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1 Introduction

The risk allocation is an important topic in asset management under uncertainty, and
in finance the portfolio is one of the most important methods for the risk allocation.
Recently, value-at-risk (VaR) is used widely in financial trading to estimate the risk of
worst-scenarios. In this paper, we deal with conditional value-at-risk (CVaR), which is
derived from VaR, and a CVaR-portfolio problem. From the viewpoint of risk theory, it
is also known that VaR is not a coherent risk measure ([1]), however CVaR is not easy to
find the correspondence with parameters in finance. VaR and CVaR have a merit and a
demerit as a risk allocation tool. This paper discusses them in a fuzzy ans probabilistic
environment from the viewpoint of risk measures.

Estimation of uncertain quantities is important in decision making ([22, 15, 16]). To
represent uncertainty in this portfolio model, we use fuzzy random variables which have
two kinds of uncertainties, i.e. randomness and fuzziness. In this paper, randomness is
used to represent the uncertainty regarding the belief degree of frequency, and fuzziness is
applied to linguistic imprecision of data because of a lack of knowledge regarding the cur-
rent stock market. We extend the CVaR for real random variables to one regarding fuzzy
random variables from the viewpoint of perception-based approach in Yoshida [20]. We
formulate the CVaR portfolio problem with fuzzy random variables, and we discuss the
fundamental properties of the extended CVaR using the results in Yoshida [21]. Recently,
Yoshida (17, 19] introduced the mean, the variance and the measurement of fuzziness of
fuzzy random variables, using evaluation weights and A-mean functions. This paper esti-
mates fuzzy numbers/fuzzy random variables by the probabilistic expectation and these
criteria, which are characterized by possibility/necessity criteria for subjective estimation
and a pessimistic-optimistic indezx for subjective decision. These parameters are decided
by the investor and are based on the degree of his certainty regarding the current infor-
mation in the market. In this portfolio model, we use triangle-type fuzzy numbers/fuzzy
random variables for computation in actual models, and we analyze mathematically the
CVaR portfolio problem under some regularity condition.

2 A portfolio model under stochastic and fuzzy environment

In this paper, we consider a portfolio model with n stocks as risky assets, where n is a
positive integer. We assume small investors hypothesis such that an investor’s actions
do not have any impact on the stock market ([9]). Let a positive integer T denote an
expiration date, and let R denote the set of all real numbers. Let (£2, P) be a probability



space, where P is a non-atomic probability measure on a sample space 2. For an asset
i =1,2,---,n, a stock price process {Si}I_, is given by rates of return R} at time ¢ as
follows. Let a stock price S} := Sf_;(1 + R!) for time t = 1,2,--- , T, where {R!}L, is
assumed to be a sequence of integrable real random variables. In this paper, we discuss
a portfolio model where stock prices S take fuzzy values using fuzzy random variables,
taking into account from linguistic imprecision of data because of a lack of knowledge
regarding the current stock market. Mathematical notations of fuzzy random variables are
introduced later. Hence, we deal with a portfolio with portfolios given by portfolio weight

vectorsw = (w!, w?,--- ,w") such that w*+w?+---+w"=landw' > 0(i = 1,2,---,n).
The rate of return for the portfolio w = (w!,w?, .. ,w™) is given by
Ry := w'R! + w?R?+ ... + w"RY. (1)

This paper assumes that R (i = 1,2,---,n) has a normal distribution ([8, 23, 24]).

Next, we introduce fuzzy numbers/fuzzy random variable and we give a portfolio model
under uncertainty. A fuzzy number is denoted by its membership function @ : R — [0, 1]
which is normal, upper-semicontinuous and quasi-concave and has a compact support
([15, 16, 25]). R denotes the set of all fuzzy numbers. In this paper, we identify fuzzy
numbers with their corresponding membership functions. The a-cut of a fuzzy number
a(€ R) is given by @, := {z € R | @(z) > a} (a € (0,1]) and ao := cl{z € R | &(z) > 0},
where cl denotes the closure of an interval. We write the closed intervals as @, := [a, 7]
for o € [0, 1]. Hence we also introduce a partial order >, so called the fuzzy maz order, on
fuzzy numbers R ([4]). An addition, a subtraction and a scalar multiplication for fuzzy
numbers are defined by Zadeh's extension principle ([15, 16, 25]).

A fuzzy-number-valued map X : Q — R is called a fuzzy random variable if the
maps w = XZ(w) are measurable for all a € (0, 1], where X, (w) = [f(;(w),f(;‘(w)] =
{r e R | X(w)(x) > a} ([6, 10]). We need to introduce expectations of fuzzy random
variables in order to describe a portfolio model. A fuzzy random variable X is said to
be integrably bounded if w +— XZ(w) are integrable for all o € (0,1]. Let X be an
integrably bounded fuzzy random variable. The expectation E(X) of the fuzzy random
variable X is defined by a fuzzy number E(X)(z) := SUP,efo,1) Min{ e, 15 5, (2), where
E(X)q = [[y X (w) dP(w), [, X7 (w) dP(w)] for a € (0,1] ([5, 10, 14]).

