A Hardy type inequality and application to the stability of degenerate stationary waves

Shuichi Kawashima

Faculty of Mathematics, Kyushu University Fukuoka 812-8581, Japan

Kazuhiro Kurata

Department of Mathematics and Information Sciences Tokyo Metropolitan University Hachioji, Tokyo 192-03, Japan

1 Introduction

This note is a survey of our joint paper [2] on the stability problem of degenerate stationary waves for viscous conservation laws in the half space x > 0:

$$u_t + f(u)_x = u_{xx},$$

$$u(0,t) = -1, \quad u(x,0) = u_0(x).$$
(1.1)

Here $u_0(x) \to 0$ as $x \to \infty$, and f(u) is a smooth function satisfying

$$f(u) = \frac{1}{q}(-u)^{q+1}(1+g(u)), \quad f''(u) > 0 \text{ for } -1 \le u < 0, \tag{1.2}$$

where q is a positive integer (degeneracy exponent) and g(u) = O(|u|) for $u \to 0$. Notice that 1 + g(u) > 0 for $-1 \le u \le 0$. It is known that the corresponding stationary problem

$$\begin{aligned}
\phi_x &= f(\phi), \\
\phi(0) &= -1, \quad \phi(x) \to 0 \quad \text{as} \quad x \to \infty,
\end{aligned}$$
(1.3)

admits a unique solution $\phi(x)$ (called *degenerate stationary wave*) which verifies $\phi(x) \sim -(1+x)^{-1/q}$. In particular, we have $\phi(x) = -(1+x)^{-1/q}$ when $g(u) \equiv 0$.

To discuss the stability of the degenerate stationary wave $\phi(x)$, it is convenient to introduce the perturbation v by $u(x,t) = \phi(x) + v(x,t)$ and rewrite the problem (1.1) as

$$v_t + (f(\phi + v) - f(\phi))_x = v_{xx},$$

$$v(0, t) = 0, \quad v(x, 0) = v_0(x),$$
(1.4)

where $v_0(x) = u_0(x) - \phi(x)$, and $v_0(x) \to 0$ as $x \to \infty$. The stability of degenerate stationary waves has been studied recently in [14, 2]. The paper [14] proved the following stability result: If the initial perturbation $v_0(x)$ is in the weighted space L^2_{α} , then the perturbation v(x,t) decays in L^2 at the rate $t^{-\alpha/4}$ as $t \to \infty$, provided that $\alpha < \alpha_*(q)$, where

$$lpha_*(q) := (q+1+\sqrt{3q^2+4q+1})/q.$$

The decay rate $t^{-\alpha/4}$ obtained in [14] would be optimal but the restriction $\alpha < \alpha_*(q)$ was not very sharp. This restriction has been relaxed to $\alpha < \alpha_c(q) := 3 + 2/q$ in our joint paper [2] by employing the space-time weighted energy method in [14] and by applying a Hardy type inequality with the best possible constant. Notice that $\alpha_*(q) < \alpha_c(q)$. This new stability result will be reviewd in this note.

It is interesting to note that a similar restriction on the weight is imposed also for the stability of degenerate shock profiles (see [9]). We remark that our stability result for degenerate stationary waves is completely different from those for non-degenerate case. In fact, for non-degenerate stationary waves, we have the better decay rate $t^{-\alpha/2}$ for the perturbation without any restriction on α . See [4, 5, 13, 15] for the details. See also [6, 8, 10] for the related stability results for stationary waves.

To check the validity of our restriction $\alpha < \alpha_c(q) := 3 + 2/q$, it is important to discuss the dissipativity of the following linearized operator associated with (1.4):

$$Lv = v_{xx} - (f'(\phi)v)_x.$$
 (1.5)

In a simpler situation including the case $g(u) \equiv 0$ in (1.2), we showed in [2] that the operator L is uniformly dissipative in L^2_{α} for $\alpha < \alpha_c(q)$ but can not be dissipative for $\alpha > \alpha_c(q)$. This suggests that the exponent $\alpha_c(q)$ is the critical exponent of the stability problem of degenerate stationary waves. This result on the characterization of the dissipativity of L is an improvement on the previous one in [14] and has been established again by using a Hardy type inequality with the best possible constant. This result will be also reviewd in this note.

