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Tripartite Quantum Comimunication Systems
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1. Introduction

» Communication System

Information Information
Source Destination
Communication
Channel

+ Classical Communication System

{pi;} : Joint Probability
{p:} : Source Probability p; = 3_; pi;
{g;} : Destination Probability
g = 2_; Pij
Classical Entropies

H(A) = S({p:}), H(B) = S({¢;}),
H(A, B) = S({pi;})
H(A,B) > max{H(A),H(B)}
Classical Mutual Entropy
I(A,B) = H(A)+ H(B) — H(A, B)
< min{H(A), H(B)}
Classical Conditional Entropy
H(B|A)=H(A,B)—-H(A)>0

* Quantum Communication System

(QCS)

pap : “Joint” State
pa : Source State py = trppap
pp : Destination State pp = trapagp
Quantum Entropies
H(A) = S(pa), H(B)= S(ps),
H(A, B)=S(pas)
H(A,B)? max{H(A), H(B)}
Quantum Mutual Entropy
I(A,B)= H(A)+ H(B)— H(A, B)
£ min{H(A), H(B)}
Quantum Conditional Entropy
H(B|A)= H(A,B) — H(A)Z0

« Alternative Description (Classical
Case)

Channel

{pi}
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Channel
{p;i} : Conditional Probability
Conditional Entropy

BIA) Z piS {pm})
Mutual Entropy
I(A,B) = H(B) — H(B|A)
Joint Entropy
H(A,B) = H(A) + H(B|A)

equivalent to the previous description
+ Alternative Description (Quantum
Case)

Channel

‘fD‘

Channel

¢* : Trace-Preserving CP-map
Conditional Entropy H(B|A) =7
Mutual Entropy

I(A,B) = H(B) — H(B|A)
Joint Entropy
H(A,B) = H(A) + H(B|A)

* Criteria for the Definition of Informa-
tional Quantities in QCS

(1) Inclusion of classical information theory

(2) Relations among the informational quan-
tities which hold in classical information
theory

(3) Information theoretical naturality of the

values
(¢3) - Mutual Entropy not more than source

and destination entropies

- Conditional Entropy not less than 0
Additional Condition
(4) Convexity properties w.r.t.
state and the channel which are possessed by
the classical theory

the source

« Framework
A = (Ha, A= B(Ha)),
B = (Hp,B = B(Hp))
: subsystems in QCS
H a4, Hp : Hilbert spaces
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G(Ha), 6(Hp) :
state space on H4, Hp
= set of density operators on H4,Hp
@* : channe] from A to B
= Trace-Preserving CP-map
from G(H4) to S(Hp)
= dual of operation (unital CP-map) ¢
from B(Hp) to B(Ha)
Ch(A,B) : Set of channels from A to B

2. Tripartite Structures of
QCS

*Subsystem C = (H¢,C = B(Hc))

Quantum communication channel
©*: S(Ha) = S(HB)

Kraus form
©*(p) = 22k VipVy, p € G(H,)
Vit Ha = He, D ViVe =14

New Hilbert space H¢ with CONS

{g«}

Isometry U, : Ha — Hp ® Hc
Up =324 Vi ® |gx) or
Ugei = 35 (Vi)ji fi ® gk
{ei}.{f;} : CONS’s of H4 and Hp

Theorem 1.

U, can be defined independently of the
choice of the Kraus operators {Vi} of ¢*.
Namely, another set of operators {V/'} of ¢*
corresponds to the choice of another orthonor-
mal basis {g;} of Hc.

Proof. Let ¢*(-) =3, V/ - V/* be another
Kraus form. Then there exist a unitary matrix
{ui} such that Vyx = 3", unV)/, where zero op-
erators should be added to the shorter list of
{Vx} or {V/}. Then



Up =2k Ve @ lgk) = > 5 utV) @ |gk)
=3V ® |32 urigr)

where additional basis vectors should be in-
cluded to {gx} if {Vi} is shorter than {V/'} ex-
tending Hc. This extension is superficial be-
cause the extended directions are out of the
range of U,,.

