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1 Introduction
The risk allocation is an important topic in asset management under uncertainty, and
in finance the portfolio is one of the most important methods for the risk allocation.
Recently, value-at-risk $(VaR)$ is used widely in financial trading to estimate the risk of
worst-scenarios. In this paper, we deal with conditional value-at-risk $(CVaR)$ , which is
derived from $VaR$, and a $CVaR$-portfolio problem. From the viewpoint of risk theory, it
is also known that $VaR$ is not acoherent risk measure ([1]), however $CVaR$ is not easy to
find the correspondence with parameters in finance. $VaR$ and $CVaR$ have amerit and a
demerit as arisk allocation tool. This paper discusses them in afuzzy ans probabilistic
environment $hom$ the viewpoint of risk measures.

Estimation of uncertain quantities is important in decision making ([22, 15, 16]). To
represent uncertainty in this portfolio model, we use fuzzy random $va\tau\dot{v}ables$ which have
two kinds of uncertainties, i.e. randomness and fuzziness. In ths paper, randomness is
used to represent the uncertainty regar&ng the belief degree of hequency, and fuzziness is
applied to linguistic imprecision of data because of alack of knowledge regarding the cur-
rent stock market. We extend the $CVaR$ for real random variables to one regarding fuzzy
random variables ffom the viewpoint of perception-based approach in Yoshida [20]. We
formulate the $CVaR$ portfolio problem with fuzzy random variables, and we discuss the
fundamental properties of the extended $CVaR$ using the results in Yoshida [21]. Recently,
Yoshida [17, 19] introduced the mean, the variance and the measurement of fuzziness of
fuzzy random variables, using evaluation weights and $\lambda$-mean functions. This paper esti-
mates fuzzy numbers/fuzzy random variables by the probabilistic expectation and these
criteria, which are characterized by $possibility/necessity_{C7^{\tau}}ite\dot{n}a$ for subjective estimation
and apessimistic-optimistic index for subjective decision. These parameters are decided
by the investor and are based on the degree of his certainty regarding the current infor-
mation in the market. In this portfolio model, we use triangle-type fuzzy numbers$/fuzzy$

random variables for computation in actual models, and we analyze mathematically the
$CVaR$ portfolio problem under some regularity condition.

2 A portfolio model under stochastic and fuzzy environment
In this paper, we consider a portfolio model with $n$ stocks as risky assets, where $n$ is a
positive integer. We assume small investors hypothesis such that an investor’s actions
do not have any impact on the stock market ([9]). Let a positive integer $T$ denote an
expiration date, and let $\mathbb{R}$ denote the set of all real numbers. Let $(\Omega, P)$ be a probability
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space, where $P$ is a non-atomic probability measure on a sample space $\Omega$ . For an asset
$i=1,2,$ $\cdots$ , $n$ , a stock pnce process $\{S_{t}^{i}\}_{t=0}^{T}$ is given by rates of return $R_{\sqrt{}}^{i}$ at time $t$ as
follows. Let a stock price $S_{t}^{i}$ $:=S_{t-1}^{i}(1+R_{t}^{i})$ for time $t=1,2,$ $\cdots$ , $T$ , where $\{R_{t}^{i}\}_{t=1}^{T}$ is
assumed to be a sequence of integrable real random variables. In this paper, we discuss
a portfolio model where stock prices $S_{t}^{i}$ take fuzzy values using fuzzy random variables,
taking into account from linguistic imprecision of data because of a lack of knowledge
regarding the current stock market. Mathematical notations of fuzzy random variables are
introduced later. Hence, we deal with a portfolio with portfolios given by portfolio weight
$vec$tors $w=(w^{1}, w^{2}, \cdots, w^{n})$ such that $w^{1}+w^{2}+\cdots+w^{n}=1$ and $w^{i}\geq 0(i=1,2, \cdots, n)$ .
The rate of retum for the portfolio $w=(w^{1}, w^{2}, \cdots, w^{n})$ is g\’iven by