Notations. For $1 \leq p \leq \infty$ and a nonnegative integer s, L^p and $W^{s,p}$ denote the usual Lebesgue space on $\mathbb{R}_+ = (0,\infty)$ and the corresponding Sobolev space, respectively. When p = 2, we write $H^s = W^{s,2}$. We introduce weighted spaces. Let w = w(x) > 0 be a weight function defined on $[0,\infty)$ such that $w \in C^0[0,\infty)$. Then, for $1 \leq p < \infty$, we denote by $L^p(w)$ the weighted L^p space on \mathbb{R}_+ equipped with the norm

$$||u||_{L^{p}(w)} := \left(\int_{0}^{\infty} |u(x)|^{p} w(x) \, dx\right)^{1/p}.$$
(1.6)

The corresponding weighted Sobolev space $W^{s,p}(w)$ is defined by $W^{s,p}(w) = \{u \in L^p(w); \ \partial_x^k u \in L^p(w) \text{ for } k \leq s\}$ with the norm $\|\cdot\|_{W^{s,p}(w)}$. Also, we denote by $W_0^{1,p}(w)$ the completion of $C_0^{\infty}(\mathbb{R}_+)$ with respect to the norm

$$||u||_{W_0^{1,p}(w)} := ||\partial_x u||_{L^p(w)} = \left(\int_0^\infty |\partial_x u(x)|^p w(x) \, dx\right)^{1/p}.$$
 (1.7)

When p = 2, we write $H^s(w) = W^{s,2}(w)$ and $H_0^1(w) = W_0^{1,2}(w)$. In the special case where $w = (1 + x)^{\alpha}$ with $\alpha \in \mathbb{R}$, these weighted spaces are abbreviated as L^p_{α} , $W^{s,p}_{\alpha}$, $W^{1,p}_{\alpha,0}$, H^s_{α} and $H^1_{\alpha,0}$, respectively.

2 Hardy type inequality

Our Hardy type inequality used in [2] is a simple modification of the original Hardy's inequality introduced in [1, 7] (see also [12]).

Proposition 2.1. Let $\psi \in C^1[0,\infty)$ and assume either

(1) $\psi > 0$, $\psi_x > 0$ and $\psi(x) \to \infty$ for $x \to \infty$; or

(2) $\psi < 0, \ \psi_x > 0 \ and \ \psi(x) \to 0 \ for \ x \to \infty.$

Then we have

$$\int_{0}^{\infty} v^{2} \psi_{x} \, dx \le 4 \int_{0}^{\infty} v_{x}^{2} \, \psi^{2} / \psi_{x} \, dx \tag{2.1}$$

for $v \in C_0^{\infty}(\mathbb{R}_+)$ and hence for $v \in H_0^1(w)$ with $w = \psi^2/\psi_x$. Here 4 is the best possible constant, and there is no function $v \in H_0^1(w)$, $v \neq 0$, which attains the equality in (2.1).

Proof. The proof is quite simple. Let $v \in C_0^{\infty}(\mathbb{R}_+)$. A simple calculation gives

$$(v^{2}\psi)_{x} = v^{2}\psi_{x} + 2vv_{x}\psi$$

= $\frac{1}{2}v^{2}\psi_{x} + \frac{1}{2}(v + 2v_{x}\psi/\psi_{x})^{2}\psi_{x} - 2v_{x}^{2}\psi^{2}/\psi_{x}.$ (2.2)

Integrating (2.2) in x, we obtain

$$\int_0^\infty v^2 \psi_x \, dx + \int_0^\infty (v + 2v_x \psi/\psi_x)^2 \, dx = 4 \int_0^\infty v_x^2 \, \psi^2/\psi_x \, dx, \qquad (2.3)$$

which gives the desired inequality (2.1). It follows from (2.3) that the equality in (2.1) holds if and only if $v + 2v_x\psi/\psi_x \equiv 0$. But we find that such a v in $H_0^1(w)$ must be $v \equiv 0$.

We show the best possibility of the constant 4 in (2.1). We consider the case (1). Let us fix a > 0. Let $\epsilon > 0$ be a small parameter and put

$$v^{\epsilon}(x) = \begin{cases} 0, & 0 \le x < a, \\ (x-a)\psi(x)^{-1/2-\epsilon}, & a < x < a+1, \\ \psi(x)^{-1/2-\epsilon}, & a+1 < x. \end{cases}$$
(2.4)

Then we have after straigtforward computations that

$$\frac{\int_0^\infty (v_x^\epsilon)^2 \psi^2 / \psi_x \, dx}{\int_0^\infty (v^\epsilon)^2 \psi_x \, dx} = \frac{O(1) + (1/2 + \epsilon)^2 \frac{1}{2\epsilon} \psi(a+1)^{-2\epsilon}}{O(1) + \frac{1}{2\epsilon} \psi(a+1)^{-2\epsilon}}$$
$$= \frac{O(\epsilon) + (1/2 + \epsilon)^2 \psi(a+1)^{-2\epsilon}}{O(\epsilon) + \psi(a+1)^{-2\epsilon}} \longrightarrow \frac{1}{4}$$

for $\epsilon \to 0$. This shows that 4 in (2.1) is the best possible constant. The case (2) can be treated similarly if we take a test function $v^{\epsilon}(x)$ as

$$v^{\epsilon}(x) = \left\{ egin{array}{ll} 0, & 0 \leq x < a, \ (x-a)(-\psi(x))^{-1/2-\epsilon}, & a < x < a+1, \ (-\psi(x))^{-1/2-\epsilon}, & a+1 < x, \end{array}
ight.$$

but we omit the details. This completes the proof of Proposition 2.1. $\hfill \Box$

The L^p version of Proposition 2.1 is given as follows.