Selecting {g; = >, uxigx} as the basis of
Hc corresponding to the Kraus oerators {V'},
we obtain the result. Q.E.D.
Example.1

1 0
=35 1) n=x(s %)

(10 (0 0
n=(55) E=(g 1)
e =Vi -V + V-V = {g1,9}
=P -Pl+P-P —{g,0}
Vi 715P1+§5P2,

Vo = 5P - 5P,
91 = 591 + 592,
gé = 71591 - %g2a

Upy=V1®|g1) + V2 ® |g2)
=P ®|g)+ R®|g)
Example.2
e ()=U-U* (+0:0) = {g1(,92)}
=AU -U+(1-2NU-U* - {41, 95}
U =vVAVI) +vVI=AXVT=I)
0= —v1 = XVIU)+VANVT=U)
g1 = Vg — VI =g,
9 =VI=2g + ViU, =U ® |g1)
= VAU ®lg)) + VI— U ® |g})
Using the operator U, ¢* is written as
©*(p) = trcU,pU;, for p € S(Ha).
+ Complementary map
@+ S(Ha) — S(Hc) is defined as
¢*(p) = trgUppU;, , p € &(Ha),
=3 VieVe,  (Viki = (V)i
or Vj = (fi|Up = (f;| 22k Vi ® |9x),
satifying 3 Vj*Vj = 1,.
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While, o*(p) = trgU,pU;

=2 o t18(Vi ® |ge))p(Vis @ (gr])
=2 e Tr(VeoVi)lgu) (gw | = My (),
is the (operator version of) Lindblad matrix of
P w.rt. p
Note: symmetry between subsystems B and
C:

@ (p) = My(p), ME(@) = ¢*(p)
Definition 1.
Let p = 3. Anlel)(el| be the spectral decom-
position with A, > 0,3 . A, = 1 and an ap-
propriate ONS {e} } of H,. '
a) The (symmetric) purification p of p

P = 1€)(Ep| € &(Ha®H4) with unit vector

&=, e, @¢, € Ha®Ha

Partial trace of p w.r.t. each H 4 coincides with
p.
b) The purification operator (or canonical
square root) T, € B(H,4) of p is

o= D A Plen)(en’l,
n

where the orthonormal vectors &, € H4 are
defined by the equations

(e:l€.") = (el |e;) for all e;.
It has the properties

rT =1, 1,7," =pandr,r,=p,
where 7, is the transposed operator of r, w.r.t.
the basis {e;}.
¢) Lindblad state
Py = (I ®¢*)(p) € G(Ha® Hp)
treps = p, traps = " (p)
Note: We will not consider H(A, B) = S(p5) !

» Generating State w
Let w = |C){¢] € G(Ha® Hp®Hc) be a pure
state defined by the unit vector
C=Ua® Uzp){p = Zik To€i @ Vie; ® gk

= 226 (Virp)jie: ® f; ® g
This state has a form of a composition of the
Lindblad state (I®¢*)(p) and the expression of
the channel by an isometry ¢*(p) = trcU,pU;.



w is also regarded as a (non-symmetric) pu-
rification of the Lindblad state.

It completely determines the communication
system and various quantities can be deduced
from this state by taking partial traces or ap-
propriate operations. Hereafter, we call

w : generating state,

¢ : generating vector
of QCS.
+Symmetric Notations
(X,Y,Z) : a permutation of (A, B,C)

Pxy =E trzw, px = tryzw.
Then,
pa = p, pB = ¢*(p), pc = M;(p)
pec = UppaU;
pag = (I & ¢*)(p) : Lindblad state
pap has the same non-zero eigenvalues with
the same multiplicities as the Lindblad matrix
pc, since pap = trew, pc = trapw and w is a
pure state. Especially, we have

S(pas) = S(pc) and S(psc) = S(pa)

where S(-) is the von-Neumann entropy.

We note here again that pxy’s are not re-
garded as the joint states which give the joint
entropies of composite systems (X,Y).

Fig. of Tripartite Structure:

3. Symmetrization

To make the theory completely symmetric
w.r.t. the subsystems A, B and C, we define,
generalizing ¢ = >_,., (Vkr,);i€i® f; @ gk, a unit
vector

¢ =2 ik dikei ® f; ® i
with dijx € C and ), |dijx[* = 1 and start
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from the pure state w = |{){((].