$R_{4}:=w^{1}R_{\iota}^{1}+w^{2}R^{2}+\cdots+w^{n}R_{\eta}^{n}$ . (1)

This paper assumes that $R_{\tau}^{i}(i=1,2, \cdots, n)$ has anormal distribution ([8, 23, 24]).
Next, we introduce fuzzy numbers/fuzzy random variable and we give aportfolio model

under uncertainty. Afuzzy number is denoted by its membership function $\tilde{a}$ : $\mathbb{R}\mapsto[0,1]$

which is normal, upper-semicontinuous and quasi-concave and has acompact support
([15, 16, 25]). $\mathcal{R}$ denotes the set of all fuzzy numbers. In this paper, we identify fuzzy
numbers with their corresponding membership functions. The $\alpha$-cut of afuzzy iiumber
$\tilde{a}(\in \mathcal{R})$ is given by $\tilde{a}_{\alpha}:=\{x\in \mathbb{R}|\overline{a}(x)\geq\alpha\}(\alpha\in(0,1])$ and $\tilde{a}_{0}:=$ cl $\{x\in \mathbb{R}|\tilde{a}(x)>0\}$ ,
$v^{\gamma}here$ cl denotes the closure of an interval. We write the closed intervals as $\tilde{a}_{\alpha}:=[\tilde{a}_{Q}^{-},\tilde{a}_{\alpha}^{+}]$

for $\alpha\in[0,1]$ . Henoe we also $inti^{\sim}oduce$ apartial order $\succeq$ , so called the fuzzy $\max$ order, on
fuzzy iiumbers $\mathcal{R}([4])$ . An addition, asubtraction and ascalar multiplication for fuzzy
numbers are defined by Zadeh’s extension principle ([15, 16, 25]).

Afuzzy-number-valued map $\tilde{X}$ : $\Omega\mapsto \mathcal{R}$ is called afuzzy random vaniable if the
maps $\omega\mapsto\tilde{X}_{\alpha}^{\pm}(\omega)$ are measurable for all $\alpha\in(0,1]$ , where $\tilde{X}_{\alpha}(\omega)=[\tilde{X}_{\overline{\alpha}}(\omega),\tilde{X}_{\alpha}^{+}(\omega)]=$

$\{x\in \mathbb{R}|\tilde{X}(\omega)(x)\geq\alpha\}([6,10])$ . We need to introduce expectations of fuzzy random
variables in order to $descl\cdot ibe$ aportfolio model. Afuzzy random variable $\tilde{X}$ is said to
be integrably bounded if $\omega\mapsto\tilde{X}_{a}^{\pm}(\omega)$ are integrable for all $\alpha\in(0.1]$ . Let $\tilde{X}$ be an
integrably bounded fuzzy random variable. The expectation $E(\tilde{X})$ of the fuzzy random
variable $\tilde{X}$ is defined by afuzzy number $E( \tilde{X})(x):=\sup_{\alpha\in[0,1]}\min\{\alpha,$ $1_{E(\tilde{\lambda})_{\alpha}}(x)$ , where
$E( \tilde{X})_{\alpha}:=[\int_{\Omega}\overline{X}_{\alpha}^{-}(\omega)dP(\omega), \int_{\Omega}\tilde{X}_{\alpha}^{+}(\omega)dP(\omega)]$ for $\alpha\in(0,1]([5,10,14])$ .