Proposition 2.2. Let ψ be the same as in Proposition 2.1. Let 1 .Then we have

$$\int_0^\infty |v|^p \psi_x \, dx \le p^p \int_0^\infty |v_x|^p |\psi|^p / \psi_x^{p-1} \, dx \tag{2.5}$$

for $v \in C_0^{\infty}(\mathbb{R}_+)$ and hence for $v \in W_0^{1,p}(w)$ with $w = |\psi|^p/\psi_x^{p-1}$. Here p^p is the best possible constant, and there is no function $v \in W_0^{1,p}(w)$, $v \neq 0$, which attains the equality in (2.5).

Proof. We only prove the inequality (2.5) and omit the other discussions. Let $1 and <math>v \in C_0^{\infty}(\mathbb{R}_+)$. A simple calculation gives

$$(|v|^{p}\psi)_{x} = |v|^{p}\psi_{x} + p|v|^{p-2}vv_{x}\psi$$

= $\frac{1}{p}(|v|^{p}\psi_{x} - p^{p}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1}) + R,$ (2.6)

where

$$R = \left(1 - \frac{1}{p}\right)|v|^{p}\psi_{x} + \frac{1}{p}p^{p}|v_{x}|^{p}|\psi|^{p}/\psi_{x}^{p-1} + p|v|^{p-2}vv_{x}\psi.$$

Integrating (2.6) in x, we obtain

$$\int_0^\infty |v|^p \psi_x \, dx + p \int_0^\infty R \, dx = p^p \int_0^\infty |v_x|^p |\psi|^p / \psi_x^{p-1} \, dx. \tag{2.7}$$

By applying the Young inequality $AB \leq (1 - 1/p)A^{p/(p-1)} + (1/p)B^p$ for $A = |v|^{p-1}\psi_x^{(p-1)/p}$ and $B = p|v_x||\psi|/\psi_x^{(p-1)/p}$, we find that $R \geq 0$, which together with (2.7) gives the desired inequality (2.5).

The following variant of Proposition 2.1 is useful in our application.

Proposition 2.3. Let $\phi \in C^1[0,\infty)$, $\phi < 0$, $\phi_x > 0$, and $\phi(x) \to 0$ for $x \to \infty$. Let $\sigma \in \mathbb{R}$ with $\sigma \neq 0$, and define the weight functions w and w_1 by

$$w = (-\phi)^{-\sigma+1}/\phi_x, \quad w_1 = (-\phi)^{-\sigma-1}\phi_x.$$
 (2.8)

Then we have

$$\int_{0}^{\infty} v^{2} w_{1} dx \leq \frac{4}{\sigma^{2}} \int_{0}^{\infty} v_{x}^{2} w dx$$
(2.9)

for $v \in H_0^1(w)$. Here $4/\sigma^2$ is the best possible constant, and there is no function $v \in H_0^1(w)$, $v \neq 0$, which attains the equality in (2.9).

Proof. We put $\psi = (-\phi)^{-\sigma}$ for $\sigma > 0$ and $\psi = -(-\phi)^{-\sigma}$ for $\sigma < 0$, and apply Proposition 2.1. This gives the desired conclusion.

As a simple corollary of Proposition 2.3, we have:

Corollary 2.4. Let $\alpha \in \mathbb{R}$ with $\alpha \neq 1$. Then we have

$$\|v\|_{L^{2}_{\alpha-2}} \leq \frac{2}{|\alpha-1|} \|v_{x}\|_{L^{2}_{\alpha}}$$
(2.10)

for $v \in H^1_{\alpha,0}$. Here the constant $2/|\alpha - 1|$ is the best possible, and there is no function $v \in H^1_{\alpha,0}$, $v \neq 0$, which attains the equality in (2.10).

Proof. Let $\phi = -(1+x)^{-1/q}$ with q > 0. We apply Proposition 2.3 for this ϕ and $\sigma = (\alpha - 1)q$. This gives the proof.

