlinear term
$||x^{j}||$ . However, by introducing auxiliary variables $z_{j}\in\Re,$ $u^{j}\in\Re^{m_{j}}$ , we can rewrite (5.9) as follows:

$\mathcal{K}^{m_{j}+1}\ni[_{x^{i}}^{\mathcal{Y}i}]\perp[j\in \mathcal{I}_{-i}\in \mathcal{K}^{m_{l+l}},$ $e_{m}^{T_{i}}x^{\dot{l}}=1$ ,

$\Re_{+}^{m_{j}}\ni\lambda^{i}1x^{i}\in\Re_{+}^{m;}$ , $\mathcal{K}^{m}!^{+1}\ni[_{x^{j}}^{Zj}]\perp[_{u^{j}}^{y_{j}}]\in \mathcal{K}^{m}1+1(j\in \mathcal{I}_{-i})$ .
(5.10)

So, we can reformulate the robust Nash equilibrium problem as SOCCP (5.1).

5.2.2 Existence and uniqueness of robust Nash $equilibr\dot{\ovalbox{\tt\small REJECT}}um$

Next, we study existence and uniqueness of the robust Nash equilibrium under Assumption 4. Unlike
the analyses in Subsection 5.1.2, Assumption 4cannot imply Assumption 1(d), 2(b) or 2(c). So, we do
not use the results from Theorems 3.2 and 4.3. Instead of them, we exploit the concrete stmcture (5.7)
of the worst cost function $\tilde{f_{i}}$ . For the proof of the following theorem, refer to [14].

Theorem 5.3. Suppose that the cost functions and the strategy sets are given by (5.2) and (5.3),
respectively. Suppose further that Assumption 4 holds. Then, there exists at least one robust Nash
equilibrium.

We next give sufficient conditions for the uniqueness of a robust Nash equilibrium. To simplify the
notations, we define the $fo\mathbb{I}ow\dot{m}g$ vector and matrices:

$A:=(A_{ij})_{i\epsilon \mathcal{I},j\in \mathcal{I}},$ $P:=(p_{ij})_{i\in \mathcal{I},j\epsilon \mathcal{I}}$

$Q(x):= diag[(\frac{1}{||x^{i}||}\sum_{j=1}^{N}p_{ij}||x^{j}||)(l-v^{j}(v^{i})^{T})]$ ,

$V(x)$ $:=$ diag $(0^{1},$
$\ldots,$

$v^{N})$ , where $t)^{i}$ $:=x^{j}/\Vert x^{i}||$ .
Then, we have the following lemma. For the proof of the lemma, refer to [14].

Lemma 5.4. For each $i\in \mathcal{I}$, let $\tilde{f_{i}}$ : $\Re^{m_{i}}arrow\Re$ and $Si\subset\Re^{m}$ be given by (5.7) and (5.3), respectively.
Then, for any $x\in S$ , the set-valued mapping $\tilde{\mathcal{F}}$ given by (4.3) satisfies $\tilde{\mathcal{F}}(x)=\{\tilde{F}(x)\}$ with $\tilde{F}(x)$ $:=$

$(\nabla_{i}\tilde{f_{i}}(x^{i}, x^{-i}))_{i\in \mathcal{I}}$ . Moreover, the following statements hold.
(a) Function $\tilde{F}$ is differentiable at any $x\in S$ with the Jacobian $\nabla\tilde{F}(x)^{T}=A+V(x)PV(x)^{T}+$

$Q(x)$ . $(b)Q(x)\succeq O$ for any $x\in S$ . $(c)$ If $P\succ 0$, then $V(x)PV(x)^{T}+Q(x)\succ 0$ for any $x\in S$.

We now obtain the following theorem. For the proof of the theorem, refer to [14].

