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1 Introduction
This note is a survey of our joint paper [2] on the stability problem of degen-
erate stationary waves for viscous conservation laws in the half space $x>0$ :

$u_{t}+f(u)_{x}=u_{xx}$ ,
(1.1)

$u(O,t)=-1$ , $u(x, 0)=u_{0}(x)$ .

Here $u_{0}(x)arrow 0$ as $xarrow\infty$ , and $f(u)$ is a smooth function satisfying

$f(u)= \frac{1}{q}(-u)^{q+1}(1+g(u))$ , $f”(u)>0$ for $-1\leq u<0$ , (12)

where $q$ is a positive integer (degeneracy exponent) and $g(u)=O(|u|)$ for
$uarrow 0$ . Notice that $1+g(u)>0$ for $-1\leq u\leq 0$ . It is known that the
corresponding stationary problem

$\phi_{x}=f(\phi)$ ,
(1.3)

$\phi(0)=-1$ , $\phi(x)arrow 0$ as $xarrow\infty$ ,
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admits a unique solution $\phi(x)$ (called degenerate stationary wave) which ver-
ifies $\phi(x)\sim-(1+x)^{-1/q}$ . In particular, we have $\phi(x)=-(1+x)^{-1/q}$ when
$g(u)\equiv 0$ .

To discuss the stability of the degenerate stationary wave $\phi(x)$ , it is con-
venient to introduce the perturbation $v$ by $u(x, t)=\phi(x)+v(x, t)$ and rewrite
the problem (1.1) as

$v_{t}+(f(\phi+v)-f(\phi))_{x}=v_{xx}$ ,
(1.4)

$v(O, t)=0$ , $v(x, 0)=v_{0}(x)$ ,

where $v_{0}(x)=u_{0}(x)-\phi(x)$ , and $v_{0}(x)arrow 0$ as $xarrow\infty$ . The stability of
degenerate stationary waves has been studied recently in [14, 2]. The paper
[14] proved the following stability result: If the initial perturbation $v_{0}(x)$ is
in the weighted space $L_{\alpha}^{2}$ , then the perturbation $v(x, t)$ decays in $L^{2}$ at the
rate $t^{-\alpha/4}$ as $tarrow\infty$ , provided that $\alpha<\alpha_{*}(q)$ , where

$\alpha_{*}(q):=(q+1+ 47’+I\uparrow/]T1)/q$ .

The decay rate $t^{-\alpha/4}$ obtained in [14] would be optimal but the restriction
$\alpha<\alpha_{*}(q)$ was not very sharp. This restriction has been relaxed to $\alpha<$

$\alpha_{c}(q)$ $:=3+2/q$ in our joint paper [2] by employing the space-time weighted
energy method in [14] and by applying a Hardy type inequality with the best
possible constant. Notice that $\alpha_{*}(q)<\alpha_{c}(q)$ . This new stability result will
be reviewd in this note.

It is interesting to note that a similar restriction on the weight is imposed
also for the stability of degenerate shock profiles (see [9]). We remark that
our stability result for degenerate stationary waves is completely different
from those for non-degenerate case. In fact, for non-degenerate stationary
waves, we have the better decay rate $t^{-\alpha/2}$ for the perturbation without any
restriction on $\alpha$ . See [4, 5, 13, 15] for the details. See also [6, 8, 10] for the
related stability results for stationary waves.

To check the validity of our restriction $\alpha<\alpha_{c}(q)$ $:=3+2/q$ , it is impor-
tant to discuss the dissipativity of the following linearized operator associated
with (1.4):

$Lv=v_{xx}-(f^{l}(\phi)v)_{x}$ . (1.5)

In a simpler situation including the case $g(u)\equiv 0$ in (1.2), we showed in
[2] that the operator $L$ is uniformly dissipative in $L_{\alpha}^{2}$ for $\alpha<\alpha_{c}(q)$ but can
not be dissipative for $\alpha>\alpha_{c}(q)$ . This suggests that the exponent $\alpha_{c}(q)$ is
the critical exponent of the stability problem of degenerate stationary waves.
This result on the characterization of the dissipativity of $L$ is an improvement
on the previous one in [14] and has been established again by using a Hardy
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type inequality with the best possible constant. This result will be also
reviewd in this note.
Notations. For $1\leq p\leq\infty$ and a nonnegative integer $s,$ $L^{p}$ and $W^{s_{2}p}$

denote the usual Lebesgue space on $\mathbb{R}_{+}=(0, \infty)$ and the corresponding
Sobolev space, respectively. When $p=2$ , we write $H^{8}=W^{s,2}$ . We introduce
weighted spaces. Let $w=w(x)>0$ be a weight function defined on $[0, \infty)$

such that $w\in C^{0}[0, \infty)$ . Then, for $1\leq p<\infty$ , we denote by $I/(w)$ the
weighted $L^{p}$ space on $\mathbb{R}_{+}$ equipped with the norm

