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Abstract

In an M-type 2 Banach space $X$, we study the set-valued stochastic differential
equation represented as follows

$X_{t}=d \{X_{0}+\int_{0}^{t}a(s,X_{\iota})ds+\int_{0}^{t}c(s, X_{\epsilon})ds+\int_{0}^{t}b(s, X_{s})dB_{\epsilon}\},$ $t\in[0, T]$ ,

where $d$ stands for the closure in $X$ , the given initial value $X_{0}$ and the coeffi-
cient $a(\cdot,$ $\cdot)$ are set-valued, coefficients $c(\cdot,$ $\cdot)$ and $b(\cdot,$ $\cdot)$ are single valued. Under
suitable conditions, by using the successive approximation method, the existence
and uniqueness of strong solutions are obtained. The unique strong solution is
measurable, adapted and Hausdorff-continuous in $t$ .

Keywords and phrases: M-type 2 Banach space, integrals of set-valued
stochastic processes, set-valued stochastic differential equation.

1 Introduction

Theory of stochastic differential incIusions, as natural generalization of that of stochastic differ-
ential equations, has been received much attention with widespread applications to mathematical
economics, stochastic control theory etc. In this area, we would like to refer to the nice survey
[1, 10, 11]. In the n-dimensional Euclidean space $\mathbb{R}^{n}$ , much work has been done on stochastic
differential or integral inclusions (see e.g. [2, 9, 16]).

However there are only a few literatures related to considering the set-valued stochastic dif-
ferential equation or integral equation because of the complexity of derivative of set-valued
functions and the difficulties for defining set-valued stochastic integrals.

In a separable Banach space, Michta ([15]) studied compact convex set-valued random differ-
ential equation without the diffusion tem:

$D_{H}X_{t}=F(t,X_{t})$ $P$.1, $t\in[0,$ $T\}-a.e$ .

$X_{0}=U$ P.l,
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where $F$ and $U$ are given set-valued random variables with values in the space of all nonempty,
compact and convex subsets of X. $D_{H}X_{t}$ is the Hukuhara derivative of $X_{t}$ .

In a separable M-type 2 Banach space, Zhang et al. ([20]) studied the following set-valued
stochastic differential equation

$X_{t}=X_{0}+ \int_{0}^{t}a(s, X_{s})ds+\int_{0}^{t}b(s, X_{s})dB_{s},$ $t\in[0, T]$ ,

where both $X_{s}$ and $a(s, X_{\theta})$ are set-valued, $b(s, X_{s})$ is single valued, and $\{B_{t}\}$ is a real valued
Brownian motion. The sum of a set $X$ and an single point $y$ is defined as $X+y=\{x+y : x\in X\}$ .

In this paper, based on the work [20], we will study the strong solution of the set-valued
stochastic differential equation presented as follows:

(1.1) $X_{t}=d \{X_{0}+\int_{0}^{t}a(s,X_{t})ds+\int_{0}^{t}c(s, X_{\epsilon})ds+\int_{0}^{t}b(s, X_{s})dB_{\theta}\},$ $t\in[0,T]$ ,

where $d$ stands for the closure in $X,$ $X_{\theta}$ and $a(s, X_{\epsilon})$ are set-valued, $b(s, X_{s})$ and $c(s, X_{s})$

are single valued, and $\{B_{t}\}$ is a real valued Brownian motion. When the coefficients satisfy
suitable conditions, for any given $L^{2}$-integrably bounded initial value $X_{0}$ , there exists a unique
Hausdorff-continuous strong solution to the equation (1.1).

This paper is organized as follows. Section 2 is on definition and preliminary results. Section
3 is devoted to the main results.

2 Definitions and preliminary results

Let $(\Omega, \mathcal{F}, P)$ be a complete probability space, $\{\mathcal{F}_{t}\}_{t\geq 0}$ a filtration satisfying the usual conditions
such that $\mathcal{F}_{0}$ includes all P-null sets in $\mathcal{F}$, the filtration is non-decreasing and right continuous,
$\mathcal{B}(E)$ the Borel field of a topological space $E$ , $(SC, ||\cdot||)$ a separable Banach space $X$ equipped
with the norm $||\cdot||,$ $X^{*}$ the topological dual space of SC and K(SC) (resp. $K_{b}(X)$ ), the family of all
nonempty closed (resp. closed bounded) subsets of $X$ . Let $p$ be $1\leq p<+\infty$ and $L^{p}(\Omega,\mathcal{F}, P;X)$

denoted briefly by $L^{p}(\Omega;X)$ the Banach space of equivalence classes of SC-valued $\mathcal{F}$-measurable
functions $f$ : $\Omegaarrow$ SC such that the norm