3 Dissipativity of the linearized operator

Following [2], we discuss the dissipativity of the operator L defined by (1.5) in the weighted space $L^2(w)$, where w is given by (2.8) with ϕ being the the degenerate stationary wave. Note that our degenerate stationary wave ϕ is a smooth solution of (1.3) and verifies

$$-1 \le \phi(x) < 0, \quad \phi_x(x) > 0, \quad \phi(x) \to 0 \quad \text{for} \quad x \to \infty, \tag{3.1}$$

$$c(1+x)^{-1/q} \le -\phi(x) \le C(1+x)^{-1/q}.$$
 (3.2)

Now, letting w > 0 be a smooth weight function depending only on x, we calculate the inner product $\langle Lv, v \rangle_{L^2(w)}$ for $v \in C_0^{\infty}(\mathbb{R}_+)$, where

$$\langle u, v \rangle_{L^2(w)} := \int_0^\infty uvw \, dx. \tag{3.3}$$

We multiply (1.5) by v. Then a simple computation gives

$$(Lv)v = \left(vv_x - \frac{1}{2}f'(\phi)v^2\right)_x - v_x^2 - \frac{1}{2}f''(\phi)\phi_xv^2$$

Multiplying this equality by w, we obtain

$$(Lv)vw = \left\{ \left(vv_x - \frac{1}{2}f'(\phi)v^2 \right)w - \frac{1}{2}v^2w_x \right\}_x - v_x^2w + \frac{1}{2}v^2(w_{xx} + w_xf'(\phi) - wf''(\phi)\phi_x).$$
(3.4)

Now we choose the weight function w and the corresponding w_1 in terms of our degenerate stationary wave ϕ by (2.8), where $\sigma \in \mathbb{R}$. Then we have $w = (-\phi)^{-\sigma+1}/f(\phi)$ and $w_1 = (-\phi)^{-\sigma-1}f(\phi)$ by $\phi_x = f(\phi)$. After straightforward computations, we find that

$$w_{xx} + w_x f'(\phi) - w f''(\phi) \phi_x = 2(c_1(\sigma) - r(\phi)) w_1, \qquad (3.5)$$

where

$$c_1(\sigma) := \sigma(\sigma - 1)/2 - q(q + 1),$$

$$r(u) := (-u)^2 f''(u)/f(u) - q(q + 1).$$
(3.6)

Substituting (3.5) into (3.4) and integrating with respect to x, we get the following conclusion.

Claim 3.1. Let ϕ be the degenerate stationary wave and define the weight functions w and w_1 by (2.8) with $\sigma \in \mathbb{R}$. Then the operator L defined in (1.5) verifies

$$\langle Lv, v \rangle_{L^{2}(w)} = - \|v_{x}\|_{L^{2}(w)}^{2} + c_{1}(\sigma)\|v\|_{L^{2}(w_{1})}^{2} - \int_{0}^{\infty} v^{2}r(\phi)w_{1} dx \qquad (3.7)$$

for $v \in C_0^{\infty}(\mathbb{R}_+)$ and hence for $v \in H_0^1(w)$, where $c_1(\sigma)$ and $r(\phi)$ are given in (3.6).

The term $r(\phi)$ in (3.7) can be regarded as a small perturbation. In fact, a straightforward computation gives

$$r(u) = (-u)\{(-u)g''(u) - 2(q+1)g'(u)\}/(1+g(u)), \quad (3.8)$$

which shows that r(u) = O(|u|) for $u \to 0$. In particular, we have $r(u) \equiv 0$ if $g(u) \equiv 0$. With these preparations, we have the following result on the characterization of the dissipativity of L.

Theorem 3.2. Assume (1.2). Let ϕ be the degenerate stationary wave and L be the operator defined in (1.5). Let w and w_1 be the weight functions in (2.8) with the parameter $\sigma \in \mathbb{R}$. Then we have:

(1) Let $-2q < \sigma < 2(q+1)$. Then, under the additional assumption that $r(u) \geq 0$ for $-1 \leq u \leq 0$, the operator L is uniformly dissipative in $L^2(w)$. Namely, there is a positive constant δ such that

$$\langle Lv, v \rangle_{L^2(w)} \le -\delta(\|v_x\|_{L^2(w)}^2 + \|v\|_{L^2(w_1)}^2) \quad for \ v \in H^1_0(w).$$
 (3.9)

(2) Let $\sigma > 2(q+1)$ or $\sigma < -2q$. Then the operator L can not be dissipative in $L^2(w)$. Namely, we have $\langle Lv, v \rangle_{L^2(w)} > 0$ for some $v \in H^1_0(w)$ with $v \neq 0$.

Proof. The proof is based on the equality (3.7) in Claim 3.1 and the Hardy type inequality (2.9) in Proposition 2.3.

