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Abstract

In an M-type 2 Banach space X, we study the set-valued stochastic differential
equation represented as follows

t t t
X = d{Xo +/ a(s, X,)ds +/ (s, X,)ds +/ b(s, X,)dBa}, telo, 1],
0 () 0

where ¢l stands for the closure in X, the given initial value Xy and the coeffi-
cient a(-,-) are set-valued, coefficients c(,-) and b(-,-) are single valued. Under
suitable conditions, by using the successive approximation method, the existence
and uniqueness of strong solutions are obtained. The unique strong solution is
measurable, adapted and Hausdorff-continuous in t.

Keywords and phrases: M-type 2 Banach space, integrals of set-valued
stochastic processes, set-valued stochastic differential equation.

1 Introduction

Theory of stochastic differential inclusions, as natural generalization of that of stochastic differ-
ential equations, has been received much attention with widespread applications to mathematical
economics, stochastic control theory etc. In this area, we would like to refer to the nice survey
(1, 10, 11]. In the n-dimensional Euclidean space R™, much work has been done on stochastic
differential or integral inclusions (see e.g. [2, 9, 16]).

However there are only a few literatures related to considerihg the set-valued stochastic dif-
ferential equation or integral equation because of the complexity of derivative of set-valued
functions and the difficulties for defining set-valued stochastic integrals.

In a separable Banach space, Michta ([15]) studied compact convex set-valued random differ-
ential equation without the diffusion term:

DyX; = F(t, Xt) Pl te [0, T} — a.e.
Xo=U P1,
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where F' and U are given set-valued random variables with values in the space of all nonempty,
compact and convex subsets of X. Dy X, is the Hukuhara derivative of X;.

In a separable M-type 2 Banach space, Zhang et al. ([20]) studied the following set-valued
stochastic differential equation

t t
X, = Xo + / a(s, X,)ds + / b(s, X,)dB,, t € [0, T,
0 0

where both X, and a(s, X;) are set-valued, b(s, X,) is single valued, and {B;} is a real valued
Brownian motion. The sum of a set X and an single point y is defined as X +y = {z+y : z € X}.

In this paper, based on the work [20], we will study the strong solution of the set-valued
stochastic differential equation presented as follows:

t t t
(1.1) X,=cz{xo+ /0 a(s, X,)ds + /0 c(8, Xo)ds + /0 b(s,x,)dB,,}, te[0,7),

where cl stands for the closure in X, X, and a(s, X,) are set-valued, b(s, X,) and c(s, X,)
are single valued, and {B:} is a real valued Brownian motion. When the coefficients satisfy
suitable conditions, for any given L2-integrably bounded initial value Xp, there exists a unique
Hausdorff-continuous strong solution to the equation (1.1).

This paper is organized as follows. Section 2 is on definition and preliminary results. Section
3 is devoted to the main results.

2 Definitions and preliminary results

Let (?2, F, P) be a complete probability space, {F¢}:>0 a filtration satisfying the usual conditions
such that F includes all P-null sets in F, the filtration is non-decreasing and right continuous,
B(E) the Borel field of a topological space E, (X,]| - ||) a separable Banach space X equipped
with the norm ||-||, X* the topological dual space of X and K(X) (resp. K;(X)), the family of all
nonempty closed (resp. closed bounded) subsets of X. Let pbe 1 < p < +00 and LP(Q, F, P; X)
denoted briefly by LP(Q2; X) the Banach space of equivalence classes of X-valued F-measurable
functions f : @ — X such that the norm

171l = { Jal F@)IPaP}

is finite. f is called LP-integrable if f € LP(); X).

A set-valued function F : @ — K(X) is said to be measurable if for any open set O C X,
the inverse F~1(0) := {w € Q: F(w)N O # 0} € F. Such a function F is called a set-valued
random variable. Let M(Q, F, P; K(%)) be the family of all set-valued random variables, briefly
denoted by M(Q; K(X)).

A mapping g from a measurable space (E1,.A;) into another measurable space (E3,.A2) is
called A;/Az-measurable if g71(B) = {x € E; g(z) € B} € A, for all B € A,.

For any open subset O C X, set

Zo :={FE € K(X): ENO # 0},
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C:={Zp:0CX, O is open},
and let o(C) be the o-algebra generated by C.

Proposition 2.1. A set-valued function F : Q — K(X) is measurable if and only if F is
F/o(C)-measurable.

For A, B € 2% (the power set of X), H(A, B) > 0 is defined by
H(A, B) := max{sup inf ||z — y||, sup inf ||z — y||}.
rcAYEB yeBTEA

If A,B € Ky(X), then H(A, B) is called the Hausdorff distance of A and B. It is well-known
that K;(X) equipped with the H-metric denoted by (Kj(X), H ) is a complete metric space.
The following results are also well-known. (see for example [6], [13]).