$||f \Vert_{p}=\{\int_{\Omega}\Vert f(\omega)\Vert^{p}dP\}^{\frac{1}{p}}$

is finite. $f$ is called IP-integrable if $f\in L^{p}(\Omega;X)$ .
A set-valued function $F$ : $\Omegaarrow K(X)$ is said to be measurable if for any open set $O\subset X$ ,

the inverse $F^{-1}(O)$ $:=\{\omega\in\Omega : F(\omega)\cap O\neq\emptyset\}\in \mathcal{F}$ . Such a function $F$ is called a set-valued
random variable. Let $\mathcal{M}$ $(\Omega,$ $\mathcal{F},$ $P;K$ (SC) $)$ be the family of all set-valued random variables, briefly
denoted by $\mathcal{M}$ $(\Omega;K$ (SC) $)$ .

A mapping $ghom$ a measurable space $(E_{1},A_{1})$ into another measurable space $(E_{2}, A_{2})$ is
called $A_{1}/\mathcal{A}_{2}$ -measurable if $g^{-1}(B)=\{x\in E;g(x)\in B\}\in \mathcal{A}_{1}$ for all $B\in \mathcal{A}_{2}$ .

For any open subset $O\subset X$ , set

$Z_{O}$ $:=\{E\in K(X) : E\cap O\neq\emptyset\}$ ,
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$C:=$ { $Z_{O}:O\subset X,$ $O$ is open},

and let $\sigma(C)$ be the $\sigma$-algebra generated by $C$ .

Proposition 2.1. A set-valued function $F$ : $\Omegaarrow K(X)$ is measurable if and only if $F$ is
$\mathcal{F}/\sigma(C)$ -measurable.

For $A,$ $B\in 2^{X}$ (the power set of $X$), $H(A, B)\geq 0$ is defined by

$H(A, B):= \max\{\sup_{x\in Ay}\inf_{\in B}||x-y||,\sup_{y\in B^{x}}\inf_{\in A}||x-y||\}$ .

If $A,$ $B\in K_{b}(X)$ , then $H(A, B)$ is called the Hausdorff distance of $A$ and $B$ . It is well-known
that $K_{b}(X)$ equipped with the H-metric denoted by $(K_{b}(X),$ $H)$ is a complete metric space.

The following results are also well-known. (see for example [6], [13]).

Proposition 2.2. (i) For $A,$ $B,C,$ $D\in K(X)$ , we have

$H(A+B, C+D)\leq H(A, C)+H(B, D)$ ,

$H(A\oplus B, C\oplus D)=H(A+B, C+D)$ ,

where $A\oplus B$ $:=d\{a+b;a\in A, b\in B\}$ .
(ii) For $A,$ $B\in K(X),$ $\mu\in \mathbb{R}$ , we have

$H(\mu A,\mu B)=|\mu|H(A, B)$ .

For $F\in \mathcal{M}(\Omega,K(X))$ , the family of all $IP$-integrable selections is defined by

$S_{F}^{p}(\mathcal{F}):=\{f\in L^{p}(\Omega,\mathcal{F}, P;X):f(\omega)\in F(\omega)a.s.\}$ .

In the following, $S_{F}^{p}(\mathcal{F})$ is denoted briefly by $S_{F}^{p}$ . If $S_{F}^{p}$ is nonempty, $F$ is said to be IP-integrable.
$F$ is called IP-integrably bounded if there exits a function $h\in L^{p}(\Omega, \mathcal{F},P|\mathbb{R})$ such that $x\in F(\omega)$ ,
$\Vert x||\leq h(\omega)$ for any $x$ and $\omega$ with $x\in F(\omega)$ . It is equivalent to that $\Vert F\Vert_{K}\in L^{p}(\Omega;\mathbb{R})$ , where
$\Vert F(\omega)\Vert_{K}$ $:=$ $\sup||a\Vert$ . The family of all measurable K(SC)-valued $L^{p}$-integrably bounded