Now we deal with acase where the rate of return $\{R_{t}^{i}\}_{t=1}^{T}$ has some imprecision ([19]).
In this paper, we use triangle-type fuzzy random variables for computation, however we
can apply the similar approach to general fuzzy random variables. We define arate
of retum process with imprecision $\{\tilde{R}_{t}^{i}\}_{t=0}^{T}$ by asequence of triangle.type fuzzy random
variables

$\tilde{R}_{t}^{i}(\cdot)(x)=\{$

$\frac\frac{0x-R_{t}^{\dot{t}}+c^{i},x-R_{t}^{l}-c_{t}^{i}c_{\dot{t}}}{-ci}$

$ifx<R_{\eta}^{i}-c_{t}^{i}ifR_{I}^{i}-c_{t}^{i}\leq x<R^{i}$

if $R^{i}\leq x<R_{t}^{i}+c_{t}^{i}$

$0$ if $x\geq R_{\tau}^{i}+c_{t}^{i}$ ,

(2)
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where $c_{t}^{\mathfrak{i}}$ is a positive number. We call aj a fuzzy factor for asset $i$ at time $t$ . Hence we
can represent $\tilde{R}_{\sqrt{}}^{i}$ by the sum of the real random variable $Ri$ and a fuzzy number $\tilde{a}_{t}^{i}$ :

$\tilde{R}_{\ell}^{i}(\omega)(\cdot):=1_{\{R}i(\omega)\}(\cdot)+\tilde{a}_{\iota}^{i}(\cdot)$ (3)

for $\omega\in\Omega$ , where $1_{\{\cdot\}}$ denotes the characteristic function of a singleton and $\tilde{a}_{l}^{i}$ is a triangle-
type fuzzy number defined by

$\overline{a}_{t}^{\mathfrak{i}}(x)=\{\begin{array}{ll}0 if x<-c_{t}^{i}\frac{x+c_{1}^{I}}{q^{:}} if -c_{t}^{i}\leq x<0\underline{x}\Delta^{-:} if 0\leq x<c_{t}^{i}0^{-c_{\iota}’} if x\geq q^{:}.\end{array}$ (4)

For assets $i=1,2,$ $\cdots,$ $n$ , we define stock $pr\dot{\tau}ce$ processes $\{\tilde{S}_{t}^{\mathfrak{i}}\}_{t=0}^{T}$ by the rates of retum
with imprecision $\tilde{R}^{i}$ as follows: $\tilde{S}_{0}^{i}$ $:=S_{0}^{i}$ is a positive number and

$\tilde{S}_{t}^{i}=\tilde{S}_{0}^{\mathfrak{i}}\prod_{s=1}^{t}(1+\tilde{R}_{s}^{i})$ (5)

for $t=1,2,$ $\cdots,$
$T$ ([16]). Hence, we present a portfolio with trading strategies given by

portfolio weight vectors $w=(w^{1}, w^{2}, \cdots, w^{n})$ such that $w^{1}+w^{2}+\cdots+w^{n}=1$ and
$w^{i}\geq 0(i=1,2, \cdots, n)$ . For the portfolio $w=(w^{1}, w^{2}, \cdots, w^{n})$ , the rate of return with
imprecision for the portfolio is given by a linear combination of fuzzy random variables

$\tilde{R}:=w^{1}\tilde{R}_{t}^{1}+w^{2}\tilde{R}^{2}+\cdots+w^{n}\tilde{R}_{1}^{n}$. (6)

In Section 4, we discuss a $CVaR$ model regarding (6).

3 An extension of $CVaR$ for fuzzy random variables
In this section, we introduce a conditional value-at-risk for fuzzy random variables and we
apply it to the rate of retum (6). Let $\mathcal{X}$ be the set of all integrable real random variables
$X$ on $\Omega$ with a continuous distribution function $x\mapsto F_{X}(x)$ $:=P(X<x)$ for which there
exists a non-empty open interval $I$ such that $F_{X}(\cdot)$ : $I\mapsto(O, 1)$ is a strictly increasing and
onto. Then there exists a strictly increasing and continuous inverse function $F_{X}^{-1}$ : $(0,1)\mapsto$