Now we deal with a case where the rate of return {R:}%_, has some imprecision ([19)).
In this paper, we use triangle-type fuzzy random variables for computation, however we
can apply the similar approach to general fuzzy random variables. We define a rate
of return process with imprecision {Rg};"zo by a sequence of triangle-type fuzzy random
variables _ :

0 i ife < R — ¢
r-Ri+et  ip pi i i
BO@={ 8, - H-asc<h @
e if R <x < Ry + ¢

0 ifz> R +d,
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where ¢} is a positive number. We call ¢} a fuzzy factor for asset i at time t. Hence we
can represent R} by the sum of the real random variable R} and a fuzzy number &::

Ry(w)(-) = Ly (1) + @ () (3)

for w € 2, where 1;.} denotes the characteristic function of a singleton and dj is a triangle-
type fuzzy number defined by

0 ifz<—c

i (z) —”;:t,fi if —cd<z<0 (4)
a\T) = i .
‘ =% if0sz<q
ifz >cl.
For assets i = 1,2,--- ,n, we define stock price processes {Si}T_, by the rates of return

with imprecision R} as follows: S := S} is a positive number and
- ~ t el
=S+ &) (5)
s=1

fort = 1,2,---,T ([16]). Hence, we present a portfolio with trading strategies given by
portfolio weight vectors w = (w!,w?,--- ,w™) such that w! + w? + ... + w"® = 1 and
w' > 0(i = 1,2,---,n). For the portfolio w = (w?,w?, .- ,w"), the rate of return with
imprecision for the portfolio is given by a linear combination of fuzzy random variables

R = w'R! + w?R? + .. + w"RP. ' (6)

In Section 4, we discuss a CVaR model regarding (6).

3 An extension of CVaR for fuzzy random variables

In this section, we introduce a conditional value-at-risk for fuzzy random variables and we
apply it to the rate of return (6). Let X be the set of all integrable real random variables
X on Q2 with a continuous distribution function  — Fx(z) := P(X < z) for which there
exists a non-empty open interval I such that Fx(:) : I — (0,1) is a strictly increasing and
onto. Then there exists a strictly increasing and continuous inverse function Fi! : (0,1)
I. We put Fx(inf I) := limgzine; Fx(z) = 0 and Fx(sup /) := limgeups Fx(z) = 1. Then,
the value-at-risk (VaR) at a risk probability p is given by the percentile of the distribution
function Fx. Define

VaR,(X) :=sup{z € I | Fx(z) < p} (7)
if0 <p< 1 VaRy(X) :=0if p = 0 and VaR,(X) := 1if p = 1. Then we have
VaR,(X) = Fx!(p) for 0 < p < 1. The conditional value-at-risk (CVaR) at a probability
level p (Ezpected Shortfall with at a confidence probability level 1 — p) is given by

CVaR,(X) i= 3 [ VaRy(X) dg (8)
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if 0 < p <1 and CVaR,y(X) := inf] if p = 0 ([11]) It is known that CVaR has the
following properties, which implies CVaR is a coherent risk measure.

Lemma 1. Let X,Y € X and let p be a positive probability. Then the conditional
value-at-risk CVaR,, defined by (8) has the following properties:

(i) If X <Y, then CVaR,(X) < CVaR,(Y). (monotonicity)

(i) CVaR,(¢X) = { CVaR,(X) for { > 0. (positively homogeneity)
(iii) CVaR,(X +8) = CVaR,(X) + 6 for § € R. (translation invariance)
(iv) CVaR,(X +Y) > CVaR,(X) + CVaR,(Y). (super-additivity)

(v) Let {Xp}n(C X) be a monotone sequence of real random variables with a limit
X(€ X). Then lim,_o CVaR,(X,) = CVaR,(X) (continuity).

(vi) CVaR,(X +Y) = CVaR,(X) + CVaR,(Y) if X and Y are comonotonic (comono-
tonically additive).

Remark.

(a) Lemma 1(ii) and (iv) imply the convexity, which is an important property in risk
theory. :

(b) Regarding Lemma 1(iv), we note that the super-additivity for the value-at-risk

VaR,(X +Y) = VaR,(X) + VaR,(Y),
(X,Y € X) does not hold in general ([1]).