$a\in F(\omega)$

functions is denoted by $IP(\Omega,$ $\mathcal{F},$ $P;K(X))$ . Write it for brevity as $L^{p}(\Omega;K(X))$ .
Let $\Gamma$ be a set of measurable functions $f$ : $\Omegaarrow X$ . $\Gamma$ is called decomposable with respect to

the $\sigma$-algebra $\mathcal{F}$ if for any finite $\mathcal{F}$-measurable partition $A_{1},$
$..,$

$A_{n}$ and for any $f_{1},$
$\ldots,$

$f_{n}\in\Gamma$ it
follows that $\chi_{A_{1}}f_{1}+\ldots+\chi_{A_{n}}f_{n}\in\Gamma$ , where $\chi_{A}$ is the indicator function of set $A$ .
Proposition 2.3. (Hiai-Umegaki $f6J$) Let $\Gamma$ be a nonempty closed subset of $L^{p}(\Omega,\mathcal{F}, P;X)$ .
Then there exists an $F\in \mathcal{M}(\Omega;K(X))$ such that $\Gamma=S_{F}^{p}$ if and only if $\Gamma$ is decomposable with
respect to $\mathcal{F}$ .
Proposition 2.4. (Hiai-Umegaki $f\theta J$) Let $F_{1},$ $F_{2}\in \mathcal{M}(\Omega;X)$ and $F(\omega)=d(F_{1}(\omega)+F_{2}(\omega))$ for
all $\omega\in\Omega$ . Then $F\in \mathcal{M}(\Omega;X)$ . Moreover if $S_{F_{1}}^{p}$ and $S_{F_{2}}^{p}$ are nonempty where $1\leq p<\infty_{f}$ then
$S_{F}^{p}=cl(S_{F_{1}}^{p}+S_{F_{2}}^{p})$ , the closure in $L^{p}(\Omega;X)$ .
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Lemma 2.1. Let $F\in \mathcal{M}(\Omega;K(X))$ . Then $F$ is $L^{p}$ -integrably bounded if and only if $S_{F}^{p}$ is
nonempty and bounded in $L^{p}(\Omega;X)$ .

Let $\mathbb{R}_{+}$ be the set of all nonnegative real numbers and $\mathcal{B}_{+};=B(R_{+})$ . An $X$-valued stochastic
process $f=\{f_{t} : t\geq 0\}$ (or denoted by $f=\{f(t)$ : $t\geq 0\}$ )is defined as a function $f$ : $\mathbb{R}+\cross\Omegaarrow$

SC with $\mathcal{F}$-measurable section $f_{t}$ , for $t\geq 0$ . We say $f$ is measumble if $f$ is $\mathcal{B}_{+}\otimes \mathcal{F}$-measurable.
The process $f=\{f_{t} : t\geq 0\}$ is called $\mathcal{F}_{t}$ -adapted if $f_{\ell}$ is $\mathcal{F}_{t}$-measurable for every $t\geq 0$ .

In a fashion similar to the X-valued stochastic process, a set-valued stochastic process $F=$
$\{F_{t} : t\geq 0\}$ is defined as a set-valued function $F$ : $\mathbb{R}_{+}x\Omegaarrow K(X)$ with $\mathcal{F}$-measurable section
$F_{t}$ for $t\geq 0$ . It is called measurable if it is $\mathcal{B}+\otimes \mathcal{F}$-measurable, and $\mathcal{F}_{t}$ -adapted if for any fixed
$t,$ $F_{\ell}(\cdot)$ is $\mathcal{F}_{t}$-measurable.

Let $T\in \mathbb{R}_{+}$ , for $0\leq s\leq t\leq T,$ $\lambda([s,t])$ be the Lebesgue measure in the intervaJ $[s, t]$ . In
the following, the Lebesgue integral $\int_{[s,t]}fd\lambda$ will be denoted by $\int_{s}^{t}f_{\epsilon}ds$ , where $f$ is a Lebesgue
integrable functional. Let $II(([0,T]x\Omega),$ $B([0, T])\otimes \mathcal{F},$ $\lambda\cross P;X)$ denoted briefly by $L^{p}([0, T]x$

$\Omega;X)$ be the Banach space of equivalence classes of X-valued, $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable functions
$f$ : $[0, T]\cross\Omegaarrow X$ such that

$\int_{[0,T]x\Omega}||f(t,\omega)\Vert^{p}d\lambda dP<+\infty$ .