We can obtain ¢* and p from w conversely.
The definition px = tryzw yields

(Pa)iv = Z dijkdy jk,

Ik

(pB)sj = Z dijrdijix,
ki
(Pc)kk = Z dijkdijk -
tj
For simplicity, we consider the case where px
is faithful on H x or, equivalently, restrict H x
to the support subspace of px for X=A, B, C.
Notations:
px : purification of pyx
rx the purification operator of px

rx' : inverse of ry, i.e.,

ral(=rh) =D A e Y ekl

and analogously for rp and r¢.

r¥'rx = rxry' = Ix identity operator on Hx.

Isometries Ux : Hx — Hy ® Hz are
generalization of U, defined by

Use; = Z dirjk(r2 )i fi ® Grs

i jk

Usfi =Y dipk(r5')yse: ® g,
ij'k

Ucgr = ) digw (r5 Jewes ® f.
15k

We can define the channel ¢}, € Ch(X,Y)
for any pair of subsystems (X,Y’) by

Oy x () =trzUx - Ux.

and the operation @yx : B(Hy) — B(Hx)
which has ¢} 5 as its dual. If dijx = (Virp)ji

-

of Section 2, g, = ¢*.
Theorem 2.

pyz = trxw = Uxpx Uk,

¥y x (px) = pv,



(Ix ® vy x)(Px) = pxy
¥y x has the Kraus form of
P x() = X, VX v
with (VY %) = 3, dXY 2 (ric )i
and Y VIYVYX =Ty

XYZ
Whel‘e dlxlylz == dlAlBlC

(e.g. dlmn = dumnt).

* Another way to symmetric structure
Start from a state 7 € G(H 4 ® Hp) (or more
generally 7 € G(Hx ® Hy)) defined as

™= 3 Ine) (el with me = 3 dignes ®
k &

dijx is simply defined here as the coefficient of
the vector 7, w.r.t. the basis {e; ® f;}
Quite the same way as Section 2, we introduce
a Hilbert space H¢ with CONS {gx} and de-
fine a unit vector ¢ using d;;x. ¢ is independent
of the expression 7 = 3, |m) (k| by the same
arguments as the proof of Theorem 1.

Then, according to the discussions of this
section we can define the channel ¢}, with

PpaltrpT) =trar,
7 =pap = (14 ® ¥ip)pa.

- This is an inverse procedure to obtain the
channel ¢* from a Lindblad state 7.
- This procedure is also regarded as a general
purification process and most simply, if this is
applied to a state on H,4, the purification of
the state defined in Definition 1 will be gener-
ated.

*Relation to CP-map defined from a

State

From a state 7(=

can define a CP-map v : B(Hy) — T(Hx) by
7(a ® b) = Tryp(bY)a,

a € B(Hx), be B(Hy)

where b7 is the transposed operator of b w.r.t.
the basis of Hy. Let us examine the relation

oxy) € S(Hx ® Hy), we
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between i and ¢y x of the last discussion.
Since (/) = px, we can define an operation
qb : B(H}) — B(Hx) by

() = px v (-)px'",
which satisfies ¢(Iy) = Ix, but ¢*(px)=p%.
To obtain the channel ¢}, which maps px to
Py, we define an opeartion with the help of the
purification operator rx of px as

eyx () = (rx) "W ()rx'
where ¢¥T(b) = 9(bT)T, whose dual map turns
out to be i .

If diji = (Vir,) s, we have pg = p, 95,4 = ¢

and V;”* = Vi etc. Among @%y’s, only
©pa (= ") and g, (= @*) are independent
of p (= pa), while others depend on both p
and .