I. We put $F_{X}( \inf I)$ $:= \lim_{x\downarrow\inf I}F_{X}(x)=0$ and $F_{X}( \sup I)$ $:= \lim_{x\uparrow\sup I}F_{X}(x)=1$ . Then,
the value-at-risk $(VaR)$ at a risk probability $p$ is given by the percentile of the distribution
function $F_{X}$ . Define

vait (X) $:= \sup\{x\in I|F_{X}(x)\leq p\}$ (7)

if $0<p<1,$ $VaR_{\varphi}(X);=0$ if $p=0$ and $VaB_{p}(X)$ $:=1$ if $p=1$ . Then we have
$VaR_{p}(X)=F_{X}^{-1}(p)$ for $0<p<1$ . The conditional value-at-risk $(CVaR)$ at a probability
level $p$ (Expected Shortfall $wi$th at a confidence probability level $1-p$) is given by

$CVaR(X):=\frac{1}{p}\int_{0}^{p}VaR(X)dq$ (8)
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if $0<p\leq 1$ and $CVaB_{\varphi}(X)$ $:= \inf I$ if $p=0$ ([11]) It is known that $CVaR$ has the
following properties, which implies $CVaR$ is a coherent nisk measure.

Lemma 1. Let $X,$ $Y\in \mathcal{X}$ and let $p$ be a positive probability. Then th $e$ conditional
$valu$e-at-risk $CVaB_{\varphi}$ defined by (8) $h$as the follovving properties:

(i) If $X\leq Y$ , then $CVaB_{\varphi}(X)\leq CVaR_{p}(Y)$ . (monotonicity)

(ii) $CVaB_{\varphi}(\zeta X)=\zeta CVaR_{\varphi}(X)$ for $\zeta>0$ . (positively homogeneity)

(iii) $CVaB_{p}(X+\theta)=CVaR_{p}(X)+\theta$ for $\theta\in \mathbb{R}$ . (translation invariance)

(iv) $CVaR_{p}(X+Y)\geq CVaR_{p}(X)+CVaR_{p}(Y)$ . ($s$uper-ad$di$ tivity)

(v) Let $\{X_{n}\}_{n}(\subset \mathcal{X})$ be a monotone sequence of real ran$do\iota n$ variables with a limit
$X(\in \mathcal{X})$ . Then $\lim_{narrow\infty}CVaB_{\varphi}(X_{n})=CVaB_{p}(X)$ (continuity).

(vi) $CVaR_{p}(X+Y)=CVaR_{\varphi}(X)+CVaB_{p}(Y)$ if $X$ an$dY$ are comonotonic (comono-
tonicaIly additive).

Remark.

(a) Lemma l(ii) and (iv) imply the convexity, which is an important property in risk
theory.

(b) Regarding Lemma l(iv), we note that the super-additivity for the value-at-risk

$VaR_{p}(X+Y)\geq VaR_{p}(X)+v\Phi(Y)$ ,

$(X, Y\in \mathcal{X})$ does not hold in general ([1]).

Let $\tilde{\mathcal{X}}$ be the set of all fuzzy random variables $\tilde{X}$ on $\Omega$ such that their $\alpha$-cuts $\tilde{X}_{\alpha}^{\pm}$ are
integrable and $\lambda\tilde{X}_{\overline{a}}+(1-\lambda)\tilde{X}_{\alpha}^{+}\in \mathcal{X}$ for all $\lambda\in[0,1]$ and $\alpha\in[0,1]$ . Hence, from (8) we
introduce a $CVaR$ for a fuzzy random variable $\tilde{X}(\in\tilde{\mathcal{X}})$ at a positive risk probability $p$ as
follows.

$CVaR_{\varphi}(\tilde{X})(x)$ $:=$ $\sup$ iiif $\tilde{X}(\omega)(X(\omega))$ ,
$X\in X:CVaR_{p}(X)=x\omega\in\Omega$

$x\in \mathbb{R}$ . Yoshida [20] has studied perception-based estimations extending the concept of the
expectations in Kruce and Meyer [5]. This definition is an extension from the $CVaR$ on
real random variables to the $CVaR$ on fuzzy random variables. Hence, the $CVaR$ on fuzzy
random variables is characterized by the following representation ([20]).