Let $\mathcal{L}^{p}(X)$ be the family of all $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable, $\mathcal{F}_{t}$-adapted, X-valued stochastic
processes $f=\{f_{t}, \mathcal{F}_{t} : t\in[0, T]\}$ such that $E[ \int_{0}^{T}||f_{\epsilon}\Vert^{p}ds]$ $:=f_{[0_{r}T]x\Omega}\Vert f(t, \omega)\Vert^{p}d\lambda dP<+\infty$ ,
and $\mathcal{L}^{p}(K(X))$ the family of all $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable, $\mathcal{F}_{t}$-adapted, set-valued stochastic
processes $F=\{F_{t}, \mathcal{F}_{t} : t\in[0, T]\}$ such that $\{\Vert F_{t}\Vert_{K}\}_{t\in[0,T]}\in \mathcal{L}^{p}(\mathbb{R})$ .

For a $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable set-valued stochastic process $\{F_{t}, \mathcal{F}_{t} : t\in[0, T]\}$ , a $\mathcal{B}(\{0,$ $T])\otimes$

$\mathcal{F}$-measurable selection $f=\{f_{t}, \mathcal{F}_{t} : t\in[0, T]\}$ is called $\mathcal{L}^{p}$ -selection if $f=\{f_{t}, \mathcal{F}_{t} : t\in[0, T]\}\in$

$\mathcal{L}^{p}$ (CE). The family of all $\mathcal{L}^{p}$-selections is denoted by $S^{p}(F(\cdot))$ . That is to say

$S^{p}(F(\cdot))=\{f\in \mathcal{L}^{p}(X);f(t,\omega)\in F(t,\omega)$ for $a.e$ . $(t, \omega)\in[0, T]\cross\Omega\}$ .

By the Kuratowski-Ryll-Nardzewski Selection Theorem (see e.g. [5]), $S^{p}(F(\cdot))$ is nonempty for
$F\in \mathcal{L}^{p}(K(X))$ .

2.1 Set-valued integrals with respect to Lebesgue measure in time interval
$[s, t]$

We briefly state the definitions and properties of the set-valued integral with respect to the
Lebesgue measure in time interval $[s,t]$ for $s,t\in[0, T]$ , which were studied in detail in [20].

For a set-valued stochastic process $\{F_{t}, \mathcal{F}_{t} : t\in[0,T]\}\in \mathcal{L}^{p}(K(X))$ , and for $0\leq s\leq t\leq T$ ,
define

(2.1) $\Lambda_{s,t}$ $:= \{\int_{\epsilon}^{t}f_{u}du:(f_{u})_{u\in[0,T]}\in S^{p}(F(\cdot))\}$ ,

where $\int_{s}^{t}f_{u}(\omega)du$ is the Bochner integral with respect to the Lebesgue measure $\lambda$ in the interval
$[s, t]$ . By Theorem 9.41 in [5], $f$ is the Bochner integrable in the interval $[s, t]$ if and only if its
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norm function $\Vert f\Vert$ is the Lebesgue integrable. That is $\int_{s}^{t}\Vert f_{u}\Vert du<+\infty$ . For each $f\in S^{P}(F(\cdot))$ ,
we know $\int_{0}^{T}\Vert f_{u}\Vert^{p}du<\infty$ a,s., which means there is a P-null set $N_{f}$ , such that for all $\omega\in\Omega\backslash N_{f}$

and for $0\leq s<t\leq T,$ $\int_{s}^{t}\Vert f(u)\Vert^{p}du<\infty$ . For $\omega\in N_{f}$ , we define $\int_{\epsilon}^{t}f_{u}du=0$ . Then for each
$f\in S^{p}(F(\cdot)),$ $\int_{\delta}^{t}f_{u}du$ is well defined path-by-path. Moreover, the process $\{\int_{0}^{t}f_{u}du:t\in[0, T]\}$

is continuous, measurable and $\mathcal{F}_{t}$-adapted. So that $\Lambda_{s,t}\subset L^{p}(\Omega, \mathcal{F}_{t}, P;X)\subset L^{p}(\Omega;X)$ .
We define the decomposable closed hull of $\Lambda_{s,t}$ with respect to $\mathcal{F}_{t}$ by

$\overline{de}\Lambda_{s,t}$ $:=$ $\{g\in L^{p}(\Omega,\mathcal{F}_{t},P;X)$ ; for any $\epsilon>0$ , there exist a finite $\mathcal{F}_{t}$ -measurable
partition $\{A_{1}, \ldots, A_{n}\}$ of $\Omega$ and $f^{1},$ $\ldots,f^{n}\in S^{p}(F(\cdot))$ , such that