4. Informational Quantities

Start from the definition of H(B|A)
— I(A,B) = H(B) — H(B|A),
H(A,B) = H(A) + H(B|A).
The classical theory is given as
H(B|A) = 3., piS({pi})
p=(pp2pa)T,
S(p) = - %, pilogpi
g= (012 am)", ¢ = 2 Pl
— q =®*p, ®*: Classical Channel
i.e. Conditional Probability Matrix :
Pin P2z .- Pijn
o* = : : .. :
Pmt Pmj2 --- Pmin
Since p = Y, p;e; with
e;=(0:--010---0)7,
i-th element
H(B|A) = ¥, p:S (3" e:)
= inf{3;, \S(®*p;) ; p =2, \ipi}-
Extension to Quantum System may be given
by the substitution:
p—op -
Definition 2.
For p € &(Ha), ¢* € Ch(4, B),



- Conditional Entropy (Dissemination)
H(B|A) = inf{}_, \iS(¢*(p))
p= Z,- Aipi, A >0, Zi A =1,
pi € 6(Ha)}
- Mutual Entropy
I(A,B) = H(B) — H(B|A)
This definition coincides with Holevo mutual
entropy and Ohya’s pseudo mutual entropy.
- Joint Entropy
H(A,B)= H(A) + H(B|A)
Lemma 1.
0 < I(A,B) <min{H(A),H(B)}.

Proof. I(A,B) < H(B) is clear, since
H(B|A) > 0. Rewriting I(4, B) as

I(A, B) = sup{3_; MiS(¢"(p:)]¥"());

p =2 Nipi}
where S(-|-) is the Umegaki relative entropy,
we have the positivity of the mutual entropy,
and the property of relative entropy that it is
non-increasing under the action of a channel
CP-map implies

I(A, B) = sup 3, MiS(¢*(pi)l¢* (p))
<sup ), MiS(pilp) = S(p) = H(A).®
Corollary.

H(A, B) > max{H(A), H(B)},

For,
I(A,B) = H(B) — H(B|A) < H(A)
implies
H(B) < H(A)+ H(B|A) = H(A, B).

Rewriting the definition of H(B|A) as

H(B|A) = inf{3_, \iS(0B4(m));

pa =22 Mipi}

and extending this definition to ¢} x for any
X,Y outof A B, C as

H(YIX) = inf{ 3, AS (e x (p1);

pPx = 2 Aipi}

we can define

I(X,Y)= H(Y)- H(Y|X),

H(X,Y)= H(X)+ HY|X).
Then, differently from the classical case,
I(X,Y) and H(X,Y) are not symmetric un-
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der the exchange of their arguments i.e.

I(X,Y) #1(Y, X),
H(X,Y) # H(Y, X).

Instead of regarding this situation as a prob-
lem, we consider it as a phenomena character-
istic to the quantum systems i.e. an expression
of quantum non-commutativity.
Also we note that neither H(X,Y) nor
H(Y, X) is equal to S(pxy) = H(Z) in gen-
eral.

To define the equivocation of ¢* = ¢x,, we
use the notation:

H(A/B) = H(A, B) - H(B),

because it is different from the dissemination
H(A|B) of reversed channel ¢%p € Ch(B, A):
H(A|B) = H(B, A) — H(B).
*Relation to the Entanglement
The entanglement of formation(EoF') of a state
o on the tensored algebra B(Hy) @ B(Hz) is
defined by
Eyz(O’) = inf{E‘- /\,-S(trzcr,-) ;
Yo dioi =0}

Then defining E(Y, Z) = Eyz(pyz), we have
the following theorem:
Theorem 3.

H(B|A) = E(B,C),
more generally,

H(Y|X) = E(Y, 2).
Proof. Since ¢*(p;) = trcU,pUy,

we have
H(B|A) = inf{3; MS(p*(p:)) ;
p =232 X\ipi}
= inf{Zi /\¢S(tch¢PiU$) ’
p =22 Aipi}
= inf{Z‘- /\,‘S(trcai) )

U¢pU<; = E‘- /\,‘0’,‘}
= Eg,c(U,pU;) = Ep,c(pac)
= E(B,C)
The third equality holds by the equivalence of
p =3 Aipi and UypU; = 3, Ao, or equiva-
lently



o; = U,p;U;, for appropriate p;, which

holds because the inequality \;o; < U,pU,

leads to 0; € U,6(H4)U;. The generaliza-

tion of the proof to H(Y'|X) is clear. QED.

By the symmetry of EoF w.r.t. its arguments,
H(X,Y)=H(X)+ E(Y, 2)
=H(X)+E(ZY)=H(X, 2),

and using S(YZ) = S(pyz) (= H(X))
H(X,Y)=H(X,2)
=S(YZ)+ E(Y, 2).