Theorem 1. Let $\tilde{X}\in\tilde{\mathcal{X}}$ be a hzzy random variable and let $p$ be a positive probabili$ty$

Then the conditional $value- at- risl\sigma CVaB_{p}(\tilde{X})$ is a fuzzy number zvhose $\alpha$-cuts are

$CVaB_{p}(\tilde{X})_{a}$. $=[CVa*(\tilde{X}_{\alpha}^{-}), CVaR_{p}(\tilde{X}_{\alpha}^{+})]$ , (9)
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for $\alpha\in(0,1]$ .

The $CVaR$ on fuzzy random variables has the following properties similar to Lemma
1 for the $CVaR(8)$ . Theorem 2 shows that $CVaR$ is a coherent ntsk measure on the fuzzy
random vareables.

Theorem 2. Let $\tilde{X},\tilde{Y}\in\tilde{\mathcal{X}}$ be fuzzy ran$dom$ variables and let $p$ be a positive probability.
Then the conditional value-at-risk $CVaB_{p}$ on fuzzy random variables has the following
properties:

(i) If $\tilde{X}\preceq\tilde{Y}$ , then $CVaB_{p}(\tilde{X})\preceq CV\mathfrak{R}(\tilde{Y})$ . (monotonicity)

(ii) $CVaR_{p}(\zeta\tilde{X})=\zeta CVaR_{p}(\tilde{X})$ for $\zeta>0$ . (positively homogeneity)

(iii) $CVaR_{p}(\tilde{X}+\tilde{a})=CV\theta_{p}(\tilde{X})+\tilde{a}$ for a fuzzy num$ber\tilde{a}\in \mathcal{R}$ . (translation ipvariaiice)

(iv) $CVaB_{p}(\tilde{X}+\tilde{Y})\succeq CVaB_{\varphi}(\tilde{X})+CVaR_{p}(\overline{Y})$ . (super-ad$di$ tivi $ty$)

(v) Let $\{\tilde{X}_{n}\}_{n}(\subset\tilde{\mathcal{X}})$ be a monotone sequence of fuzzy ran$dom$ variables with a limit
$\tilde{X}(\in\tilde{\mathcal{X}})$ . Then $\lim_{narrow\infty}CV\Phi(\tilde{X}_{n})=CVaR_{p}(\tilde{X})$ (continuity).

(vi) $CVa*(\tilde{X}+\overline{Y})=CVaR_{p}(\tilde{X})+CVaB_{p}(\tilde{Y})$ if $\tilde{X}$ an$d\tilde{Y}$ are comonotonic (comono-
tonically additive).

Next we need to evaluate the fuzziness of fuzzy numbers/fuzzy random variables since
the conditional value-at-risk $CVaR_{p}(\tilde{R}_{t})$ for the rate of return (6) with portfolio is a fuzzy
number. There are many studies regarding the defuzzification of fuzzy numbers. Here
we adopt the evaluation method of fuzzy numbers/fuzzy random variables, which is given
by possibility/necessity criteria ([3, 15, 16]). In the rest of this section we introduce the
definitions from [17, 18, 19], and in the next section we estimate the $CVaR$ regarding the
rate of return (6) by the evaluation method. Yoshida [17, 19] has studied an evaluation of
fuzzy numbers by evaluation weights which are induced from fuzzy measures to evaluate
a confidence degree that a fuzzy number takes values in an interval. With respect to
fuzzy random variables, the randomness $is$ evaluated by the probabilistic expectation
and the fuzziness is estimated by the evaluation weights and the following function. Let
$g^{\lambda}$ : $\mathcal{I}\mapsto \mathbb{R}$ be a map such that