$\Vert g-\sum_{i=1}^{n}\chi_{A_{*}}\int_{s}^{t}f_{u}^{1}du\Vert_{L\prime(\Omega,\mathcal{F}_{t},P;X)}<\epsilon\}$

By Proposition 2.3, $\overline{de}\Lambda_{\epsilon,t}$ determines an $\mathcal{F}_{t}$-measurable set-valued function $I_{s,\ell}(F)$ : $\Omegaarrow K(X)$ ,
such that the family of all $IP$-integrable selections of $I_{s,t}(F)$ is

$S_{I_{*t})(F)}^{p}(\mathcal{F}_{t})=\overline{de}\Lambda_{s,t}$.

Particularly, $I_{0,t}(F)$ will be denoted by $I_{t}(F)$ for brevity. Therefore $\{I_{t}(F) : t\in[0,T]\}$ is an
$\mathcal{F}_{t}$-adapted set-valued stochastic process.

Deflnition 2.1. For a set-valued stochastic process $\{F_{t}, \mathcal{F}_{t} : t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , the set-
valued random variable $I_{s,t}(F)$ defined as the above is called the set-valued integral of $\{F_{t},$ $\mathcal{F}_{t}$ :
$t\in[0, T]\}$ with respect to the Lebesgue measure on the interval $[s, t]$ . We denote it by $\int_{s}^{t}F_{u}du$ $:=$

$I_{\epsilon_{2}t}(F)$ .

2.2 Stochastic integral w.r.$t$ Brownian motion in M-type 2 Banach space

Let $\{B_{t}, \mathcal{F}_{t} : t\in[0, T]\}$ be a real valued $\mathcal{F}_{t}$-Brownian motion with $B_{0}(\omega)=0$ a.s., where we call
$\{B_{t}, \mathcal{F}_{t} ; t\in[0, T]\}$ an $\mathcal{F}_{t}$-Brownian motion if it is an $\mathcal{F}_{t}$-adapted continuous martingale and for
any $0\leq t\leq u\leq T,$ $E[(B_{u}-B_{t})^{2}]=u-t$ (see [12]).

Deflnition 2.2. ([3]) A Banach space $(SC, ||\cdot\Vert)$ is called M-type 2 if and only if there exists a
constant $C_{X}>0$ such that for any X-valued martingale $\{M_{k}\}$ , it holds that

(2.2)
$\sup_{k}E[\Vert M_{k}||^{2}]\leq C_{X}\sum_{k}E[\Vert M_{k}-M_{k-1}||^{2}]$.

The crucial inequality (2.2) guarantee the availability to define the integration.
Now, we rewrite briefly about the stochastic integral studied in [19].
Let $\mathcal{L}_{step}^{2}(X)$ be the subspace of those $f\in \mathcal{L}^{2}(X)$ for which there exists a partition $0=t_{0}<$

$tJ<\ldots<t_{n}=T$ , such that $f_{\ell}=f_{t_{k}}$ for $t\in[t_{k},t_{k+1}),0\leq k\leq n-1,$ $n\in N$ . For $f\in \mathcal{L}_{step}^{2}(X)$ ,
define an SC-valued martingale by $I_{T}(f)$ $:= \sum_{k=0}^{n-1}f_{t_{k}}(B_{t_{k+1}}-B_{t_{k}})$ .

$\mathcal{L}_{\epsilon tep}^{2}(X)$ is dense in $\mathcal{L}^{2}(X)$ (see [19]), the integrand can be extend to $\mathcal{L}^{2}(X)$ . The extension
is the definition of the stochastic integral and has the following properties.
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Proposition 2.5. For $f\in \mathcal{L}^{2}(X)$ , we have
(i) $E[I_{t}(f)]=0,$ $I_{t}(f)\in L^{2}(\Omega, \mathcal{F}, P;X)$ and $\{I_{t}(f) : t\in[0, T]\}$ is a measurable $\mathcal{F}_{t}$ -martingale,
(ii)

$E[ \Vert I_{t}(f)\Vert^{2}]\leq C_{X}E[\int_{0}^{t}\Vert f_{s}\Vert^{2}ds]$ for all $t\in[0, T]$ , and

(iii) There $e$ cists a t-continuous version of $I_{t}(f)= \int_{0}^{t}f_{s}dB_{s},$ $t\in[0, T]$ .