As a corollary of Theorem 3 and Lemma i,

H(X,Y) > H(Z) = S(XY)
because H(X,Y) = H(X,Z) > H(2).
Hence, summarizing the above results, we have

Theorem 4.
H(X,Y) 2 max{H(A), H(B), H(C)},
H(X,Y)< H(X)+ H(Y),
I(X,Y) <min{H(X),H(Y)}.
Note: Fundamental Quantities of Tripartite
systems are H(A), H(B), H(C), E(B,C),
E(C,A), E(A, B).
The other quantities are calculated by
H(Y|X) = E(Y, 2),
I(X,Y) = H(Y) - E(Y, 2),
H(X,Y)=H(X)+ E(Y, 2),
H(X/Y)=H(X,Y)- H(Y).

5. Convex Theory

For QCS constructed from p € &(#H4) and
¢* € Ch(A, B), we shall investigate the con-
vexities of information theoretical quantities
w.r.t. p and ¢* for finite dimensional ‘H4, Hg
and Hc. We will discuss about

» Naturalness of a quantum information theory
(as an extension of classical information the-
ory)

< Preservation of convexity properties of in-
formational quantities which hold in the clas-
sical theory

- Convexity in Classical Theory

p = {pi} : source probability,

¢* = ®" : conditional probability
matrix
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H(A) H(B) H(B|A)
p ~ ~ affine
" | independent —~ ~
I(A,B) H(A,B) H(A/B)
p N ~~ ~~~
P* ~ ~ ~

~~: concave, — : convex

- Convexity in Quantum Theory
H(B|A)=Epc(psc), psc: p-affine

— H(B|A) : p-convex (property of EoF)

— breaking of p-concavities of H(A, B),

H(B/A)

H(A) H(B) H(B|A)
p ~ ~ ~—
" | independent —~ —~
I1(A,B) H(A,B) H(A/B)
o ~ X X
gp* ~—r ~~ ~

- Quantities Including Subsystem C
Symmetry between subsystems B and C gives
p-convexity (concavity) for B replaced by C:

| H(C) I(A4,C) H(A/C)

H(C|A) = E(C,B) = E(B,C)
= H(B|A), H(A,C) = H(A, B).
p*-convexity(concavity) is not in the same sit-
uation except H(C|A) and H(A,C), because
romplementary map @* is not ¢*-affine.
pap=( ® ©*)p : p*-affine implies
H(C)=S(paB) : ¥*-concave,
and E(A, B) =H(A|C) =H(B|C)
: p*-convex implies
I(C, A)=H(A) — H(A|C)
: p*-concave,
I(C, B)=H(B) — H(B|C)
: *-concave.
The p-convexity properties of these quantities
(except H(C)) are difficult to discuss because
the purification p is always pure and out of the
discussions about convexity.




6. Examples

In order to understand the role of subsystem
C' in the following examples, let us observe the
flow of the entropy. From

H(B) =1I(A,B)+ E(C, B),

we see that the entropy of B is supplied by
the information from A and the entanglement
with C, as a noise.
Concerning the outgoing information from

A, we use the equation

H(A)=1I(A,B)+ H(A/B).
The equivocation H(A/B) is rewritten as

H(A/B) = H(A,B) — H(B)

= H(A,C) - S(AC) = F(A,C)

meaning the difference of the joint entropy
H(A, C) from the classical one, S(AC). Then
the equality

H(A)=I(A,B)+ F(A,C),
means that I(A, B) in the entropy of A is sent
to B as the information and the remaining part
of H(A) is absorbed to fertilize the joint en-
tropy of (A, C) from S(AC) to H(A,C).