Theorem 5.5. Suppose that the costfiunctions and the strategy sets are given by (5.2) and (5.3), respec-
tively. Suppose $fi\ell rther$ that Assumption 4 holds. Then, there exists a unique robust Nash equilibrium,
ifeither (i) $A\succ O$ and $P\succeq O$ or (ii) $A\succeq O$ and $P\succ O$ holds.
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6 Numerical experiments
In this section, we solve some robust Nash equilibrium problems with various sizes of uncertainty

sets, by using the SOCCP reformulation approaches discussed in the previous section. Then, we
change the size of uncertain sets variously, and see the trajectory of the robust Nash equilibria. For
solving the reformulated SOCCPs, we apply the Newton-type method combined with a smoothing
regularization technique [12]. All programs are coded in MATLAB 7 and mn on a computer with
3.$06GHz$ CPU and lGB memories.

We consider another game where the cost functions are defined by (5.2) with cost matnices and
vectors:

$A_{11}=\{\begin{array}{lll}l2.486 1.249 5.6501.249 2.5l6 4.3615.650 4.36l l3.980\end{array}\},$
$A_{12}=\{\begin{array}{l}-5.095-7.403-4.152-l.459-8.215-2.5ll-6.228-3.783-5.306\end{array}\},$ $A_{13}=\{\begin{array}{l}-8.250-8.514-7.0l5-8.l78-2.222-l.091-2.\alpha)4-5.367-4.486\end{array}\}$

$A_{21}=\{\begin{array}{l}-7.236-2.175-5.223-1.980-7.579-3.l41-3.180-4.678-1.155\end{array}\}A_{22}=[_{3228}^{2.\cdot.064}30412.3^{-}416.5633.041134.7202.234218],$
$A_{23}=\{\begin{array}{l}-5.420-1.l53-l.5l4-4.874-6.610-3.6\omega-7.74l-7.763-5.577\end{array}\}$

$A_{31}=\{\begin{array}{l}-2.338-2.98l-6.l97-7.629-4.076-4.096-5.475-6.967-6.298\end{array}\},$
$A_{32}=\{\begin{array}{l}-3.912-3.988-1.043-4.867-l.407-1.98l-4.844-7.212-3.992\end{array}\}A_{33}=\{\begin{array}{ll}34.478 -13.084-l.478-13.084 17.336-l.243-1.478 -l.24320.047\end{array}\}$

$c^{1}=c^{2}=c^{3}=[0$ $0$ $0]^{T}$ .

This game has the following three Nash equilibria$*1_{;}$

1: $(\overline{x}^{1}, \overline{x}^{2},\overline{x}^{3})=(($0.490, 0.510, $o.(no)$ , (0.000, 0.688, 0.312), $(0.195$ , 0.360, 0.443)$)$ .
2: $(\overline{x}^{1}, \overline{x}^{2},\overline{x}^{3})=((0.715,0.011,0.274),$ $(].(no, o.\infty 0,0.000), (0.234,0.501,0.266))$ ,
3: $(\overline{x}^{1},\overline{x}^{2},\overline{x}^{3})=((0.671,0.304,0.025),$ $(0.596,0.208,0.196),$ $(0.208,0.456,0.335))$ ,

Moreover, we consider the robust Nash equilibrium problems under Assumption 4 with parameters

$\{\begin{array}{lll}\rho_{l1} \rho_{12} \rho_{l3}\rho_{21} \rho_{22} \rho_{2l}\rho_{31} \rho_{32} p_{33}\end{array}\}=[0.01$ $0_{0.01}^{0.01}01+k$ $0.oi+k00.0011]$ $\gamma_{1}=\gamma_{2}=\gamma_{3}=0$,

where $k$ is chosen as $k=0.1,0.5,1.0$, 1.1485, 1.5. In order to obtain as many equilibria as possible,we solve the equivalent SOCCP with randomly generated 100 starting points $*2$ . Table 1 shows theconcrete values of obtained robust Nash equilibria. For $k=0.1,0.5,1.0$, 1.1485, we obtain threerobust Nash equilibria. However, for $k=1.5$, we obtain only one robust Nash equilibrium. Figure
1 shows the trajectory of player l’s strategies at the robust Nash equilibria for each $k^{*3}$ , in whichthe vertical and horizontal axes denote the first and second components of the robust Nash equilibria,
respectively. Figure 1 indicates that two of the three equilibria are getting closer to each other as
$k$ . increases, and they almost coincide at $k=1.1485$ . Furthermore, at $k=1.5$, the two equilibriadisappear and only one equilibrium is obtained.