$\Vert u\Vert_{Lp(w)}:=(\int_{0}^{\infty}|u(x)|^{p}w(x)dx)^{1/p}$ . (16)

The corresponding weighted Sobolev space $W^{s,p}(w)$ is defined by $W^{s,p}(w)=$

$\{u\in U(w);\partial_{x}^{k}u\in L^{p}(w)$ for $k\leq s\}$ with the norm I . $\Vert_{W^{s,p}(w)}$ . Also, we
denote by $W_{0}^{1,p}(w)$ the completion of $C_{0}^{\infty}(\mathbb{R}_{+})$ with respect to the norm

$\Vert u\Vert_{W_{0}^{1,p}(w)}:=\Vert\partial_{x}u\Vert_{L^{p}(w)}=(\int_{0}^{\infty}|\partial_{x}u(x)|^{p}w(x)dx)^{1/p}$. (17)

When $p=2$ , we write $H^{s}(w)=W^{s,2}(w)$ and $H_{0}^{1}(w)=W_{0}^{1_{2}2}(w)$ . In the
special case where $w=(1+x)^{\alpha}$ with $\alpha\in \mathbb{R}$ , these weighted spaces are
abbreviated as $L_{\alpha}^{p},$ $W_{\alpha}^{s,p},$ $W_{\alpha_{2}0}^{1,p},$ $H_{\alpha}^{s}$ and $H_{\alpha,0}^{1}$ , respectively.

2 Hardy type inequality
Our Hardy type inequality used in [2] is a simple modification of the original
Hardy’s inequality introduced in [1, 7] (see also [12]).

Proposition 2.1. Let $\psi\in C^{1}[0, \infty)$ and assume either
(1) $\psi>0,$ $\psi_{x}>0$ and $\psi(x)arrow\infty$ for $xarrow\infty$ ; or
(2) $\psi<0,$ $\psi_{x}>0$ and $\psi(x)arrow 0$ for $xarrow\infty$ .

Then we have
$\int_{0}^{\infty}v^{2}\psi_{x}dx\leq 4\int_{0}^{\infty}v_{x}^{2}\psi^{2}/\psi_{x}dx$ (2.1)

for $v\in C_{0}^{\infty}(\mathbb{R}_{+})$ and hence for $v\in H_{0}^{1}(w)$ with $w=\psi^{2}/\psi_{x}$ . Here 4 is the
best possible constant, and there is no function $v\in H_{0}^{1}(w),$ $v\neq 0$ , which
attains the equality in (2.1).

Proof. The proof is quite simple. Let $v\in C_{0}^{\infty}(\mathbb{R}_{+})$ . A simple calculation
gives

$(v^{2}\psi)_{x}=v^{2}\psi_{x}+2vv_{x}\psi$

$= \frac{1}{2}v^{2}\psi_{x}+\frac{1}{2}(v+2v_{x}\psi/\psi_{x})^{2}\psi_{x}-2v_{x}^{2}\psi^{2}/\psi_{x}$ .
(22)
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Integrating (2.2) in $x$ , we obtain

$\int_{0}^{\infty}v^{2}\psi_{x}dx+\int_{0}^{\infty}(v+2v_{x}\psi/\psi_{x})^{2}dx=4\int_{0}^{\infty}v_{x}^{2}\psi^{2}/\psi_{x}dx$, (2.3)

which gives the desired inequality (2.1). It follows from (2.3) that the equality
in (2.1) holds if and only if $v+2v_{x}\psi/\psi_{x}\equiv 0$ . But we find that such a $v$ in
$H_{0}^{1}(w)$ must be $v\equiv 0$ .

We show the best possibility of the constant 4 in (2.1). We consider the
case (1). Let us fix $a>0$ . Let $\epsilon>0$ be a small parameter and put

$v^{\epsilon}(x)=\{\begin{array}{l}0, 0\leq x<a,(x-a)\psi(x)^{-1/2-\epsilon}, a<x<a+1,\psi(x)^{-1/2-\epsilon}, a+1<x.\end{array}$ (2.4)

Then we have after straigtforward computations that

$\frac{\int_{0}^{\infty}(v_{x}^{\epsilon})^{2}\psi^{2}/\psi_{x}dx}{\int_{0}^{\infty}(v^{\epsilon})^{2}\psi_{x}dx}=\frac{O(1)+(1/2+\epsilon)^{2}\frac{1}{2\epsilon}\psi(a+1)^{-2\epsilon}}{O(1)+\frac{1}{2\epsilon}\psi(a+1)^{-2\epsilon}}$

$= \frac{O(\epsilon)+(1/2+\epsilon)^{2}\psi(a+1)^{-2\epsilon}}{O(\epsilon)+\psi(a+1)^{-2\epsilon}}arrow\frac{1}{4}$

for $\epsilonarrow 0$ . This shows that 4 in (2.1) is the best possible constant. The case
(2) can be treated similarly if we take a test function $v^{\epsilon}(x)$ as

$v^{\epsilon}(x)=\{\begin{array}{l}0, 0\leq x<a,(x-a)(-\psi(x))^{-1/2-\epsilon}, a<x<a+1,(-\psi(x))^{-1/2-\epsilon}, a+1<x,\end{array}$

but we omit the details. This completes the proof of Proposition 2.1. $\square$

The $L^{p}$ version of Proposition 2.1 is given as follows.