Let $-2q < \sigma < 2(q+1)$. This is equivalent to $c_1(\sigma) < \sigma^2/4$. Therefore we can choose $\delta > 0$ so small that $\delta(1+\sigma^2/4) \leq \sigma^2/4 - c_1(\sigma)$. Since $r(\phi) \geq 0$ by the additional assumption on r(u) and since $(\sigma^2/4) ||v||_{L^2(w_1)}^2 \leq ||v_x||_{L^2(w)}^2$ by the Hardy type inequality (2.9), we have from (3.7) that

$$\langle Lv, v \rangle_{L^{2}(w)} \leq - \|v_{x}\|_{L^{2}(w)}^{2} + c_{1}(\sigma)\|v\|_{L^{2}(w_{1})}^{2} = -\delta\|v_{x}\|_{L^{2}(w)}^{2} - (1-\delta)\|v_{x}\|_{L^{2}(w)}^{2} + c_{1}(\sigma)\|v\|_{L^{2}(w_{1})}^{2} \leq -\delta\|v_{x}\|_{L^{2}(w)}^{2} - \{(1-\delta)\sigma^{2}/4 - c_{1}(\sigma)\}\|v\|_{L^{2}(w_{1})}^{2} \leq -\delta(\|v_{x}\|_{L^{2}(w)}^{2} + \|v\|_{L^{2}(w_{1})}^{2})$$

$$(3.10)$$

for $v \in C_0^{\infty}(\mathbb{R}_+)$ and hence for $v \in H_0^1(w)$, where we have used the fact that $(1-\delta)\sigma^2/4 - c_1(\sigma) \geq \delta$. This completes the proof of the uniform dissipative case (1).

Next we consider the case where $\sigma > 2(q+1)$; the case $\sigma < -2q$ can be treated similarly and we omit the argument in this latter case. When $\sigma > 2(q+1)$, we have $c_1(\sigma) > \sigma^2/4$. Then we choose $\delta > 0$ so small that $c_1(\sigma) \ge \sigma^2/4 + 3\delta$. Since r(u) = O(|u|) for $u \to 0$ and $\phi(x) \to 0$ for $x \to \infty$, we take $a = a(\delta) > 0$ so large that $|r(\phi)| \le \delta$ for $x \ge a$. For this choice of aand for $\epsilon > 0$, we take a test function v^{ϵ} as in (2.4):

$$v^{\epsilon}(x) = \begin{cases} 0, & 0 \le x < a, \\ (x-a)(-\phi(x))^{\sigma(1/2+\epsilon)}, & a < x < a+1, \\ (-\phi(x))^{\sigma(1/2+\epsilon)}, & a+1 < x. \end{cases}$$
(3.11)

Then we have

$$\Big|\int_0^\infty (v^\epsilon)^2 r(\phi) w_1 \, dx\Big| \leq \delta \int_a^\infty (v^\epsilon)^2 w_1 \, dx = \delta \|v^\epsilon\|_{L^2(w_1)}^2,$$

so that we have from (3.7) that

$$\langle Lv^{\epsilon}, v^{\epsilon} \rangle_{L^{2}(w)} \geq - \|v_{x}^{\epsilon}\|_{L^{2}(w)}^{2} + (c_{1}(\sigma) - \delta)\|v^{\epsilon}\|_{L^{2}(w_{1})}^{2}.$$
 (3.12)

Also, by straightforward computations, we find that

$$\frac{\|v_x^{\epsilon}\|_{L^2(w)}^2}{\|v^{\epsilon}\|_{L^2(w_1)}^2} = \frac{O(1) + \sigma^2 (1/2 + \epsilon)^2 \frac{1}{2\sigma\epsilon} (-\phi(a+1))^{2\sigma\epsilon}}{O(1) + \frac{1}{2\sigma\epsilon} (-\phi(a+1))^{2\sigma\epsilon}} \\ = \frac{O(\epsilon) + \sigma^2 (1/2 + \epsilon)^2 (-\phi(a+1))^{2\sigma\epsilon}}{O(\epsilon) + (-\phi(a+1))^{2\sigma\epsilon}} \longrightarrow \frac{\sigma^2}{4}$$

for $\epsilon \to 0$. Thus we have $\|v_x^{\epsilon}\|_{L^2(w)}^2 / \|v^{\epsilon}\|_{L^2(w_1)}^2 \leq \sigma^2/4 + \delta$ for a suitably small $\epsilon = \epsilon(\delta) > 0$. Consequently, we have from (3.12) that

$$\frac{\langle Lv^{\epsilon}, v^{\epsilon} \rangle_{L^{2}(w)}}{\|v^{\epsilon}\|_{L^{2}(w_{1})}^{2}} \geq -\frac{\|v_{x}^{\epsilon}\|_{L^{2}(w)}^{2}}{\|v^{\epsilon}\|_{L^{2}(w_{1})}^{2}} + c_{1}(\sigma) - \delta$$
$$\geq -(\sigma^{2}/4 + \delta) + c_{1}(\sigma) - \delta \geq \delta.$$

This completes the proof of the non-dissipative case (2). Thus the proof of Theorem 3.2 is complete. \Box

In the special case where $g(u) \equiv 0$ so that $f(u) = \frac{1}{q}(-u)^{q+1}$, we have $\phi = -(1+x)^{-1/q}$ and the operator L in (1.5) is reduced to

$$L_0 v = v_{xx} + \frac{q+1}{q} \left(\frac{v}{1+x}\right)_x.$$
 (3.13)

In this simplest case, we have the complete characterization of the dissipativity of the operator L_0 .