Let X be the set of all fuzzy random variables X on §2 such that their a-cuts X * are
integrable and AX7 + (1 - A)XJ € X for all A € [0,1] and « € [0, 1]. Hence, from (8) we
introduce a CVaR for a fuzzy random variable X (€ X) at a positive risk probability p as
follows.

CVaR,(X)(z) := sup inf X (w)(X(w)),
: XeX:CVaRp(X)=z W& .
z € R. Yoshida [20] has studied perception-based estimations extending the concept of the
expectations in Kruce and Meyer [5]. This definition is an extension from the CVaR on
real random variables to the CVaR on fuzzy random variables. Hence, the CVaR on fuzzy
random variables is characterized by the following representation ([20]).

Theorem 1. Let X € X be a fuzzy random variable and let p be a positive probability.
Then the conditional value-at-risk CVaR,(X) is a fuzzy number whose a-cuts are

CVaR,(X)a = [CVaR,(X;), CVaR,(X)), (9)
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for a € (0,1].

The CVaR on fuzzy random variables has the following properties similar to Lemma

1 for the CVaR (8). Theorem 2 shows that CVaR is a coherent risk measure on the fuzzy
random variables.

Theorem 2. Let X,Y € X be fuzzy random variables and let p be a positive probability.
Then the conditional value-at-risk CVaR, on fuzzy random variables has the following
properties:

(i) If X XY, then CVaR,(X) < CVaR,(Y). (monotonicity)

(i) CVaR,(CX) = ( CVaR,(X) for ¢ > 0. (positively homogeneity)
(iii) CVaR,(X +a) = CV;R,,()“() +a for a fuzzy number @ € R. (translation invariance)
(iv) CVaR,(X + Y) = CVaR,(X) + CVaR,(Y). (super-additivity)

(v) Let {X,}.(C X) be a monotone sequence of fuzzy random variables with a limit
X (e X). Then lim,_o CVaR,(X,) = CVaR,(X) (continuity).

(vi) CVaR,(X +Y) = CVaR,(X) + CVaR,(Y) if X and Y are comonotonic (comono-
tonically additive).

Next we need to evaluate the fuzziness of fuzzy numbers/fuzzy random variables since
the conditional value-at-risk CVaR,(R,) for the rate of return (6) with portfolio is a fuzzy
number. There are many studies regarding the defuzzification of fuzzy numbers. Here
we adopt the evaluation method of fuzzy numbers/fuzzy random variables, which is given
by possibility /necessity criteria ([3, 15, 16]). In the rest of this section we introduce the
definitions from [17, 18, 19], and in the next section we estimate the CVaR regarding the
rate of return (6) by the evaluation method. Yoshida [17, 19] has studied an evaluation of
fuzzy numbers by evaluation weights which are induced from fuzzy measures to evaluate
a confidence degree that a fuzzy number takes values in an interval. With respect to
fuzzy random variables, the randomness is evaluated by the probabilistic expectation
and the fuzziness is estimated by the evaluation weights and the following function. Let
g* : T — R be a map such that

g ([z,9]) i=Az+ (1 - Ny (10)

for [z,y] € Z, where X is a constant satisfying 0 < A < 1 and T denotes the set of all
bounded closed intervals. This scalarization is used for the estimation of fuzzy numbers to
give a mean value of the interval [z, y] with a weight )\, and g* is called a A-mean function
and A is called a pessimistic-optimistic indez which indicates the pessimistic degree of
attitude in decision making ([2]). Let a fuzzy number @ € R. A mean value of the fuzzy



number @ with respect to A-mean functions g* and an evaluation weight w(a), which
depends only on @ and a, is given as follows (17, 18]):

E(a) := /01 97 (8a) w(e) da/ '/: w(a) da, (11)

where a, = a7, a3] is the a-cut of the fuzzy number a. In (11), w(e) indicates a confidence
degree that the fuzzy number & takes values in the interval Go at each level . Hence, an
evaluation weight w(a) is called the possibility evaluation weight w¥(a) if wP(a) := 1 for
o € [0, 1], and w(a) is called the necessity evaluation weight w™ (o) if w™(a) := 1 — o for
a € [0,1]. Especially, for a fuzzy number @ € R, the mean E¥ (@) in the possibility case
and the mean EV (@) in the necessity case are represented as follows ([17, 18]):

EPa) = / ¢*(da) da, (12)

EN(a) = /01 9*M@e) (2 — 20) de. (13)

The mean E has the following natural properties of the linearity and the monotonicity
regarding the fuzzy max order.

Lemma 2 ([17, 18, 19]). Let A € [0,1]. For fuzzy numbers a,b € R and real numbers
6,¢, the following (i) — (iv) hold.

(G) E@@+ i) = E(a) + 6, where 1.y is the characteristic function of a set.
(i) B(¢a) = CE@) if ¢ 2 0.
(iii) E(a+b) = E(a) + E(b).
(iv) Ifa = b, then E(a) > E(b).

