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1 Introduction

This note is a survey of our joint paper (2] on the stability problem of degen-
erate stationary waves for viscous conservation laws in the half space x > 0:

us + f(u):z: = Uzz,

w(0,t) = —1, wu(z,0) = uo(x). (1.1)

Here uo(z) — 0 as £ — oo, and f(u) is a smooth function satisfying
flu) = %(—u)q“(l +o@), f'w)>0 for —1<u<0,  (1.2)

where ¢ is a positive integer (degeneracy exponent) and g(u) = O(|u|) for
u — 0. Notice that 1 + g(u) > 0 for —1 < u < 0. It is known that the
corresponding stationary problem

¢a: = f(¢))

(1.3)
#(0)=-1, ¢(z) >0 as z — oo,
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admits a unique solution ¢(z) (called degenerate stationary wave) which ver-
ifies ¢(z) ~ —(1 + z)~'/9. In particular, we have ¢(z) = —(1 + z)"1/9 when
g(u) = 0.

To discuss the stability of the degenerate stationary wave ¢(z), it is con-
venient to introduce the perturbation v by u(z, t) = ¢(z)+v(z, t) and rewrite
the problem (1.1) as

v + (f(@ +v) — f(@))e = Ve,

v(0,8) =0, v(z,0) = vo(z), (14)

where vo(z) = uo(z) — @(z), and vo(zr) — 0 as z — oo. The stability of
degenerate stationary waves has been studied recently in [14, 2]. The paper
[14] proved the following stability result: If the initial perturbation vo(x) is
in the weighted space L2, then the perturbation v(x,t) decays in L? at the
rate t~*/% as t — oo, provided that a < a, (¢), where

a.(q) = (q+1++/3¢2+49+1)/q.

The decay rate t=*/* obtained in [14] would be optimal but the restriction
a < a.(g) was not very sharp. This restriction has been relaxed to a <
a.(q) := 3+ 2/q in our joint paper [2] by employing the space-time weighted
energy method in [14] and by applying a Hardy type inequality with the best
possible constant. Notice that a.(gq) < a.(g). This new stability result will
be reviewd in this note.

It is interesting to note that a similar restriction on the weight is imposed
also for the stability of degenerate shock profiles (see [9]). We remark that
our stability result for degenerate stationary waves is completely different
from those for non-degenerate case. In fact, for non-degenerate stationary
‘waves, we have the better decay rate ¢t=°/2 for the perturbation without any
restriction on a. See [4, 5, 13, 15] for the details. See also [6, 8, 10] for the
related stability results for stationary waves.

To check the validity of our restriction a < a.(q) := 3 + 2/q, it is impor-
tant to discuss the dissipativity of the following linearized operator associated
with (1.4):

Lv = vz — (f(P)V),. (1.5)

In a simpler situation including the case g(u) = 0 in (1.2), we showed in
[2] that the operator L is uniformly dissipative in L2 for a < a.(q) but can
not be dissipative for a@ > a.(q). This suggests that the exponent a.(q) is
the critical exponent of the stability problem of degenerate stationary waves.
'This result on the characterization of the dissipativity of L is an improvement
- on the previous one in [14] and has been established again by using a Hardy
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type inequality with the best possible constant. This result will be also
reviewd in this note.

Notations. For 1 < p < oo and a nonnegative integer s, LP and W?*P
denote the usual Lebesgue space on R, = (0,00) and the corresponding
Sobolev space, respectively. When p = 2, we write H* = W*2, We introduce
weighted spaces. Let w = w(z) > 0 be a weight function defined on [0, c0)
such that w € C°[0,00). Then, for 1 < p < oo, we denote by LP(w) the
weighted L? space on R, equipped with the norm

i = ([ tut)Pue)ds) (1.6

The corresponding weighted Sobolev space W*P?(w) is defined by W*P(w) =
{u € LP(w); 8%u € LP(w) for k < s} with the norm || - ||wer@). Also, we
denote by W, ?(w) the completion of C°(R. ) with respect to the norm

g = el = ([ 0ut)Puia)ae) . (17)

When p = 2, we write H*(w) = W*?(w) and H}(w) = Wy?(w). In the
special case where w = (1 + z)* with a € R, these weighted spaces are
abbreviated as LB, W2, W b, HS and H.,, respectively.