Theorem 3.3. Let $\alpha_c(q) := 3 + 2/q$. Then we have the complete characterization of the dissipativity of the operator L_0 given in (3.13): (1) Let $-1 < \alpha < \alpha$ (a) Then L_0 is uniformly dissipative in L^2 . Namely

(1) Let $-1 < \alpha < \alpha_c(q)$. Then L_0 is uniformly dissipative in L^2_{α} . Namely, there is a positive constant δ such that

$$\langle L_0 v, v \rangle_{L^2_{\alpha}} \le -\delta(\|v_x\|^2_{L^2_{\alpha}} + \|v\|^2_{L^2_{\alpha-2}}) \quad for \ v \in H^1_{\alpha,0}.$$
 (3.14)

(2) Let $\alpha = \alpha_c(q)$ or $\alpha = -1$. Then L_0 is strictly dissipative in L^2_{α} . Namely, we have $\langle L_0 v, v \rangle_{L^2_{\alpha}} < 0$ for $v \in H^1_{\alpha,0}$ with $v \neq 0$.

(3) Let $\alpha > \alpha_c(q)$ or $\alpha < -1$. Then L_0 can not be dissipative in L^2_{α} . Namely, we have $\langle L_0 v, v \rangle_{L^2_{\alpha}} > 0$ for some $v \in H^1_{\alpha,0}$ with $v \neq 0$.

Proof. In this case, we have $\phi = -(1+x)^{-1/q}$, $L = L_0$ and $r(u) \equiv 0$. Therefore, (3.7) is reduced to

$$\langle L_0 v, v \rangle_{L^2(w)} = - \| v_x \|_{L^2(w)}^2 + c_1(\sigma) \| v \|_{L^2(w_1)}^2, \qquad (3.15)$$

where w and w_1 are the weight functions defined in (2.8) with $\phi = -(1 + x)^{-1/q}$ and $\sigma = (\alpha - 1)q$. The desired conclusions easily follow from (3.15) by applying the same argument as in Theorem 3.2. We omit the details. \Box

4 Nonlinear stability

The following stability result for the nonlinear problem (1.4) was obtained in [2] as a refinement of the result in [14].

Theorem 4.1. Assume (1.2). Suppose that $v_0 \in L^2_{\alpha} \cap L^{\infty}$ for some α with $1 \leq \alpha < \alpha_c(q) := 3 + q/2$. Then there is a positive constant δ_1 such that if $||v_0||_{L^2_1} \leq \delta_1$, then the problem (1.4) has a unique global solution $v \in C^0([0,\infty); L^2_{\alpha} \cap L^p)$ for each p with $2 \leq p < \infty$. Moreover, the solution verifies the decay estimate

$$\|v(t)\|_{L^{p}} \leq C(\|v_{0}\|_{L^{2}_{\alpha}} + \|v_{0}\|_{L^{\infty}})(1+t)^{-\alpha/4-\nu}$$
(4.1)

for $t \ge 0$, where $2 \le p < \infty$, $\nu = (1/2)(1/2 - 1/p)$, and C is a positive constant.

Proof. A key to the proof of this theorem is to show the following space-time weighted energy inequality:

$$(1+t)^{\gamma} \|v(t)\|_{L^{2}_{\beta}}^{2} + \int_{0}^{t} (1+\tau)^{\gamma} (\|v_{x}(\tau)\|_{L^{2}_{\beta}}^{2} + \|v(\tau)\|_{L^{2}_{\beta-2}}^{2}) d\tau$$

$$\leq C \|v_{0}\|_{L^{2}_{\beta}}^{2} + \gamma C \int_{0}^{t} (1+\tau)^{\gamma-1} \|v(\tau)\|_{L^{2}_{\beta}}^{2} d\tau + CS^{\gamma}_{\beta}(t)$$

$$(4.2)$$

for any $\gamma \ge 0$ and β with $0 \le \beta \le \alpha$, where $1 \le \alpha < \alpha_c(q) := 3 + 2/q$, C is a constant independent of γ and β , and

$$S_{\beta}^{\gamma}(t) = \int_{0}^{t} (1+\tau)^{\gamma} \|v(\tau)\|_{L^{3}_{\beta-1}}^{3} d\tau.$$
(4.3)

Here we give an outline of the proof of (4.2) and omit the other discussions. We refer to [2, 14] for the complete proof of Theorem 4.1.