Proposition 2.2. Let $\psi$ be the same as in Proposition 2.1. Let $1<p<\infty$ .
Then we have

$\int_{0}^{\infty}|v|^{p}\psi_{x}dx\leq p^{p}\int_{0}^{\infty}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1}dx$ (2.5)

for $v\in C_{0^{\infty}}(\mathbb{R}_{+})$ and hence for $v\in W_{0}^{1,p}(w)$ with $w=|\psi|^{p}/\psi_{x}^{p-1}$ . Here $p^{p}$

is the best possible constant, and there is no function $v\in W_{0}^{1,p}(w)_{f}v\neq 0$ ,
which attains the equality in (2.5).
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Proof. We only prove the inequality (2.5) and omit the other discussions.
Let $1<p<\infty$ and $v\in C_{0^{\infty}}(\mathbb{R}_{+})$ . A simple calculation gives

$(|v|^{p}\psi)_{x}=|v|^{p}\psi_{x}+p|v|^{p-2}vv_{x}\psi$

$= \frac{1}{p}(|v|^{p}\psi_{x}-p^{p}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1})+R$,
(2.6)

where
$R=(1- \frac{1}{p})|v|^{p}\psi_{x}+\frac{1}{p}p^{p}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1}+p|v|^{p-2}vv_{x}\psi$ .

Integrating (2.6) in $x$ , we obtain

$\int_{0}^{\infty}|v|^{p}\psi_{x}dx+p\int_{0}^{\infty}Rdx=p^{p}\int_{0}^{\infty}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1}dx$ . (2.7)

By applying the Young inequality $AB\leq(1-1/p)A^{p/(p-1)}+(1/p)B^{p}$ for
$A=|v|^{p-1}\psi_{x}^{(p}$

‘ $1)/p$ and $B=p|v_{x}$ II $\psi|/\psi_{x}^{(p-1)/p}$ , we find that $R\geq 0$ , which
together with (2.7) gives the desired inequality (2.5). 口

The following variant of Proposition 2.1 is useful in our application.

Proposition 2.3. Let $\phi\in C^{1}[0, \infty),$ $\phi<0,$ $\phi_{x}>0$ , and $\phi(x)arrow 0$ for
$xarrow\infty$ . Let $\sigma\in \mathbb{R}$ with $\sigma\neq 0$ , and define the weight functions $w$ and $w_{1}$ by

$w=(-\phi)^{-\sigma+1}/\phi_{x}$ , $w_{1}=(-\phi)^{-\sigma-1}\phi_{x}$ . (2.8)

Then we have
$\int_{0}^{\infty}v^{2}w_{1}dx\leq\frac{4}{\sigma^{2}}\int_{0}^{\infty}v_{x}^{2}wdx$ (2.9)

for $v\in H_{0}^{1}(w)$ . Here $4/\sigma^{2}$ is the best possible constant, and there is no
function $v\in H_{0}^{1}(w),$ $v\neq 0$ , which attains the equality in (2.9).

Proof. We put $\psi=(-\phi)^{-\sigma}$ for $\sigma>0$ and $\psi=-(-\phi)^{-\sigma}$ for $\sigma<0$ , and
apply Proposition 2.1. This gives the desired conclusion. 口

As a simple corollary of Proposition 2.3, we have:

Corollary 2.4. Let $\alpha\in \mathbb{R}$ with $\alpha\neq 1$ . Then we have

$\Vert v\Vert_{L_{a-2}^{2}}\leq\frac{2}{|\alpha-1|}\Vert v_{x}\Vert_{L_{\alpha}^{2}}$ (2.10)

for $v\in H_{\alpha,0}^{1}$ . Here the constant $2/|\alpha-1|$ is the best possible, and there is no
function $v\in H_{\alpha,0}^{1},$ $v\neq 0$ , which attains the equality in (2.10).