So, the subsysytem C works as the absorber

of the information from A and the generator
of the noise to B.

noise

information B

H(A) H(B)
Fig. Flow of Entropy

Remind that the fundamental quantities of

a tripartite system are H(A), H(B), H(C),

E(B,C), E(C,A), E(A, B)

ol

e H(AY ! H(B)

Legend of figures for Examples

28

Ez.1 Classical Channel
Discrete classical communication system in
the quantum formalism is described as follows:
p : diagonal matrix on H 4 with
diagonal elements p;
" : diagonal matrix
— diagonal matrix
©* () = 224 PiiEsi - Bij
Ei; © matrix unit,
Pjj: : conditional probabitity
Kraus operators : | /p; Ejs
(¢,7) in Ej; corresponds to basis of H,4 ® Hp.
— {gi;} corresponding to {e; ® f;}
Hc has the structure of H, @ Hp.
Uge, = Zj VP51t @ gij
¢ = Z,-j\/szei‘@fj@gij
pi; : Joint probability of (A, B)

pc = traglQ)Cl = 32i;pijlgi) (g, — C -
equivalent to joint probability system (A, B)
(Peculiar feature of the classical theory)
— H(C) = Ha(A, B) = S({pi;})
H, denotes the value of the classical theory.
Clearly we have
H(A) = Hq(A), H(B) = Hu(B),
E(B,C) = H(B|A) = Ha(B|A),
E(C, A) = H(A|B) = H,(A|B).
Since pap = 22,;pijlei) (e ® |£;)(f;] is a sepa-
rable state, E(A, B) = 0.
Consequently,

I(A,B) = I(B, A) = Ia(A, B),

I(A,C) = I(C, A) = Ha(A),

I(B,C) = I(C, B) = Ha(B),

H(X,Y)= Hy(A, B) for any X,Y.
Squivocations H(Y/X) = H(Y|X) for any
X,Y because H(X,Y) = H(Y, X).

Hey(A)

Fig. Classical Channel



Fz.2 Unitary Channel
When ¢* is a unitary map, since ¢*(-) = U -U*
is a Kraus form, H¢ is one-dimensional and
C=2,me®Ue® g

H(A) = H(B) and H(C) = 0, pap: pure
~ E(A,B) = H(A), E(B,C) = E(C,A) = 0.
I(A,B) = I(B,A) = H(A) and I(X,Y) =0
for others. H(X,Y) = H(A) for all X and Y.

Coo

(o) S(0)
Fig. Unitary Channel

Ex.8 Trivial Channel

This channel maps all the state of A to an
identical state pg.

If pp is pure (=|£)(£]|), Kraus operators are
given by Yk = [€) (ex].

Since (V)k: = (Vi)ui = (32, [9:1)(e1])x: regard-
ing & = f,, this is the complementary case
of the above example where B and C are ex-
changed.

Fig. Trivial Channel (pg: pure)

When pg is not pure, Kraus operators may
be Vi = rp|fi){ex| to yield 3=, VupVii = ps.

Since V; has the indices corresponding to
both H4 and Hp, Hc = Hcei ® Hee unitarily
equivalent to H4 ® Hg and

¢= Zij 7p€i @ TBf; ® gij

= (376 ®9i) ® (30 78f; ® )

rewriting gy = gx ® g}, where gy and g; are
the basis vectors of Hey and Heg, respec-
tively. Hence, w = |¢)((] is the tensor-product
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of two pure states p; € SG(Ha ® Hc1) and
p2 € &(Hp ® Heo), which leads to H(C) =
H(A) + H(B). Since all the components of
the pure decomposition of pgc include py, we
have E(B,C) = H(B) and I(A4, B) = 0. Anal-
ogously, E(A,C) = H(A) holds and pup =
pa ® pp implies E(A, B) = 0.

S(o) S(o,)
Fig. Trivial Channel (pg: not pure)
The classical version of this case corresponds
to Ex.1 where A and B are independent each
other.
The case where p is pure is interesting as a
sub-complementary type of Unitary Channel.

0 S(0y)

Fig. Trivial Channel (p : pure)

Ezx.4 Partial Trace Channel
When Ha=H,; ® H,, partial trace of p €
&(Ha) w.r.t. Ho is regarded as a channel by
identifying Hp with H;. Let {e;x = f; ® €}
be CONS of H; ® H,
with {f;}, {e}} the CONS’s of #p and H;, re-
spectively. The channel is given by
©*(p) = tra,p

= 5, (L ® ()all ® 6})

=3 VipVi
with V}, = I, ® (e}, [1= identity on H,;.
Then we have

Up=3 V®lo) =L ® ) |ge)(ekl.
k k



Identifying Hc = H, and {gx} = {€i},
U, becomes the identity on H4 and
complementary channel is given by

@"(p) = trpU,pU; = try, p.