$g^{\lambda}([x, y]):=\lambda x+(1-\lambda)y$ (10)

for $[x, y]\in \mathcal{I}$ , where $\lambda$ is a constant satisfying $0\leq\lambda\leq 1$ and $\mathcal{I}$ denotes the set of all
bounded closed intervals. This scalarization is used for the estimation of fuzzy numbers to
give a mean value of the interval $[x, y]$ with a weight $\lambda$ , and $g^{\lambda}$ is called a $\lambda$ -mean function
and $\lambda$ is called a pessimistic-optimtstic index which indicates the pessimistic degree of
attitude in decision making ([2]). Let a fuzzy number $\tilde{a}\in \mathcal{R}$ . A mean value of the fuzzy
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number $\tilde{a}$ with respect to $\lambda$-mean functions $g^{\lambda}$ and an evaluation weight $w(\alpha)$ , which
depends only on $\tilde{a}$ and $\alpha$ , is given as follows ([17, 18]):

$\tilde{E}(\tilde{a}):=\int_{0}^{1}g^{\lambda}(\tilde{a}_{\alpha})w(\alpha)d\alpha/\int_{0}^{1}w(\alpha)d\alpha$ , (11)

where $\tilde{a}_{\alpha}=[\tilde{a}_{\overline{\alpha}},\tilde{a}_{\alpha}^{+}]$ is the $\alpha$-cut of the fuzzy number $\tilde{a}$ . In (11), $w(\alpha)$ indicates a confidence
degree that the fuzzy number $a$ takes values in the interual $\overline{a}_{\alpha}$ at each level $\alpha$ . Hence, an
evaluation weight $u’(\alpha)$ is called the possibility evaluation weight $w^{P}(\alpha)$ if $w^{P}(\alpha)$ $:=1$ for
$\alpha\in[0,1]$ , and $u$) $(\alpha)$ is called the necessity evaluation weight $w^{N}(\alpha)$ if $w^{N}(\alpha)$ $:=1-\alpha$ for
$\alpha\in[0,1]$ . Especially, for a fuzzy number $\tilde{a}\in \mathcal{R}$ , the mean $\tilde{E}^{P}(\tilde{a})$ in the possibility case
and the mean $\tilde{E}^{N}(\tilde{a})$ in the necessity case are represented as follows ([17, 18]):

$\tilde{E}^{P}(\tilde{a})=\int_{0}^{1}g^{\lambda}(\tilde{a}_{\alpha})d\alpha$ , (12)

$E$ $N( \tilde{a})=\int_{0}^{1}g^{\lambda}(\tilde{a}_{\alpha})(2-2\alpha)d\alpha$ . (13)

The mean $\tilde{E}$ has the following natural properties of the linearity and the monotonicity
regarding the fuzzy $\max$ order.

Lemma 2 $([$ 17, 18, 19] $)$ . Let $\lambda\in[0,1]$ . For fuzzy $n$umbers $\tilde{a},\tilde{b}\in \mathcal{R}$ an$d$ real numbers
$\theta,$ $\zeta$ , the following $(i)-(iv)$ hold.

(i) $\tilde{E}(\tilde{a}+1_{t^{\theta\}}})=\tilde{E}(\tilde{a})+\theta$ , where $1_{\{\cdot\}}$ is th$e$ characteristic function of a set,

(ii) $\tilde{E}(\zeta\tilde{a})=\zeta\tilde{E}(\tilde{a})$ if $\zeta\geq 0$ .

(iii) $\tilde{E}(\overline{a}+\tilde{b})=\tilde{E}(\tilde{a})+\tilde{E}(\tilde{b})$ .

(iv) If $\tilde{a}\succeq\tilde{b}$ , then $\overline{E}(\tilde{a})\geq\tilde{E}(\tilde{b})$ .

For a fuzzy random variable $\tilde{X}$ , the mean of the expectation $E(\tilde{X})$ is a real number

$E( \tilde{E}(\tilde{X})):=E(\int_{0}^{1}g^{\lambda}(\tilde{X}_{\alpha})w(\alpha)d\alpha/\int_{0}^{1}w(\alpha)d\alpha)$ .

From Lemma 2, we obtain the $follo\mathfrak{n}ring$ results regarding fuzzy random variables.