<u>Proof of (4.2) for $\beta = 0$.</u> The proof is based on the time weighted L^2 energy method. First we note that

$$\|v(t)\|_{L^{\infty}} \le M_{\infty},\tag{4.4}$$

where $M_{\infty} = ||v_0||_{L^{\infty}} + 2$. This is an easy consequence of the maximum principle (see [5] for the details). Now we multiply the equation (1.4) by v. This yields

$$\left(\frac{1}{2}v^2\right)_t + (F - vv_x)_x + v_x^2 + G = 0, \tag{4.5}$$

where

$$F = (f(\phi + v) - f(\phi))v - \int_0^v (f(\phi + \eta) - f(\phi))d\eta,$$

$$G = \int_0^v (f'(\phi + \eta) - f'(\phi))d\eta \cdot \phi_x.$$
(4.6)

We note that

$$F = \frac{1}{2}f'(\phi)v^2 + O(|v|^3), \quad G = \frac{1}{2}f''(\phi)\phi_x v^2 + \phi_x O(|v|^3)$$
(4.7)

for $v \to 0$. Here, a careful computation, using (3.2) and (4.4), shows that

$$G \ge c(1+x)^{-2}v^2 - C(1+x)^{-1-1/q}|v|^3$$
(4.8)

for any $x \in \mathbb{R}_+$. We integrate (4.5) over \mathbb{R}_+ and substitute (4.8) into the resulting equality, obtaining

$$\frac{1}{2}\frac{d}{dt}\|v\|_{L^{2}}^{2}+\|v_{x}\|_{L^{2}}^{2}+c\|v\|_{L^{2}_{-2}}^{2}\leq C\|v\|_{L^{3}_{-1}}^{3}.$$

<u>Proof of (4.2) for $\beta > 0$ </u>. We apply the space-time weighted energy method employed in [14, 2] (see also [3]). Let w > 0 be a smooth weight function depending only on x, which will be specified later. We multiply (4.5) by w, obtaining

$$\left(\frac{1}{2}v^{2}w\right)_{t} + \left\{(F - \mu v v_{x})w + \frac{1}{2}v^{2}w_{x}\right\}_{x} + v_{x}^{2}w - \left(\frac{1}{2}v^{2}w_{xx} + Fw_{x} - Gw\right) = 0.$$

$$(4.9)$$

Here, using (4.7), we have

$$\frac{1}{2}v^2w_{xx} + Fw_x - Gw = \frac{1}{2}v^2(w_{xx} + w_xf'(\phi) - wf''(\phi)\phi_x) + R, \qquad (4.10)$$

where $R = w_x O(|v|^3) - w \phi_x O(|v|^3)$ for $v \to 0$. Notice that the coefficient $w_{xx} + w_x f'(\phi) - w f''(\phi) \phi_x$ in (4.10) is just the same as that appeared in (3.4). Now we choose the weight function w and the corresponding w_1 by (2.8) with $\sigma = (\beta - 1)q$, where $0 \leq \beta \leq \alpha$ and $1 \leq \alpha < \alpha_c(q) := 3 + 2/q$. Then we have (3.5) with $\sigma = (\beta - 1)q$. Substituting these expressions into (4.9) and integrating over \mathbb{R}_+ , we obtain

$$\frac{1}{2}\frac{d}{dt}\|v\|_{L^{2}(w)}^{2}+\|v_{x}\|_{L^{2}(w)}^{2}-c_{1}(\sigma)\|v\|_{L^{2}(w_{1})}^{2}$$

$$+\int_{0}^{\infty}v^{2}r(\phi)w_{1}\,dx=\int_{0}^{\infty}R\,dx,$$
(4.11)

where $c_1(\sigma)$ and $r(\phi)$ are given in (3.6) with $\sigma = (\beta - 1)q$. Here our weight functions verify

$$w \sim (1+x)^{\beta}, \quad w_1 \sim (1+x)^{\beta-2},$$
 (4.12)

where the symbol ~ means the equivalence. This implies that the norms $\|\cdot\|_{L^2(w)}$ and $\|\cdot\|_{L^2(w_1)}$ are equivalent to $\|\cdot\|_{L^2_{\beta}}$ and $\|\cdot\|_{L^2_{\beta-2}}$, respectively.