If p =3 Ajklesr)(esx| (i.e. diagonal w.r.t.
the basis {e;x}), {( = \/Xj_kejkcgfj@gk, the sit-
uation is the same as Ex.1 by exchanging the
role of A and C.

So, the value of the informational quantities
are obtained from Ex.1 by exchanging A and
C,E(B,C)=0,H(A,B)=H(B,A) = H(A),
I(A, B) = H(B), for example.

S(105)

Fig. Partial Trace Channel (p : diagonal)

For general p, F(B, C) is the EoF E(p) of p
itself between H; and H,, which gives
I(A, B) = S(tryyp) — E(p),

H(A,B) = S(p) + E(p).
Other quantities are not so simple. Because,

a general channel may be regarded as a partial
trace channel from equality ¢*(p) = trcU,pU;
by considering U, as embedding.

A different point of view :

This system can be considered as the one
generated from pgc = p like 7 in Section 3 by
regarding #; and H, as Hp and Hc, respec-
tively. Then applying the process analogous to
the one there, we can obtain the system given
by w as the purification of pgc.

Ezx.5 Sharp Measurement Channel
This channel ¢* is expressed as the sum of the
orthogonal 1-dimensional CP-map from A to
B, ie.

©* () =2 B - E}
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with Ex = |fe)(ex| being Kraus operators.
Then
Up =22 1fi ® gi)eil,
which shows the symmetry between B and C.

The complementary channel is

¢"() = 3_; Ej - Ej with E; = |g;)(e;|.

If p =3, Ailei)(eil, the situation is very simple
and we have

C=Z\/)‘_iei®fi®gi-

In this case, the structure of the system is to-
tally symmetric w.r.t. A, B and C.

Consequently, all px’s and pxy’s are re-
spectively identical for all X and Y disregard-
ing the differences of the bases of the Hilbert
spaces and so is for all ¢y .

Since the dissemination H(X|Y) vanishes
for all X and Y, H(X,Y) = H(X) = S(p)
and I(X.Y) = S(p) hold.

S(P) S(p)

Fig. Sharp Measurement Channel
(p: diagonal)
When e;’s are not eigenvectors of p,
¢= Eirpei ® fi ® gi,

which violates the total symmetry keeping the
symmetry between B and C. Though, both
H(B) and H(C) are equal to the entropy cal-
culated by the diagonal value of p. The cal-
culation of E(X,Y’) is not so simple, but Ex.6
will give the one for 2-dimensional case.
Ez.6 2-dimensional Measurement

Channel
As the last example, we will investigate the

channel of Ex.5 of 2-dimensions,
o'()=P-P+P-P,



with p non-diagonal w.r.t. this basis. Here,

we identify the Hilbert spaces of A and B
(Ha = Hp = H) for simplicity and express
E; of Ex.5 by the orthogonal projections P,
and P,. This map converts the 2x2-matrices
to diagonal ones keeping the diagonal elements
as they are. We introduce the parametrization
for a two-dimensional density matrix such as

Hl 1+« B
paaﬂ_ 2 ,3 l_a ’
a2 + I,B|2 S. 11
with entropy S(p,, 5) = h(\/? + |5]?).

Here

h(z) =—1$2logl$2 — 12]ogls2
is a concave even function of z € [-1,1]
with minimum h(—1)=A(1)=0 and maximum
h{0)=log2 (we set 0 -log0 = 0). We note the
affineness of p w.r.t. o and 3, i.e.,

Ma,p + (1 = A)par,p

= Pra+(1-X)a! X B+(1-X) B’ -

Let us consider the case p = pg,g for real 8.
Then H(A) = h(B) and

H(B|A) = inf{3, \S(¢" (ps) ;

p=2Nipi}
= 1Sl (bo_ siz5.,)
+5(0*(p, =gz o))}
= 3{S(p /i, 0) + So_ iz o)}
= h(v/1-8%),

since infimum is realized by the decomposition

P8 = 3P g+ 1P iR
Hence,
I(A,B) = H(B) — H(B|A)
= log2 — h(4y/1 - B2?)
H(A,B)=H(A)+ H(B|A)