$*1$ We can find all Nash equilibria by using a branch and bound based approach.
$*2$ Since we employ an iterative method, we can choose an arbirrary starting point. Indeed, it is expected that a differentstart ng point can lead to a different solution when the SOCCP has multiple solutions.
$*3$ We omit the other players’ trajectories since they are similar to player l’s.
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Table 1 Sizes of uncertainty sets and obtained robust Nash equilibria

Figure 1 Trajectory of player l’s strategies at the robust Nash equilibria

7 Concluding remarks
In this paper, we have extended the concept of robust Nash equilibrium to N-person non-cooperative

games with nonlinear cost functions, and derived sufficient conditions for existence and umiqueness of
the robust Nash equilibria by means of the GVIP or VIP reformulation techniques. In addition, we
have shown that the robust Nash equilibrium problems with quadratic cost functions and uncertainty
sets can be reformulated as SOCCPs. We also solved some examples of the robust Nash equilibrium
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problem, and observed some numerical properties.
We still have some fumre issues to be addressed. One important issue is to weaken the sufficient

conditions for uniqueness of the robust Nash equilibrium. In fact, the uniqueness conditions shown in
the paper are rather restrictive, and there seems to remain much room for the improvement. Another
issue is to consider the SOCCP reformulation for the robust Nash equilibrium problem in which both
the cost function parameters and the opponents’ strategies are uncertain. In this paper, we have only
considered the case where either of them is uncertain. However, in the real situation, it would be
natural to assume that both of them involve uncertainties.

References
[1] M. AGHASSI AND D. BERTSIMAS, Robust game theory, Mathematical Programming, 107

(2006), pp. 231-273.
[21 F. ALIZADEH AND D. GOLDFARB, Second-order cone programming, Mathematical Program-

ming, 95 (2003), pp. 3-51.
[3] J.-P. AUBIN, Mathematical Methods ofGame and Economic Theory, North-Holland Publishing

Company, Amsterdam, 1979.
[41 J.-P. AuBiN AND H. FRANKOWSKA, Set-Valued Analysis, Birkhauser, 1990.
[5] A. BEN$-$ TAL AND A. NEMiROvsKi, Robust solutions ofuncertain linear programs, Operations

Research Letters, 25 (1999), pp. 1-13.
[6] –, Selected topics in robust convex optimization, Mathematical Programming, 112 (2008),

pp. 125-158.
[7] D. P. BERTSEKAS, Convex analysis and optimization, Athena Scientific, 2003.
[8] L. ELGHAOUi AND H. LEBRET, Robust solutions to least-squares problem with uncertain data,

SIAM Joumal on Matrix Analysis and Applications, 18 (1997), pp. 1035-1064.
[9] F. FACCHINEI AND J.-S. PANG, Finite-Dimensional Variational Inequalities and Complemen-

tarity Problems, Springer-Verlag, New York, 2003.
[10] S. C. FANG AND E. L. PETERSON, Generailized variational inequalities, Joumal of optimiza-

tion theory and applications, 38 (1982), pp. 363-383.
[11] M. FUKUSHIMA, Z.-Q. LUO, AND P. TSENG, Smoothing functionsfor second-order cone com-

plementarity problems, SIAM Joumal on optimization, 12 (2001), pp. $436-i60$.
[121 S. HAYASHI, N. YAMASHITA, AND M. FuKusHiMA, A combined smoothing and regularization

methodfor monotone second-order cone complementarityproblems,.SIAM Joumal on Optimiza-
tion, 175 $(2\alpha)5)$ , pp. 335-353.

. [13] –2 Robust Nash equilibria and second-order cone complementarlty problems, Joumal of
Nonlinear and Convex Analysis, 6 (2005), pp. 283-296.

[14] R. NISHIMURA, S. HAYAsHi, AND M. FUKUSHIMA, Robust Nash equilibria in N-person non-
cooperative games: Uniqueness and reformulation, Technical Report, 2008-003, Department
of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, April,
2008.

[15] J. B. ROSEN, Existence and uniqueness of equilibrium points for concave N-persons games,
Econometrica, 33 (1965), pp. 520-534.

213