We estimate (4.11) similarly as in (1) of Theorem 3.2. To this end, we note that $\sigma_1 \leq \sigma \leq \sigma_2$, where $\sigma_1 = -q$ and $\sigma_2 = (\alpha - 1)q$. Since $c_1(\sigma) < \sigma^2/4$ for $-2q < \sigma < 2(q+1)$ and since $-2q < \sigma_1 < \sigma_2 < 2(q+1)$, we can choose $\delta > 0$ so small that

$$\delta \leq \min_{\sigma_1 \leq \sigma \leq \sigma_2} \frac{\sigma^2/4 - c_1(\sigma)}{2 + \sigma^2/4}$$

Notice that this δ is independent of β . For this choice of δ , we take $a = a(\delta) > 0$ so large that $|r(\phi)| \leq \delta$ for $x \geq a$. Then we have

$$\left|\int_0^\infty v^2 r(\phi) w_1 \, dx\right| \leq \delta \|v\|_{L^2(w_1)}^2 + C \|v\|_{L^2_{-2}}^2,$$

where C is a constant satisfying $C \ge (1+x)^2 |r(\phi)| w_1$ for $0 \le x \le a$. Also, using the Hardy type inequality $(\sigma^2/4) ||v||_{L^2(w_1)}^2 \le ||v_x||_{L^2(w)}^2$ in (2.9) and estimating similarly as in (3.10), we have

$$\|v_x\|_{L^2(w)}^2 - c_1(\sigma)\|v\|_{L^2(w_1)}^2 \ge \delta \|v_x\|_{L^2(w)}^2 + 2\delta \|v\|_{L^2(w_1)}^2,$$

where we have used the fact that $(1-\delta)\sigma^2/4-c_1(\sigma) \geq 2\delta$. On the other hand, using (4.4), we see that $|R| \leq C(|w_x|+w\phi_x)|v|^3$. Moreover, a straightforward computation shows that $|w_x| + w\phi_x \leq C(1+x)^{\beta-1}$. Substituting all these estimates into (4.11), we obtain

$$\frac{1}{2}\frac{d}{dt}\|v\|_{L^{2}(w)}^{2} + \delta(\|v_{x}\|_{L^{2}(w)}^{2} + \|v\|_{L^{2}(w_{1})}^{2}) \le C\|v\|_{L^{2}_{-2}}^{2} + C\|v\|_{L^{3}_{\beta-1}}^{3}, \quad (4.13)$$

where δ and C are independent of β . We multiply this inequality by $(1+t)^{\gamma}$ and integrate with respect to t. By virtue of (4.12), we have

$$(1+t)^{\gamma} \|v(t)\|_{L^{2}_{\beta}}^{2} + \int_{0}^{t} (1+\tau)^{\gamma} (\|v_{x}(\tau)\|_{L^{2}_{\beta}}^{2} + \|v(\tau)\|_{L^{2}_{\beta-2}}^{2}) d\tau$$

$$\leq C \|v_{0}\|_{L^{2}_{\beta}}^{2} + \gamma C \int_{0}^{t} (1+\tau)^{\gamma-1} \|v(\tau)\|_{L^{2}_{\beta}}^{2} d\tau \qquad (4.14)$$

$$+ C \int_{0}^{t} (1+\tau)^{\gamma} \|v(\tau)\|_{L^{2}_{-2}}^{2} d\tau + C S^{\gamma}_{\beta}(t),$$

where the constant C is independent of γ and β . Here the third term on the right hand side of (4.14) was already estimated by (4.2) with $\beta = 0$. Hence we have proved (4.2) also for $0 < \beta \leq \alpha$. This completes the proof.

References

- [1] G.H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317.
- [2] S. Kawashima and K. Kurata, Hardy type inequality and application to the stability of degenerate stationary waves, preprint 2008.
- [3] S. Kawashima and A. Matsumura, Asymptotic stability of traveling waves solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97–127.
- [4] S. Kawashima, S. Nishibata and M. Nishikawa, Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane, Discrete and Continuous Dynamical Systems, Supplement Vol. (2003), 469-476.

- [5] S. Kawashima, S. Nishibata and M. Nishikawa, L^p energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves, J. Hyperbolic Differential Equations, 1 (2004), 581-603.
- [6] S. Kawashima, S. Nishibata and P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Commun. Math. Phys. 240 (2003), 483–500.
- [7] E. Landau, A note on a theorem concerning series of positive terms, J. London Math. Soc., 1 (1926), 38-39.
- [8] T.-P. Liu, A. Matsumura and K. Nishihara, Behavior of solutions for the Burgers equations with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293–308.
- [9] A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity, Commun. Math. Phys., 165 (1994), 83–96.
- [10] T. Nakamura, S. Nishibata and T Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half space, (preprint 2006).
- [11] M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., **41** (1998), 107–132.
- [12] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series **219**, Longman Scientific & Technical, 1990.
- [13] Y. Ueda, Asymptotic stability of stationary waves for damped wave equations with a nonlinear convection term, to appear in Adv, Math. Sci. Appl.
- [14] Y. Ueda, T. Nakamura and S. Kawashima, Stability of degenerate stationary waves for viscous gases, to appear in Arch. Rational Mech. Anal.
- [15] Y. Ueda, T. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multidimensional half space, Kinetic and Related Models, 1 (2008), 49–64.