2 Hardy type inequality

Our Hardy type inequality used in [2] is a simple modification of the original
Hardy’s inequality introduced in [1, 7] (see also [12]).

Proposition 2.1. Let ¢ € C*[0,00) and assume either

(1) ¥ >0, ¥, > 0 and Y(z) = oo for x — oo; or

(2) ¥ <0, Yy >0 and Y(z) = 0 for z — oo.
Then we have o o

/ v, dz < 4/ viy? /o, de (2.1)
0 0

for v € C(R,) and hence for v € H} (w) with w = ?/,. Here 4 is the
best possible constant, and there is no function v € H}(w), v # 0, which
attains the equality in (2.1).

Proof. The proof is quite simple. Let v € C§°(R;). A simple calculation
gives

(Uz¢)m = 'Uzwa: + 2'U'U:z:w

2.2
= -;—v21/)z + %(v + 20,9 /)2y — 202 /1. (22)
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Integrating (2.2) in x, we obtain

/ wvzwz dz + / oo(v + 2u, /Y,)? dx = 4 / oovg V2 /1, dz, (2.3)
0 0 0

which gives the desired inequality (2.1). It follows from (2.3) that the equality
in (2.1) holds if and only if v + 2v,1 /¥, = 0. But we find that such a v in
Hy(w) must be v = 0.

We show the best possibility of the constant 4 in (2.1). We consider the
case (1). Let us fix @ > 0. Let € > 0 be a small parameter and put

0, 0<z<a,
() =< (z—a)(z) V%, a<z<a+l, (2.4)
PY(x)~12, a+1<uz.

Then we have after straigtforward computations that

Jo )b dz O(1) + (1/2+ €)*Lp(a +1)%

| fooo(vf)ziﬂm dz B O(l) -+ 2—1€-w(a + 1)—"26
_0@+(1/2+a+1)* 1
T OO+ da+ 1) 3

for € — 0. This shows that 4 in (2.1) is the best possible constant. The case
(2) can be treated similarly if we take a test function v¢(z) as

0, 0<z<a,
v(z) =< (z—a)(—¢(z))" V2%, a<z<a+l,
(=¥(2))"V*, a+1<u,
but we omit the details. This completes the proof of Proposition 2.1. O

The LP version of Proposition 2.1 is given as follows.

Proposition 2.2. Let v be the same as in Proposition 2.1. Let 1 < p < oo.
Then we have

| Pz <7 [Clualrlop /o e (25)
0 0
for v € C§°(R,) and hence for v € Wy (w) with w = |¢|P/¢2~'. Here p®

is the best possible constant, and there is no function v € Wy (w), v # 0,
which attains the equality in (2.5).
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Proof. We only prove the inequality (2.5) and omit the other discussions.
Let 1 < p < oo and v € C§°(R.). A simple calculation gives

(IvPY)e = [Pz + plofP~?vv.y

= L(oPue ~ pPlualup /) + R (26)

where . )
R= (1= ) olvs 4+ pPloa [P /927 + plol P vvs,

Integrating (2.6) in z, we obtain
/ 0[P, da +p/ Rdz = pz’/ lva P|IP /o2~ d. (2.7)
0 0 0

By applying the Young inequality AB < (1 — 1/p)AP/®=1) 4 (1/p)BP for

A = PP V" and B = plug||v|/vP VP, we find that R > 0, which

together with (2.7) gives the desired inequality (2.5). O
The following variant of Proposition 2.1 is useful in our application.

Proposition 2.3. Let ¢ € C'0,00), ¢ < 0, ¢, > 0, and ¢(z) — 0 for
T — oco. Let 0 € R with o # 0, and define the weight functions w and w; by

w=(=¢)"" /¢, w1 =(—0)""""¢s. (2.8)
Then we have o 4 [
/ viw, dr < — viwdz (2.9)
0 o° Jo

for v € Hi(w). Here 4/0?% is the best possible constant, and there is no
function v € Hj(w), v # 0, which attains the equality in (2.9).