Proof. Let $\phi=-(1+x)^{-1/q}$ with $q>0$ . We apply Proposition 2.3 for this
$\phi$ and $\sigma=(\alpha-1)q$ . This gives the proof. 口
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3Dissipativity of the linearized operator
Following [2], we discuss the dissipativity of the operator $L$ defined by (1.5)
in the weighted space $L^{2}(w)$ , where $w$ is given by (2.8) with $\phi$ being the the
degenerate stationary wave. Note that our degenerate stationary wave $\phi$ is
a smooth solution of (1.3) and verifies

$-1\leq\phi(x)<0$ , $\phi_{x}(x)>0$ , $\phi(x)arrow 0$ for $xarrow\infty$ , (3.1)

$c(1+x)^{-1/q}\leq-\phi(x)\leq C(1+x)^{-1/q}$ . (3.2)
Now, letting $w>0$ be a smooth weight function depending only on $x$ , we

calculate the inner product $\langle Lv,$ $v\}_{L^{2}(w)}$ for $v\in C_{0}^{\infty}(\mathbb{R}_{+})$ , where

$\langle u,$ $v \rangle_{L^{2}(w)}:=\int_{0}^{\infty}uvwdx$ . (3.3)

We multiply (1.5) by $v$ . Then a simple computation gives

$(Lv)v=(vv_{x}- \frac{1}{2}f’(\phi)v^{2})_{x}-v_{x}^{2}-\frac{1}{2}f’’(\phi)\phi_{x}v^{2}$ .

Multiplying this equality by $w$ , we obtain

$(Lv)vw= \{(vv_{x}-\frac{1}{2}f’(\phi)v^{2})w-\frac{1}{2}v^{2}w_{x}\}_{x}$

(3.4)
$-v_{x}^{2}w+ \frac{1}{2}v^{2}(w_{xx}+w_{x}f’(\phi)-wf’’(\phi)\phi_{x})$ .

Now we choose the weight function $w$ and the corresponding $w_{1}$ in terms of
our degenerate stationary wave $\phi$ by (2.8), where $\sigma\in \mathbb{R}$ . Then we have $w=$
$(-\phi)^{-\sigma+1}/f(\phi)$ and $w_{1}=(-\phi)^{-\sigma-I}f(\phi)$ by $\phi_{x}=f(\phi)$ . After straightforward
computations, we find that

$w_{xx}+w_{x}f’(\phi)-wf’’(\phi)\phi_{x}=2(c_{1}(\sigma)-r(\phi))w_{1}$ , (3.5)

where

$c_{1}(\sigma):=\sigma(\sigma-1)/2-q(q+1)$ ,
(3.6)

$r(u):=(-u)^{2}f’’(u)/f(u)-q(q+1)$ .

Substituting (3.5) into (3.4) and integrating with respect to $x$ , we get the
following conclusion.

39



Claim 3.1. Let $\phi$ be the degenerate stationary wave and define the weight

functions $w$ and $w_{1}$ by (2.8) with $\sigma\in \mathbb{R}$ . Then the operator $L$ defined in
$($ 1.5 $)$ verifies

$\{Lv,$ $v \rangle_{L^{2}(w)}=-\Vert v_{x}\Vert_{L^{2}(w)}^{2}+c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}-\int_{0}^{\infty}v^{2}r(\phi)w_{1}dx$ (3.7)

for $v\in C_{0}^{\infty}(\mathbb{R}_{+})$ and hence for $v\in H_{0}^{1}(w)$ , where $c_{1}(\sigma)$ and $r(\phi)$ are given
in (3.6).

The term $r(\phi)$ in (3.7) can be regarded as a small perturbation. In fact,
a straightforward computation gives

$r(u)=(-u)\{(-u)g’’(u)-2(q+1)g’(u)\}/(1+g(u))$ , (3.8)

which shows that $r(u)=O(|u|)$ for $uarrow 0$ . In particular, we have $r(u)\equiv 0$

if $g(u)\equiv 0$ . With these preparations, we have the following result on the
characterization of the dissipativity of $L$ .

Theorem 3.2. Assume (1.2). Let $\phi$ be the degenerate stationary wave and
$L$ be the operator defined in (1.5). Let $w$ and $w_{1}$ be the weight functions in
(2.8) with the pammeter $\sigma\in \mathbb{R}$ . Then we have:
(1) Let $-2q<\sigma<2(q+1)$ . Then, under the additional assumption that
$r(u)\geq 0$ for-l $\leq u\leq 0$ , the operator $L$ is uniformly dissipative in $L^{2}(w)$ .
Namely, there is a positive constant $\delta$ such that

$\{Lv,$ $v\rangle_{L^{2}(w)}\leq-\delta(\Vert v_{x}\Vert_{L^{2}(w)}^{2}+\Vert v\Vert_{L^{2}(w_{1})}^{2})$ for $v\in H_{0}^{1}(w)$ . (3.9)

(2) Let $\sigma>2(q+1)$ or $\sigma<-2q$ . Then the opemtor $L$ can not be dissipative
in $L^{2}(w)$ . Namely, we have $\langle Lv,$ $v\rangle_{L^{2}(w)}>0$ for some $v\in H_{0}^{1}(w)$ with $v\neq 0$ .