Proposition 2.2. (i) For A,B,C,D € K(X), we have
H(A+ B,C+ D)< H(A,C)+ H(B, D),

H(A® B,C® D)= H(A+ B,C + D),

where A® B :=cl{a +bja € A,b € B}.
(i) For A,B € K(%X), u € R, we have

H(pA,pB) = |u|H(A, B).
For F € M(Q,K(X)), the family of all LP-integrable selections is defined by
SE(F) ={f e IV, F,P; X) : f(w) € F(w) a.s.}.

In the following, S%.(F) is denoted briefly by Sf,. If S%. is nonempty, F is said to be LP-integrable.
F is called LP -integrably bounded if there exits a function h € LP(Q, F, P; R) such that z € F(w),
llzll £ h(w) for any = and w with z € F(w). It is equivalent to that ||F||x € L?(2;R), where
1Pk = gp ) {lall. The family of all measurable K(X)-valued LP-integrably bounded

acl{w
functions is denot(ed by LP (9, F, P; K(X)). Write it for brevity as L?(Q; K(X)).
Let T be a set of measurable functions f : 2 — X. T is called decomposable with respect to
the o-algebra F if for any finite F-measurable partition A, .., A, and for any fi,..., fo € ' it
follows that x4, fi + ... + XA, fn € T, where x4 is the indicator function of set A.

Proposition 2.3. (Hiai-Umegaki [6]) Let I be a nonempty closed subset of LP(QY, F, P; X).
Then there ezists an F € M(Q; K (X)) such that T = S%. if and only if T' is decomposable with
respect to F.

Proposition 2.4. (Hiai-Umegaki [6]) Let Fy, F> € M(Q; %) and F(w) = cl(Fi(w) + F2(w)) for
allw € Q. Then F € M(;X). Moreover if St and Sg, are nonempty where 1 < p < oo, then
S = cl(SE, + S,), the closure in LP(Q; X).
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Lemma 2.1. Let F € M(;K(X)). Then F is LP-integrably bounded if and only if Sk is
nonempty and bounded in LP(Q2; X). '

Let R, be the set of all nonnegative real numbers and B := B(R,). An ¥-valued stochastic
process f = {f; :t > 0} (or denoted by f = {f(t) : t > 0} )is defined as a function f : Ry x0 —»
X with F-measurable section f;, for t > 0. We say f is measurable if f is By ® F-measurable.
The process f = {f; : t > 0} is called F;-adapted if f; is F;-measurable for every t > 0.

In a fashion similar to the X-valued stochastic process, a set-valued stochastic process F =
{F; : t > 0} is defined as a set-valued function F : R, x @ — K(X) with F-measurable section
Ft for t > 0. 1t is called measurable if it is B, ® F-measurable, and F;-adapted if for any fixed
t, Fy(-) is F¢-measurable.

Let T € Ry, for 0 < 8 <t < T, A([s,t]) be the Lebesgue measure in the interval [s,t]. In
the following, the Lebesgue integral f{s,q fdA will be denoted by | : feds, where f is a Lebesgue

integrable functional. Let LP (({0, T) x ), B([0, T)) ® F, A x P; 35) denoted briefly by L?([0, T] x

Q; X) be the Banach space of equivalence classes of X-valued, B([o, T]) ® F-measurable functions
f:00,T} x 2 — X such that

[ Ifw)lPddp < oo
[o,T]x1

Let £P(X) be the family of all B([0,T]) ® F-measurable, F;-adapted, X-valued stochastic
processes f = {f;,F; : t € [0,T]} such that E[foT Hfs”"ds] = f[o,T]xn 1 f(t,w)||PAAdP < +o0,
and LP(K(X)) the family of all B([0,T]) ® F-measurable, F,-adapted, set-valued stochastic
processes F' = {F;, F; : t € {0, T]} such that {||F¢||x }iejor) € LP(R).

For a B([0, T]) ® F-measurable set-valued stochastic process {F;, F; : t € [0, T]}, a B (o, ®
F-measurable selection f = {f;, F: : t € [0, T} is called LP-selection if f = {fy, Ft:t € [0,T)} €
LP(X). The family of all LP-selections is denoted by SP(F(-)). That is to say

SP(F()) = {f € LP(X); f(t,w) € F(t,w) for a.e. (t,w) € [0,T] x Q}.
By the Kuratowski-Ryll-Nardzewski Selection Theorem (see e.g. [5]), SP(F(-)) is nonempty for
F e LP(K(X)).