Rom now on, we will always assume that $\int_{0}^{t}f_{\epsilon}(\omega)dB_{s}(\omega)$ means a t-continuous version of the
integral.

2.3 Set-valued stochastic differential equation

Assume X is a separable M-type 2 Banach space. Let the functions
$a(\cdot,$ $\cdot)$ : $[0,T]xK(X)arrow K(X)$ be $(\mathcal{B}([0, T])\otimes\sigma(C))/\sigma(C)$ -measurable,

$b(\cdot,\cdot):[0,T]xK(X)c(\cdot,\cdot):[0,T]xK(X)arrow Xbearrow Xbe(\mathcal{B}([0,T])\sigma(C)(|\{/\mathcal{B}(X)- measurab1e/\mathcal{B}(X)- measurab1e$

.
and

Assume the above functions $a(\cdot,$ $\cdot)$ and $b(\cdot,$ $\cdot)$ also satisfy the following conditions:

(2.3) $H(\{0\},$ $a(t, X))+\Vert c(t,X)\Vert+\Vert b(t, X)||\leq C(1+H(\{0\}, X));X\in K(X),t\in[0, T]$

for some constant $C$ and
(2.4)
$H(a(t, X),$ $a(t,Y))+\Vert c(t, X)-c(t,Y)\Vert+\Vert b(t, X)-b(t, Y)||\leq DH(X, Y);X,$ $Y\in K(X),t\in[0,T]$

for some constant $D$ .
Let $X_{0}$ be an $L^{2}$-integrably bounded set-valued random variable. Then by Proposition 2.4, it

is reasonable to define the set-valued stochastic differential equation as follows:

Deflnition 2.3.

(2.5) $X_{t}=d \{X_{0}+\int_{0}^{t}a(s, X_{s})ds+\int_{0}^{t}c(s, X_{s})ds+\int_{0}^{t}b(s, X_{s})dB_{s}\},$ $f\sigma rt\in[0, T]a.s$ .

An $\mathcal{F}_{t}$ -adapted, H-continuous in $t$ almost surely and measurable set-valued process $\{X_{t}:t\in$

$[0, T]\}$ is called a strong solution if it satisfies the equation (2.5).

3 Main results

Theorem 3.1. Let $p\geq 1$ . For a set-valued stochastic process $\{F_{t},\mathcal{F}_{t} : t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ ,
then for $0\leq s\leq t\leq T,$ $S_{I_{t}(F)}^{p}(\mathcal{F}_{t})$ is nonempty and bounded in $L^{p}(\Omega, \mathcal{F}_{t}, P;X)$ and $I_{\epsilon,t}(F)$

If-integrably bounded.

When $\mathcal{F}$ is separable with respect to the probability measure $P$ , we know both $S^{p}(F(\cdot))$ and
$S_{I\iota(F)}^{p}(\mathcal{F}_{t})$ are separable.
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Theorem 3.2. Assume $\mathcal{F}$ is separable with respect to the probability measure P. Then for a
set-valued stochasiic process $\{F_{\ell}, \mathcal{F}_{t}:t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , there exists a sequence $\{f^{n}:n=$

$1,2,$ $\ldots\}\subset S^{p}(F(\cdot))$ such that

$F(t, \omega)=d\{f_{i}^{n}(\omega):n=1,2, \ldots\}$ for $a.e$ . $(t, \omega)$ ,

and for $0\leq s\leq t\leq T$

$I_{s_{s}t}(F)( \omega)=d\{\int_{s}^{t}f_{u}^{n}(\omega)du:n\in N\}a.s$ ,

where $d$ denotes the closure in X.

Lemma 3.1. Assume $\mathcal{F}$ is separable with respect to P. For a set valued stochastic process
$\{F_{t},\mathcal{F}_{t}:t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , there exists a $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable version $\{\tilde{I_{s,t}}(F)$ ; $t\in$

$[0, T]\}$ of $\{I_{s,t}(F) : t\in[0, T]\}$ such that $I_{s,t}(F)(\omega)=\tilde{I_{\epsilon,t}}(F)(\omega)a.s$ . and $\tilde{I_{s,t}}(F)(\omega)\in K_{b}(X)$ for
all $0\leq s\leq t\leq T$ and almost sure $\omega$ .