Proof. The proof is based on the equality (3.7) in Claim 3.1 and the Hardy
type inequality (2.9) in Proposition 2.3.

Let $-2q<\sigma<2(q+1)$ . This is equivalent to $c_{1}(\sigma)<\sigma^{2}/4$ . Therefore
we can choose $\delta>0$ so small that $\delta(1+\sigma^{2}/4)\leq\sigma^{2}/4-c_{1}(\sigma)$ . Since $r(\phi)\geq 0$

by the additional assumption on $r(u)$ and since $(\sigma^{2}/4)\Vert v\Vert_{L^{2}(w_{1})}^{2}\leq\Vert v_{x}\Vert_{L^{2}(w)}^{2}$

by the Hardy type inequality (2.9), we have from (3.7) that

$\langle Lv,$ $v\rangle_{L^{2}(w)}\leq-\Vert v_{x}\Vert_{L^{2}(w)}^{2}+c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}$

$=-\delta\Vert v_{x}\Vert_{L^{2}(w)}^{2}-(1-\delta)\Vert v_{x}\Vert_{L^{2}(w)}^{2}+c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}$

(3.10)
$\leq-\delta\Vert v_{x}\Vert_{L^{2}(w)}^{2}-\{(1-\delta)\sigma^{2}/4-c_{1}(\sigma)\}\Vert v\Vert_{L^{2}(w_{1})}^{2}$

$\leq-\delta(\Vert v_{x}\Vert_{L^{2}(w)}^{2}+\Vert v\Vert_{L^{2}(w)}^{2}1)$
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for $v\in C_{0}^{\infty}(\mathbb{R}_{+})$ and hence for $v\in H_{0}^{1}(w)$ , where we have used the fact that
$(1-\delta)\sigma^{2}/4-c_{1}(\sigma)\geq\delta$ . This completes the proof of the uniform dissipative
case (1).

Next we consider the case where $\sigma>2(q+1)$ ; the case $\sigma<-2q$ can
be treated similarly and we omit the argument in this latter case. When
$\sigma>2(q+1)$ , we have $c_{1}(\sigma)>\sigma^{2}/4$ . Then we choose $\delta>0$ so small that
$c_{1}(\sigma)\geq\sigma^{2}/4+3\delta$ . Since $r(u)=O(|u|)$ for $uarrow 0$ and $\phi(x)arrow 0$ for $xarrow\infty$ ,
we take $a=a(\delta)>0$ so large that $|r(\phi)$ I $\leq\delta$ for $x\geq a$ . For this choice of $a$

and for $\epsilon>0$ , we take a test function $v^{\epsilon}$ as in (2.4):

$v^{\epsilon}(x)=\{\begin{array}{l}0, 0\leq x<a,(x-a)(-\phi(x))^{\sigma(1/2+\epsilon)}, a<x<a+1,(-\phi(x))^{\sigma(1/2+\epsilon)}, a+1<x.\end{array}$ (3.11)

Then we have

$| \int_{0}^{\infty}(v^{\epsilon})^{2}r(\phi)w_{1}dx|\leq\delta\int_{a}^{\infty}(v^{\epsilon})^{2}w_{1}dx=\delta\Vert v^{\epsilon}\Vert_{L^{2}(w_{1})}^{2}$ ,

so that we have from (3.7) that

$\{Lv^{\epsilon}, v^{\epsilon}\}_{L^{2}(w)}\geq-\Vert v_{x}^{\epsilon}\Vert_{L^{2}(w)}^{2}+(c_{1}(\sigma)-\delta)\Vert v^{\epsilon}\Vert_{L^{2}(w1}^{2})$. (3.12)

Also, by straightforward computations, we find that

$\frac{||v_{x}^{\epsilon}\Vert_{L^{2}(w)}^{2}}{||v^{\epsilon}\Vert_{L^{2}(w_{1})}^{2}}=\frac{O(1)+\sigma^{2}(1/2\epsilon)^{2}\frac{1}{2\sigma\epsilon(a}(-\phi(a+1))^{2\sigma\epsilon}}{O(1)+\frac{+1}{2\sigma\epsilon}(-\phi+1))^{2\sigma\epsilon}}$

$= \frac{O(\epsilon)+\sigma^{2}(1/2+\epsilon)^{2}(-\phi(a+1))^{2\sigma\epsilon}}{O(\epsilon)+(-\phi(a+1))^{2\sigma\epsilon}}arrow\frac{\sigma^{2}}{4}$

for $\epsilonarrow 0$ . Thus we have I $v_{x}^{\epsilon}\Vert_{L^{2}(w)}^{2}/\Vert v^{\epsilon}\Vert_{L^{2}(w_{1})}^{2}\leq\sigma^{2}/4+\delta$ for a suitably small
$\epsilon=\epsilon(\delta)>0$ . Consequently, we have from (3.12) that

$\frac{\{Lv^{\epsilon},v^{\epsilon}\}_{L^{2}(w)}}{\Vert v^{\epsilon}||_{L^{2}(w_{1})}^{2}}\geq-\frac{||v_{x}^{\epsilon}||_{L^{2}(w)}^{2}}{||v^{\epsilon}||_{L^{2}(w_{1})}^{2}}+c_{1}(\sigma)-\delta$

$\geq-(\sigma^{2}/4+\delta)+c_{1}(\sigma)-\delta\geq\delta$.