2.1 Set-valued integrals with respect to Lebesgue measure in time interval
(s, 1]

We briefly state the definitions and properties of the set-valued integral with respect to the
Lebesgue measure in time interval (s, ] for s,t € [0, T}, which were studied in detail in [20].

For a set-valued stochastic process {F;, F; : t € [0,T]} € LP(K(X)), and for 0 < s <t < T,
define

(2.1) A= {/at fudu : (fu)uepoy € Sp(F('))}’

where | : fu(w)du is the Bochner integral with respect to the Lebesgue measure ) in the interval
[s,t]. By Theorem 9.41 in [5], f is the Bochner integrable in the interval [s, ] if and only if its
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norm function || f|| is the Lebesgue integrable. That is f | fulldu < +o00. For each f € SP(F(.)),
we know fo | fullPdu < oo a.s., which means there is a P-null set Ny, such that for all w € Q\ Ny
and for0 < s<t<T, f | f(w)||Pdu < co. For w € Ny, we define f fudu = 0. Then for each
f e SP(F()), j; fudu is well defined path-by-path. Moreover, the process { fo fudu : t € [0,T]}
is continuous, measurable and Fi-adapted. So that A,, C LP(Q,F;, P; X) C LP(Q; X).

We define the decornposable closed hull of As; with respect to F; by

deAst = {g € LP(Q, Fy, P; X); for any € > 0, there exist a finite F; — measurable
partition {A;,...,A,} of Qand f, ..., f" € SP(F(-)), such that

llg — ZXA,/ fudullLe(o,7,,p2) < 5}
i=1
By Proposition 2.3, B—EAM determines an F;-measurable set-valued function I, +(F) : 2 — K(X),
such that the family of all LP-integrable selections of I, ;(F) is

Sz,t(F)(ft) == ‘(EAa‘t-

Particularly, Io(F) will be denoted by I;(F) for brevity. Therefore {I;(F) : t € [0,T]} is an
F-adapted set-valued stochastic process.

Definition 2.1. For a set-valued stochastic process {F;,F; : t € [0,T]} € LP(K(X)), the set-
valued random variable I, ;(F) defined as the above is called the set-valued integral of {F}, F; :
t € [0,T]} with respect to the Lebesgue measure on the interval [s, t]. We denote it by [ ;’ F,du :=
I+ (F).

2.2 Stochastic integral w.r.t Brownian motion in M-type 2 Banach space

Let {By, F; : t € [0,T]} be a real valued F;-Brownian motion with Byp(w) = 0 a.s., where we call
{B:, F:: t€[0,T]} an F¢-Brownian motion if it is an F;-adapted continuous martingale and for
any 0t <u<T, E[(B, — B)?] =u—t (see [12]).

Definition 2.2. ([3]) A Banach space (X, || - ||) is called M-type 2 if and only if there exists a
constant C'x > 0 such that for any X-valued martingale { My}, it holds that

(2.2) sup E[|M]?] < Cx > E[|| My — M1 |2
k

The crucial inequality (2.2) guarantee the availability to define the integration.

Now, we rewrite briefly about the stochastic integral studied in [19].

Let Lstep(}T) be the subspace of those f € L£2(X) for which there exists a partition 0 = ty <
11 <..<tp=T,suchthat fy = f;, fort e {tk,tk_H) 0<k<n-1,neN For f e L2 (%),
deﬁne an X-valued martingale by I7(f) :== 3725 fto (Bty,; — B)-

£%.,(%) is dense in £2(X) (see [19]), the integrand can be extend to L2(X). The extension
is the definition of the stochastic integral and has the following properties.
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Proposition 2.5. For f € L%(X), we have
(i) E[I(f)] =0, It(f) € L*(Q, F, P; X) and {I;(f) : t € [0, T} is a measurable Fy-martingale,
(#)
¢
E(IL(DI?) < CxE[ [ 15 I7ds] for ail t € 0,7, and
(#i1) There exists a t-continuous version of It(f) = fot fsdBs,t € [0,T].

From now on, we will always assume that f; fs(w)dB,s(w) means a t-continuous version of the
integral.

2.3 Set-valued stochastic differential equation

Assume X is a separable M-type 2 Banach space. Let the functions
a(-,)) : [0,T] x K(X) — K(X) be (B([O, T)) ® O'(C)) /o(C)-measurable,

e(,) : [0, T) x K(%) — X be (B([O, T)) ® a(C)) /B(X)-measurable, and
b(-,-) : [0,T] x K(%X) — X be (B([O, T)) ® a(C)) /B(%)-measurable.
Assume the above functions a(-,-) and b(-,-) also satisfy the following conditions :