For a fuzzy random variable X, the mean of the ezpectation E(X ) is a real number

B(E(X)) = E( / A (Ro) w(a) da / / w() da)

From Lemma 2, we obtain the following results regarding fuzzy random variables.

Lemma 3 ([17, 18, 19]). Let X € [0,1]. For a fuzzy number & € R, integrable fuzzy
random variables X,Y, an integrable real random variable Z and a nonnegative real
number ¢, the following (i) — (v) hold.

(i) B(E(X)) = E(E(X)).
(i) E(E(a)) = E(a) and B(E(2)) = E(Z).
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(i) B(E(CX)) = CE(E(X))).

(iv) E(E(X +Y)) = B(E(X)) + E(E(Y)).

(v) If X » Y, then E(E(X)) > E(E(Y)).
4 A CVaR portfolio model under stochastic and fuzzy environ-
ment

In this section, we discuss portfolio problems under uncertainty. First we estimate the rate

of return with imprecision for a portfolio. Let the mean, the variance and the covariance
of the rate of return R! by

I E(Ry),
©@F = B(R-wP),
of = E((Ri— pu)(R] —ul))

for i, =1,2,--- ,n. We assume that the determinant of the variance-covariance matrix
[0+7] is not zero and there exists its inverse matrix. For a portfolio w = (w!, w?, ..., w")
satisfying w! +w?+---+uw* = land w* >0 (i = 1,2, - ,n), we calculate the expectation
and the variance regarding R, = w R} + wR + ... + w"R?. From Lemma 3, the
expectation ji, := E(E(R,)) follows

o= w'i, (14)

where jii := E(E(R!)) for i = 1,2, ,n. On the other hand, regarding this model, in
Yoshida [19] we can find that the variance (6;)? equals to the variance (0;)? := E((R; —
ut)2) of Rtl

(6 = (00> =Y > w'wioy. (15)

i=1 j=1

Hence, applying Lemmas 2 and 3 to (3), we obtain the following lemma regarding CVaR
of the rates of return R:.

Lemma 4. Let p be a positive probability. The following (i) and (ii) hold:

(ii) The mean of CVaR,(R,) is evaluated by

B(CVaR,(Ry) = 3 w'fi - "\J 3wl

=1 =1



where r := £ [7 x(g) dg for x(q) defined by

n n

BVaRy(R)) = 32w - n@\J 3 wuset
i=1

i=1 j=1
Now we discuss the following CVaR portfolio without allowance for short selling. The

following form (16) comes from the conditional value-at-risk £(CVaR,(R,)) in Lemma 4.

CVaR-portfolio problem (P): Maximize the conditional value-at-risk

iwiﬁi - KJ iiw'@jay (16)
=1

i=1 j=1 '

with respect to portfolios w = (w!,w?, .- ,w") satisfying w! + w? +--- + w" = 1
and w'>0fori=1,2,--- n.

Let i be the vector whose elements are ji' = pi+ E(al) (i = 1,2,---), and let 1 be the
vector whose elements are 1. Let

11 12 . in
T YO
123
gy Oyt O
Y= ,
~nl n2 nn
oy Oy ot Oy

A:=T1"S£7!1, B:=1"S'4, C := F*S-'ji and A := AC — B2,

Hence, in a similar way as the proof in Yoshida [21, Theorem 4.2], we arrive at the
following analytical solutions regarding CVaR-portfolio problem for x = :7 I3 k(q) dg.

Theorem 3. Let A and A be positive. Let  satisfy k? > C. Then the following (i) and
(ii) hold.

(i) The solution of CVaR-portfolio problem (P) is given by

w* = £ 4+ 9T 4 (17)
and then the corresponding CVaR is
. DB—-+vVAk2-A
vt = (18)
A
at the expected rate of return
B A
* =t ——— ] 19
VT AT AVAR -2 (19)

where £ := QZAE'L' and n 1= M:Ai.
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(i) Further, if £7'1 > 0 and 7'z > 0, then the portfolio (17) satisfies w* > 0, i.e. the
portfolio w* is a portfolio without allowance for short selling. Here, O denotes the
zero vector.

5 Conclusion
In this paper, we have discussed the following terms:

e Extension of CVaR for fuzzy random variable, and its coherence as a risk measure.
e A CVaR-portfolio model under randomness and fuzziness.

e An optimality portfolio for this model.

VaR is directly related to the falling rate of the asset prices, and it is used widely in real
finance. On the other hand, CVaR is not easy to find a direct relation with parameters
in real finance, however CVaR is a coherence risk measure. The coherence is a necessary
property as a criterion from the viewpoint of axiomatic approach for risk measures.
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