This completes the proof of the non-dissipative case (2). Thus the proof of
Theorem 3.2 is complete. ロ
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In the special case where $g(u)\equiv 0$ so that $f(u)= \frac{1}{q}(-u)^{q+1}$ , we have
$\phi=-(1+x)^{-1/q}$ and the operator $L$ in (1.5) is reduced to

$L_{0}v=v_{xx}+ \frac{q+1}{q}(\frac{v}{1+x})_{x}$ . (3.13)

In this simplest case, we have the complete characterization of the dissipa-
tivity of the operator $L_{0}$ .

Theorem 3.3. Let $\alpha_{c}(q):=3+2/q$ . Then we have the complete chamcter-
ization of the dissipativity of the opemtor $L_{0}$ given in (3.13).$\cdot$

(1) Let-l $<\alpha<\alpha_{c}(q)$ . Then $L_{0}$ is uniformly dissipative in $L_{\alpha}^{2}$ . Namely,
there is a positive constant $\delta$ such that

$\langle L_{0}v,$ $v\}_{L_{\alpha}^{2}}\leq-\delta(\Vert v_{x}\Vert_{L_{\alpha}^{2}}^{2}+\Vert v\Vert_{L_{\alpha-2}^{2}}^{2})$ for $v\in H_{\alpha,0}^{1}$ . (3.14)

(2) Let $\alpha=\alpha_{c}(q)$ or $\alpha=-1$ . Then $L_{0}$ is strictly dissipative in $L_{\alpha}^{2}$ . Namely,
we have $\langle L_{0}v,$ $v\}_{L_{a}^{2}}<0$ for $v\in H_{\alpha,0}^{1}$ with $v\neq 0$ .
(3) Let $\alpha>\alpha_{c}(q)$ or $\alpha<-1$ . Then $L_{0}$ can not be dissipative in $L_{\alpha}^{2}$ . Namely,
we have $\{L_{0}v,$ $v\rangle_{L_{a}^{2}}>0$ for some $v\in H_{\alpha,0}^{1}$ with $v\neq 0$ .

Proof. In this case, we have $\phi=-(1+x)^{-1/q},$ $L=L_{0}$ and $r(u)\equiv 0$ .
Therefore, (3.7) is reduced to

$\langle L_{0}v,$ $v\}_{L^{2}(w)}=-\Vert v_{x}\Vert_{L^{2}(w)}^{2}+c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}$ , (3.15)

where $w$ and $w_{1}$ are the weight functions defined in (2.8) with $\phi=-(1+$
$x)^{-1/q}$ and $\sigma=(\alpha-1)q$ . The desired conclusions easily follow from (3.15)
by applying the same argument as in Theorem 3.2. We omit the details. 口

4 Nonlinear stability
The following stability result for the nonlinear problem (1.4) was obtained
in [2] as a refinement of the result in [14].

Theorem 4.1. Assume (1.2). Suppose that $v_{0}\in L_{\alpha}^{2}\cap L^{\infty}$ for some $\alpha$ with
1 $\leq\alpha<\alpha_{c}(q);=3+q/2$ . Then there is a positive constant $\delta_{1}$ such
that if $\Vert v_{0}\Vert_{L_{1}^{2}}\leq\delta_{1}$ , then the problem (1.4) has a unique global solution
$v\in C^{0}([0, \infty);L_{\alpha}^{2}\cap L^{p})$ for each $p$ with $2\leq p<\infty$ . Moreover, the so-
lution $ver’ifies$ the decay estimate

$\Vert v(t)\Vert_{Lp}\leq C(\Vert v_{0}\Vert_{L_{\alpha}^{2}}+\Vert v_{0}\Vert_{L}\infty)(1+t)^{-\alpha/4-\nu}$ (4.1)

for $t\geq 0$ , where $2\leq p<\infty,$ $\nu=(1/2)(1/2-1/p)$ , and $C$ is a positive
constant.
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Proof. A key to the proof of this theorem is to show the following space-time
weighted energy inequality:

$(1+t)^{\gamma} \Vert v(t)\Vert_{L_{\beta}^{2}}^{2}+\int_{0}^{t}(1+\tau)^{\gamma}(\Vert v_{x}(\tau)\Vert_{L_{\beta}^{2}}^{2}+\Vert v(\tau)\Vert_{L_{\beta-2}^{2}}^{2})d\tau$