(23)  H({0},a(t, X)) + lle(t, X)|| + b, X)|| < C(1+ H({0}, X)); X € K(%),t € [0,T]

for some constant C and
(2.4)
H(a(t, X),a(t, Y)) +llc(t, X)~c(t, Y) | +]Ib(t, X) bt Y)|| < DH(X,Y); X, Y € K(X),t € [0,T]

for some constant D.
Let Xo be an L?-integrably bounded set-valued random variable. Then by Proposition 2.4, it
is reasonable to define the set-valued stochastic differential equation as follows:

Definition 2.3.
t t t
(2.5) X; = cl{Xo +/ a(s, Xs)ds +/ c(s, X,)ds +/ b(s,X,)dB,},for te|0,7] a.s.
0 0 0

An F;-adapted, H-continuous in ¢t almost surely and measurable set-valued process {X; : t €
(0,71} is called a strong solution if it satisfies the equation (2.5).

3 Main results

Theorem 3.1. Let p > 1. For a set-valued stochastic process {Fy, F; : t € [0, T} € LP(K(%X)),
then for0 < s <t< T, Sf. :(F)(}-‘) is nonempty and bounded in LP(Q, Fy, P; X) and I,4(F)
LP-integrably bounded.

When F is separable with respect to the probability measure P, we know both S”(F()) and
S}’t( F) (F:) are separable.
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Theorem 3.2. Assume F is separable with respect to the probability measure P. Then for a
set-valued stochastic process {Fy, F; : t € [0,T)} € LP(K(X)), there exists a sequence {f™ : n =
1,2,..} € SP(F(-)) such that

F(t,w) = c{f(w) : n=1,2,..} for ae. (t,w),
and for0<s<t<T
¢
L+ (F)(w) = cl{/ fa(w)du:ne N} a.s,
3
where cl denotes the closure in X.

Lemma 3.1. Assume F is separable with respect to P. For a set valued stochastic process
{F,,F;: t € [0,T]} € LP(K(X)), there ezists a B([0,T]) ® F-measurable version {I,;(F) : t €
[0,7]} of {I;x(F) : t € [0, T} such that I,4(F)(w) = f:t(F)(w) a.s. and f:’t(F)(w) € Ky(X) for
all0 < s <t < T and almost sure w.

From now on, if F is separable, we will always assume that the set-valued integral of {F;, F; :
t € [0,T)} € £P(K(X)) means the B([0,T]) ® F-measurable version {I,(F) : t € [0,T]}. For
convenience, we still denote I’;(F)(w) by Is:(F)(w).

Theorem 3.3. Assume F is separable with respect to P. For a set-valued stochastic processes
{Fi, e : t € [0,T]} {G, Fi : t € [0,T]} € LP(K(X)), set

t t
8(t,w) = H( / Fy(w)ds, / Go(w)ds) : [0,T] x 2 — R.
0 - Jo
Then ¢(-,-) is B([0,T)) ® F-measurable.
By Theorem 3.2 and Lemma 3.1, we obtain that

Theorem 3.4. Assume F is separable with respect to P. Then for a set-valued stochastic process
{F,F:: t € [0,T)} € LP(K(X)), then the following formula

L(F)() = a{L,(F)() + Ly(F)()}
holds for 0 < s <t < T and almoét sure w, where cl stands for the closure in X.

Lemma 3.2. Assume F is separable with respect to P. Then for a set-valued stochastic process
{F, Fi: t € [0,T]} € LP(K(X)), the set-valued integral {I(F) : t € [0, T} is H-continuous in t
a.s.

Lemma 3.3. Assume F is separable with respect to P. For a set-valued stochastic processes
{Fi}sepo,r)s {Gtltep) € LP(K(X)), and for all t and almost sure w, we have

Hp([j F,(w)ds, —/: G’s(w)ds) <! /: HP(F,(w), Gs(w))ds
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Theorem 3.5. Assume F is separable with respect to P. For set-valued stochastic processes
{Fi}iepo,r {Gtliep) € £P (K(X)), then for 1 < r<p, allt and almost sure w, it follows that

Hr(‘/ot F,(w)ds, ‘/0" G,(w)ds) < ¢l /OtH’(F,(w),Ga(w))ds,

and then . . .
E[H( /0 F,ds, /0 Gds)| <t 1E| /0 H'(F,, Gy)ds|.

Theorem 3.6. Assume F is separable with respect to P. Let T > 0, and let a(-,-) : [0,T] x
K(X) - K(X), b(-,) : [0, T]xK(¥X) — X be measurable functions satisfying conditions (2.3) and
(2.4). Then for any given L2-integrably bounded initial value Xo, there ezists a strong solution
to (2.5). The strong solution is unique in the sense ofP(H(Xg,X't) =0 forallte [O,T]) = 1.

Acknowledgement: The author would like to thank Prof. I. Mitoma, Prof. Y. Okazaki and
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