Lemma 3 ([17, 18, 19]). Let $\lambda\in[0,1]$ . For a fuzzy $num$ber $\tilde{a}\in \mathcal{R}$ , integra$ble$ fuzzy
random variables $\tilde{X},\tilde{Y}$ , an integrable real random variable $Z$ an$d$ a nonnegative real
num$ber\zeta$ , th $e$ following $(i)-(v)$ hold.

(i) $E(\tilde{E}(\tilde{X}))=\tilde{E}(E(\tilde{X}))$ .

(ii) $E(\tilde{E}(\tilde{a}))=\overline{E}(\tilde{a})$ and $E(\tilde{E}(Z))=E(Z)$ .
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(iii) $E(\tilde{E}(\zeta\tilde{X}))=\zeta E(\tilde{E}(\tilde{X})))$ .

(iv) $E(\tilde{E}(\tilde{X}+\tilde{Y}))=E(\tilde{E}(\tilde{X}))+E(\overline{E}(\tilde{Y}))$ .

(v) If $\tilde{X}\succeq\tilde{Y}$ , then $E(\tilde{E}(\tilde{X}))\geq E(\tilde{E}(\tilde{Y}))$ .

4 A $CVaR$ portfolio model under stochastic and fuzzy environ-
ment

In this section, we discuss portfolio problems under uncertainty. First we estimate the rate
of return with imprecision for a portfolio. Let the mean, the variance and the covariance
of the rate of retum $R_{Y}^{t}$ by

$\mu_{t}^{i}:=$ E(堵),
$(\sigma_{t}^{i})^{2}:=E((R-\mu_{t}^{i})^{2})$ ,

$\sigma_{t}^{ij};=$ E((Ri- $\mu$t )(躍. $-\mu_{t}^{j})$ )

for $i,$ $j=1,2,$ $\cdots,$ $n$ . We assume that the determinant of the variance-covariance matrix
$[\sigma_{t}^{ij}]$ is not zero and there exists its inverse matrix. For a portfolio $w=(w^{1}, w^{2}, \cdots, w^{n})$

satisfying $w^{1}+w^{2}+\cdots+w^{n}=1$ and $w^{i}\geq 0$ $(i=1,2, \cdots , n)$ , we calculate the expectation
and the variance regarding $\tilde{R}_{t}=w^{1}\tilde{R}_{\iota}^{1}+w^{2}\tilde{\text{堵}}^{2}+\cdots+w^{n}\tilde{R}\int$ . From Lemma 3, the
expectation $\tilde{\mu}_{t}$ $:=E(\tilde{E}(\tilde{R}))$ follows

$\tilde{\mu}_{t}=\sum_{i=1}^{n}w^{i}\tilde{\mu}_{t}^{j}$ , (14)

where $\tilde{\mu}_{t}^{1}$
$:=E(\tilde{E}(\tilde{\text{堵}}^{i}))$ for $i=1,2,$ $\cdots,$ $n$ . On the other hand, regarding this model, in

Yoshida [19] we can find that the variance $(\tilde{\sigma}_{t})^{2}$ equals to the variance $(\sigma_{t})^{2}:=E((R-$

$\mu_{t})^{2})$ of $R_{t}$ :

$( \tilde{\sigma}_{t})^{2}=(\sigma_{t})^{2}=\sum_{:=1}^{n}\sum_{j=1}^{n}w^{t}w^{j}\sigma_{t}^{\dot{t}j}$. (15)

Hence, applying Lemmas 2 and 3 to (3), we obtain the $follov^{\gamma}ing$ lemma regarding $CVaR$

of the rates of return $\tilde{R}_{t}^{i}$ .

Lemma 4. Let $p$ be a positive probability. The following (i) and (ii) hold:

(i) $\tilde{\mu}_{t}^{i}=\mu_{t}^{i}+\tilde{E}(\tilde{a}_{t}^{i})$ for $i=1,2,$ $\cdot\sim$ . , $n$ .