(4.2)
$\leq C\Vert v_{0}\Vert_{L_{\beta}^{2}}^{2}+\gamma C\int_{0}^{t}(1+\tau)^{\gamma-1}\Vert v(\tau)\Vert_{L_{\beta}^{2}}^{2}d\tau+CS_{\beta}^{\gamma}(t)$

for any $\gamma\geq 0$ and $\beta$ with $0\leq\beta\leq\alpha$ , where $1\leq\alpha<\alpha_{c}(q)$ $:=3+2/q,$ $C$ is
a constant independent of $\gamma$ and $\beta$ , and

$S_{\beta}^{\gamma}(t)= \int_{0}^{t}(1+\tau)^{\gamma}\Vert v(\tau)\Vert_{L_{\beta-1}^{3}}^{3}d\tau$. (4.3)

Here we give an outline of the proof of (4.2) and omit the other discussions.
We refer to [2, 14] for the complete proof of Theorem 4.1.

Proof of (4.2) for $\beta=0$ . The proof is based on the time weighted $L^{2}$ energy
method. First we note that

$\Vert v(t)\Vert_{L\infty}\leq M_{\infty}$ , (4.4)

where $M_{\infty}=\Vert v_{0}\Vert_{L}\infty+2$ . This is an easy consequence of the maximum
principle (see [5] for the details). Now we multiply the equation (1.4) by $v$ .
This yields

$( \frac{1}{2}v^{2})_{t}+(F-vv_{x})_{x}+v_{x}^{2}+G=0$, (4.5)

where

$F=(f( \phi+v)-f(\phi))v-\int_{0}^{v}(f(\phi+\eta)-f(\phi))d\eta$,
(4.6)

$G= \int_{0}^{v}(f’(\phi+\eta)-f’(\phi))d\eta\cdot\phi_{x}$ .

We note that

$F= \frac{1}{2}f^{f}(\phi)v^{2}+O(|v|^{3})$ , $G= \frac{1}{2}f^{\prime f}(\phi)\phi_{x}v^{2}+\phi_{x}O(|v|^{3})$ (4.7)

for $varrow 0$ . Here, a careful computation, using (3.2) and (4.4), shows that

$G\geq c(1+x)^{-2}v^{2}-C(1+x)^{-1-1/q}|v|^{3}$ (4.8)

for any $x\in \mathbb{R}_{+}$ . We integrate (4.5) over $\mathbb{R}+$ and substitute (4.8) into the
resulting equality, obtaining

$\frac{1}{2}\frac{d}{dt}\Vert v\Vert_{L^{2}}^{2}+\Vert v_{x}\Vert_{L^{2}}^{2}+c\Vert v\Vert_{L_{-2}^{2}}^{2}\leq C\Vert v\Vert_{L_{-1}^{3}}^{3}$ .
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We multiply this inequality by $(1+t)^{\gamma}$ and integrate with respect $t$ . This
yields the desired inequality (4.2) for $\beta=0$ .

Proof of (4.2) for $\beta>0$ . We apply the space-time weighted energy method
employed in [14, 2] (see also [3]). Let $w>0$ be a smooth weight function
depending only on $x$ , which will be specified later. We multiply (4.5) by $w$ ,
obtaining

$( \frac{1}{2}v^{2}w)_{t}+\{(F-\mu vv_{x})w+\frac{1}{2}v^{2}w_{x}\}_{x}$

(4.9)
$+v_{x}^{2}w-( \frac{1}{2}v^{2}w_{xx}+Fw_{x}-Gw)=0$ .

Here, using (4.7), we have

$\frac{1}{2}v^{2}w_{xx}+Fw_{x}-Gw=\frac{1}{2}v^{2}(w_{xx}+w_{x}f’(\phi)-wf’’(\phi)\phi_{x})+R$ , (4.10)

where $R=w_{x}O(|v|^{3})-w\phi_{x}O(|v|^{3})$ for $varrow 0$ . Notice that the coefficient
$w_{xx}+w_{x}f’(\phi)-wf’’(\phi)\phi_{x}$ in (4.10) is just the same as that appeared in (3.4).
Now we choose the weight function $w$ and the corresponding $w_{1}$ by (2.8) with
$\sigma=(\beta-1)q$ , where $0\leq\beta\leq\alpha$ and $1\leq\alpha<\alpha_{c}(q)$ $:=3+2/q$ . Then we
have (3.5) with $\sigma=(\beta-1)q$ . Substituting these expressions into (4.9) and
integrating over $\mathbb{R}_{+}$ , we obtain

$\frac{1}{2}\frac{d}{dt}\Vert v\Vert_{L^{2}(w)}^{2}+\Vert v_{x}\Vert_{L^{2}(w)}^{2}-c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}$

(4.11)
$+ \int_{0}^{\infty}v^{2}r(\phi)w_{1}dx=\int_{0}^{\infty}Rdx$ ,

where $c_{1}(\sigma)$ and $r(\phi)$ are given in (3.6) with $\sigma=(\beta-1)q$ . Here our weight
functions verify

$w\sim(1+x)^{\beta}$ , $w_{1}\sim(1+x)^{\beta-2}$ , (4.12)
where the symbol $\sim$ means the equivalence. This implies that the norms
$\Vert\cdot\Vert_{L^{2}(w)}$ and $\Vert$ . I $L^{2}(w_{1})$ are equivalent to $\Vert\cdot\Vert_{L_{\beta}^{2}}$ and $\Vert\cdot\Vert_{L_{\beta-2}^{2}}$ , respectively.