From now on, if $\mathcal{F}$ is separable, we will always assume that the set-valued integral of $\{F_{t},$ $\mathcal{F}_{t}$ :
$t\in[0,T]\}\in \mathcal{L}^{p}(K(X))$ means the $\mathcal{B}([0, T])\otimes \mathcal{F}$-measurable version $\{\tilde{I_{s_{l}t}}(F) : t\in[0,T]\}$ . For
convenience, we still denote $\tilde{I_{s1t}}(F)(\omega)$ by $I_{s,t}(F)(\omega)$ .

Theorem 3.3. Assume $\mathcal{F}$ is separable with respect to P. For a set-valued stochastic processes
$\{F_{t}, \mathcal{F}_{t}:t\in[0, T]\},$ $\{G_{t}, \mathcal{F}_{t}:t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , set

$\phi(t,\omega):=H(\int_{0}^{t}F_{s}(\omega)ds,$ $\int_{0}^{t}G_{s}(\omega)ds)$ : $[0, T]x\Omegaarrow \mathbb{R}$ .

Then $\phi(\cdot,$ $\cdot)$ is $\mathcal{B}([0, T])\otimes \mathcal{F}$-measura$ble$ .

By Theorem 3.2 and Lemma 3.1, we obtain that

Theorem 3.4. Assume $\mathcal{F}$ is separable with respect to P. Then for a set-valu$ed$ stochastic process
$\{F_{t}, \mathcal{F}_{t}:t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , then the following formula

$I_{t}(F)(\omega)=d\{I_{s}(F)(\omega)+I_{s,t}(F)(\omega)\}$

holds for $0\leq s<t\leq T$ and almost sure $\omega$ , where $cl$ stands for the closure in SC.

Lemma 3.2. Assume $\mathcal{F}$ is separable with respect to P. Then for a set-valued stochastic process
$\{F_{t}, \mathcal{F}_{t}:t\in[0, T]\}\in \mathcal{L}^{p}(K(X))$ , the set-valued integral $\{I_{t}(F) : t\in[0, T]\}$ is H-continuous in $t$

$a.s$ .

Lemma 3.3. Assume $\mathcal{F}$ is sepamble with respect to P. For a set-valued stochastic processes
$\{F_{t}\}_{t\in[0,\eta},$ $\{G_{t}\}_{t\in[0,T]}\in \mathcal{L}^{p}(K(X))$ , and for all $t$ and almost sure $\omega$ , we have

$H^{p}( \int_{0}^{t}F_{s}(\omega)ds,$ $\int_{0}^{t}G_{\epsilon}(\omega)ds)\leq t^{p-1}\int_{0}^{t}H^{p}(F_{s}(\omega),$ $G_{\epsilon}(\omega))ds$
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Theorem 3.5. Assume $\mathcal{F}$ is sepamble ntth respect to P. For set-valued stochastic processes
$\{F_{t}\}_{t\in[0,T]},$ $\{G_{t}\}_{t\in[0,\eta}\in \mathcal{L}^{p}(K(X))$ , then for $1\leq r\leq p$ , all $t$ and almost sure $\omega$ , it follows that

$H^{r}( \int_{0}^{\ell}F_{s}(\omega)ds,$ $\int_{0}^{t}G_{\iota}(\omega)ds)\leq t^{r-1}\int_{0}^{t}H^{r}(F_{\theta}(\omega),$ $G_{s}(\omega))ds$ ,

and then
$E[H^{\tau}( \int_{0}^{t}F_{\epsilon}ds,$ $\int_{0}^{t}G_{s}ds)]\leq t^{r-1}E[\int_{0}^{t}H^{r}(F_{s}, G_{s})ds]$ .

Theorem 3.6. Assume $\mathcal{F}$ is sepamble with respect to P. Let $T>0$ , and let $a(\cdot,$ $\cdot)$ : $[0, T]x$

$K(X)arrow K(X),$ $b(\cdot,$ $\cdot)$ : $[0, T]\cross K(X)arrow$ ec be measurable functions satishing conditions (2.3) and
(2.4). Then for any given $L^{2}$ -integrably bounded initial value $X_{0}$ , there exists a strong solution
to (2.5). The strong solution is unique in the sense of $P(H(X_{t},\hat{X}_{t})=0$ for all $t\in[0,T])=1$ .
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