B) + h(v/1 - B?).
As a function of 8 € [-1,1], H(A,B) is
a double-peaked continuous function which
attains its minimum value H(B)=log2 at
B8=-1,0,1, hence neither convex nor concave
w.r.t. p.
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The equivocation
H(A/B) =H(A,B) — H(B)
= H(A, B)—log2
has the same behavior.
I(A, B) is a convex function w.r.t. p as assured
by the general discussion.
In this case, the generating vector is
(=die1®fidog+dea®fa®g
+d_ e ® [1®g1+die2® f2® g
with d. = 2—\17,7,(\/1 + £ V1- B).
Because of the symmetry w.r.t. B and C as
stated in Ex.5, H(C) = H(B) and I(A,C) =
I(A, B) in addition to H(A,C) = H(A, B).
Since a calculation derives
E(C,A)=E(A,B) =0,
we see
H(C,A) =

H(C,B)=H(B,A)
= H(B, C) = log2,

1(C,A) = I(B, A) = H(A) = h(B),

I(C,B)=1(B,C) = H(B)

= H(C) = log2.
Graphs of the values are shown below.
e H(AB) |Q832991 .
‘‘‘‘‘‘‘‘‘‘‘ ll’lZ»’

HBION

In2=0.693417

h(8) log2
Fig. 2-dimensional Measurement

Channel (p = po,5)
Remark of this section:



As above, new aspects of well-known chan-
nels and similarities of different channels can
be seen in the tripartite structure.

It may be interesting to consider the struc-
ture of other channels or, conversely, to lead
channels from specific structures (e.g. from the
ones of the above examples exchanging the po-
sitions of A, B and C).

7. Discussions

Another definition of mutual entropy of natu-
ral value has been given by M. Ohya as

Ionya (™5 p)

= S(¢*(p)) — inf{3_; MiS{¢*(m:))

s P = hipi, pi Lpji# )
where the infimum is taken for “orthogonal”
pure decompositions differently from ours.
The merit of this definition is that it is de-
rived from the joint state (named “compound
state”)

POhya = Z,‘ Aipi ® 80‘ (pt)

for the orthogonal pure decomposition p =
37, Xipi of p which realizes the infimum in the
definition of Ionya(¢*; p) above and defining
H(A, B) = S(ponya).- It breaks, however, the
continuity of the mutual entropy w.r.t. p to-
gether with the concavity.

In fact, for QCS given by Ex.6 of the last sec-
tion we have for 5 # 0,

Ionya(5; po,8) = S(¢5(po,8))
‘%‘ES(‘PS(F’OJ)) — =£5(p5(po,-1))

= S(poo) — l%QS(PO,O) - 1%és(/)o,o)

=0,

since the orthogonal decomposition of po, s to

pure states is unique when £ # 0. On the

other hand, for pyo the orthogonal decompo-
sition is not unique and the one which derives

Ionya is given by poo = §p10+ 50-10 yielding
Tonya (@5 Po,s=0) = S(¢5(po)
—%S(SDB(PLO)) - %5(903(0—1,0))
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= S(poo) = $S(p10) = 5S(p-1,)

=log2 — 0 — 0 = log2.

This shows the discontinuity of Tonya(¥5; po,s)
at 8 = 0 as well as that of H(B|A) and
H(A, B) and consequently violation of convex-
ity or concavity of these quantities.

Coming back to our present theory, al-
though the preservation of the concavity of
I(A, B) and the continuities of H(B|A) and
H(A, B) in the quantum theory seems prefer-
able, the violation of concavity of the latter
two quantities might include some insufficiency
in our definition of the mutual entropy.

For example, the double-peaked structure
of H(A, B) of Ex.6 might suggest some def-
ficiency or excessive convexity arround B=0
of the dissemination H(B|A) which makes
H(A, B) non-concave.

A subject in the future may be to look for
a better definition of mutual entropy which
makes the other quantities preserve the con-
vexity properties better than ours.

Though our consideration is quite theoreti-
cal, we conjecture that the properties of clas-
sical theory will carry a practical meaning in
constructing a physical communication sys-
tem.