We estimate (4.11) similarly as in (1) of Theorem 3.2. To this end, we
note that $\sigma_{1}\leq\sigma\leq\sigma_{2}$ , where $\sigma_{1}=-q$ and $\sigma_{2}=(\alpha-1)q$ . Since $c_{1}(\sigma)<\sigma^{2}/4$

for $-2q<\sigma<2(q+1)$ and since $-2q<\sigma_{1}<\sigma_{2}<2(q+1)$ , we can choose
$\delta>0$ so small that

$\delta\leq\min_{2\sigma_{1}\leq\sigma\leq\sigma}\frac{\sigma^{2}/4-c_{1}(\sigma)}{2+\sigma^{2}/4}$ .

Notice that this $\delta$ is independent of $\beta$ . For this choice of $\delta$ , we take $a=$
$a(\delta)>0$ so large that $|r(\phi)|\leq\delta$ for $x\geq a$ . Then we have

$| \int_{0}^{\infty}v^{2}r(\phi)w_{1}dx|\leq\delta\Vert v\Vert_{L^{2}(w_{1})}^{2}+C\Vert v\Vert_{L_{-2}^{2}}^{2}$ ,
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where $C$ is a constant satisfying $C\geq(1+x)^{2}|r(\phi)|w_{1}$ for $0\leq x\leq a$ . Also,
using the Hardy type inequality $(\sigma^{2}/4)\Vert v\Vert_{L^{2}(w_{1})}^{2}\leq\Vert v_{x}\Vert_{L^{2}(w)}^{2}$ in (2.9) and
estimating similarly as in (3.10), we have

$\Vert v_{x}\Vert_{L^{2}(w)}^{2}-c_{1}(\sigma)\Vert v\Vert_{L^{2}(w_{1})}^{2}\geq\delta\Vert v_{x}\Vert_{L^{2}(w)}^{2}+2\delta\Vert v\Vert_{L^{2}(w_{1})}^{2}$,

where we have used the fact that $(1-\delta)\sigma^{2}/4-c_{1}(\sigma)\geq 2\delta$ . On the other hand,
using (4.4), we see that $|R|\leq C(|w_{x}|+w\phi_{x})|v|^{3}$ . Moreover, a straightforward
computation shows that $|w_{x}|+w\phi_{x}\leq C(1+x)^{\beta-1}$ . Substituting all these
estimates into (4. 11), we obtain

$\frac{1}{2}\frac{d}{dt}\Vert v\Vert_{L^{2}(w)}^{2}+\delta(\Vert v_{x}\Vert_{L^{2}(w)}^{2}+\Vert v\Vert_{L^{2}(w_{1})}^{2})\leq C\Vert v\Vert_{L_{-2}^{2}}^{2}+C\Vert v\Vert_{L_{\beta-1}^{3}}^{3}$ , (4.13)

where $\delta$ and $C$ are independent of $\beta$ . We multiply this inequality by $(1+t)^{\gamma}$

and integrate with respect to $t$ . By virtue of (4.12), we have

$(1+t)^{\gamma} \Vert v(t)\Vert_{L_{\beta}^{2}}^{2}+\int_{0}^{t}(1+\tau)^{\gamma}(\Vert v_{x}(\tau)\Vert_{L_{\beta}^{2}}^{2}+\Vert v(\tau)\Vert_{L_{\beta-2}^{2}}^{2})d\tau$

$\leq C\Vert v_{0}\Vert_{L_{\beta}^{2}}^{2}+\gamma C\int_{0}^{t}(1+\tau)^{\gamma-1}\Vert v(\tau)\Vert_{L_{\beta}^{2}}^{2}d\tau$ (4.14)

$+C \int_{0}^{t}(1+\tau)^{\gamma}\Vert v(\tau)\Vert_{L_{-2}^{2}}^{2}d\tau+CS_{\beta}^{\gamma}(t)$ ,

where the constant $C$ is independent of $\gamma$ and $\beta$ . Here the third term on the
right hand side of (4.14) was already estimated by (4.2) with $\beta=0$ . Hence
we have proved (4.2) also for $0<\beta\leq\alpha$ . This completes the proof. ロ
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