(ii) The mean of $CVaR_{p}(\tilde{h})$ is evaluated by
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where $\kappa$ $:= \frac{1}{p}\int_{0}^{p}\kappa(q)dq$ for $\kappa(q)$ defined by

Now we discuss the following $CVaR$ portfolio without allowance for short selling. The
following form (16) comes from the conditional value-at-risk $\tilde{E}(CVaB_{p}(\tilde{R}_{t}))$ in Lemma 4.

CVaR-portfolio problem (P): Maximize the conditional value-at-risk

(16)

with respect to portfolios $w=(w^{1}, w^{2}, \cdots, w^{n})$ satisfying $w^{1}+w^{2}+\cdots+w^{n}=1$

and $w^{i}\geq 0$ for $i=1,2,$ $\cdots,$ $n$ .

Let $\tilde{\mu}$ be the vector whose elements are $\tilde{\mu}^{i}=\mu_{t}^{i}+\tilde{E}(\tilde{a}_{t}^{i})(i=1,2, \cdots)$, and let 1 be the
vector whose elements are 1. Let

$\Sigma:=\{\begin{array}{llll}\sigma_{t}^{21}\sigma_{t}^{11} \sigma_{t}^{12}\sigma_{t}^{22} .\cdot \sigma_{t}^{1n}\sigma_{t}^{2n}\vdots \vdots \vdots\sigma_{t}^{n1} \sigma_{t}^{n2} .\cdot.\cdot \sigma_{t}^{nn}\end{array}\}$ ,

$A$ $:=1^{T}\Sigma^{-1}1,$ $B$ $:=1^{T}\Sigma^{-1}\tilde{\mu},$ $C$ $:=\tilde{\mu}^{r}\Sigma^{-1}\tilde{\mu}$ and $\Delta$ $:=AC-B^{2}$ .

Hence, in a similar way as the proof in Yoshida [21, Theorem 4.2], we arrive at the
following analyticaJ solutions regarding CVaR-portfolio problem for $\kappa=\frac{1}{p}\int_{0}^{p}\kappa(q)dq$ .

Theorem 3. Let $A$ and $\Delta$ be positive. Let $\kappa$ satisfy $\kappa^{2}>C$ . Then th$e$ following (i) and
(ii) hold.

(i) The solution of CVaR-portfolio problem $(P)$ is given by

$w^{*}:=\xi\Sigma^{-1}1+\eta\Sigma^{-1}\tilde{\mu}$ (17)

and then the corresponding $CVaR1s$

$v^{*}:= \frac{B-\sqrt{A\kappa^{2}-\Delta}}{\wedge 4}$ (18)

at the expected rate of retum

$\gamma^{*}:=\frac{B}{A}+\frac{\Delta}{A\sqrt{A\kappa^{2}-\Delta}}$ , (19)

where $\xi$ $:= \frac{C-B\gamma^{*}}{\Delta}$ and $\eta:=\frac{A\gamma-B}{\Delta}$ .
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(ii) Ftirther, if $\Sigma^{-1}1\geq 0$ and $\Sigma^{-1}\tilde{\mu}\geq 0$ , then the portfolio (17) satisfies $w^{*}\geq 0,$ $i.e$ . the
portfolio $w^{*}$ is a portfolio without allowance for short selling. Here, $0$ denotes the
zero vector.

5 Conclusion
In this paper, we have discussed the following terms:

1 Extension of $CVaR$ for fuzzy random variable, and its coherence as a risk measure.
$\bullet$ A CVaR-portfolio model under randomness and fuzziness.
$\bullet$ An optimality portfolio for this model.

$VaR$ is directly related to the falling rate of the asset prices, and it is used widely in real
finance. On the other hand, $CVaR$ is not easy to find a direct relation with parameters
in real finance, however $CVaR$ is a coherence risk measure. The coherence is a necessary
property as a criterion from the viewpoint of axiomatic approach for risk measures.
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