Proof. We put ¥ = (—¢)™° for 0 > 0 and ¢ = —(—¢)? for ¢ < 0, and
apply Proposition 2.1. This gives the desired conclusion. O

As a simple corollary of Proposition 2.3, we have:

Corollary 2.4. Let a € R with a # 1. Then we have

lvllez_, < vzl (2.10)

o —1]

forv € H} . Here the constant 2/|a — 1| is the best possible, and there is no
function v € H} 4, v # 0, which attains the equality in (2.10).

Proof. Let ¢ = —(1 + z)~'/9 with ¢ > 0. We apply Proposition 2.3 for this
¢ and 0 = (a — 1)q. This gives the proof. O
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3 DissipatiVity of the linearized operator

Following (2], we discuss the dissipativity of the operator L defined by (1.5)
in the weighted space L*(w), where w is given by (2.8) with ¢ being the the
degenerate stationary wave. Note that our degenerate stationary wave @ is
a smooth solution of (1.3) and verifies

—1<¢(z) <0, ¢y(z)>0, d(z) > 0 for z — oo, (3.1)

c(1+z)™M1 < —p(z) < C(1 + )~ V/9, (3.2)

Now, letting w > 0 be a smooth weight function depending only on z, we
calculate the inner product (Lv,v) 2, for v € C°(R, ), where

[o @]
(U, V) L2(w) :z[} uvw dz. (3.3)

We multiply (1.5) by v. Then a simple computation gives

(Lv)v = ('u'uz - %f’(¢)v2)m - %f”(gb)¢mv2.

Multiplying this equality by w, we obtain

1

(Loyow = { (00 = 3F(S9")w — Lvws},

. (3.4)
— 2w+ S (wer + 0o f(8) — wF($)6)

Now we choose the weight function w and the corresponding w,; in terms of
our degenerate stationary wave ¢ by (2.8), where 0 € R. Then we have w =

(—9)~7*1/f(¢) and wy = (—¢) 71 f(4) by ¢, = f(¢). After straightforward
computations, we find that

Wyy + wzf,(¢) - wf”(¢)¢x = 2(C1 (U) - r(¢))w1, (35)
where

ci1(0) :==0(c —1)/2—-q(qg+ 1),
r(u) = (—u)’f"(u)/ f(u) — g(g + 1).

Substituting (3.5) into (3.4) and integrating with respect to z, we get the
following conclusion.

(3.6)
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Claim 3.1. Let ¢ be the degenerate stationary wave and define the weight
functions w and w; by (2.8) with 0 € R. Then the operator L defined in
(1.5) verifies

(Lv,0) 2wy = =0 Z2q) + (D)W E2y) —/0 vir(g)wide  (3.7)

for v e C(Ry) and hence for v € Hy(w), where ¢i(o) and r(4) are given
in (3.6).

The term 7(¢) in (3.7) can be regarded as a small perturbation. In fact,
a straightforward computation gives

r(u) = (—u{(-w)g"(u) — 2(¢ + 1)g'(W)}/(1 + g(u)), (3.8)

which shows that r(u) = O(|ul|) for v — 0. In particular, we have r(u) = 0
if g(u) = 0. With these preparations, we have the following result on the
characterization of the dissipativity of L.

Theorem 3.2. Assume (1.2). Let ¢ be the degenerate stationary wave and
L be the operator defined in (1.5). Let w and w; be the weight functions in
(2.8) with the parameter o € R. Then we have:
(1) Let —2q < o < 2(q + 1). Then, under the additional assumption that
r(u) > 0 for —1 < u < 0, the operator L is uniformly dissipative in L*(w).
Namely, there is a positive constant § such that

(Lo, V) 12w) < =0(02llZo@) + 0] T2w,))  for v € Ho(w). (3.9)

(2) Let 0 > 2(q+1) or 0 < —2q. Then the operator L can not be dissipative
in L*(w). Namely, we have (Lv,v) 120, > 0 for some v € Hg(w) with v # 0.

Proof. The proof is based on the equality (3.7) in Claim 3.1 and the Hardy
type inequality (2.9) in Proposition 2.3.

Let —2¢ < 0 < 2(q + 1). This is equivalent to ¢;(0) < 0?/4. Therefore
we can choose 6 > 0 so small that §(1+02/4) < 0%/4—¢1(0). Since r(¢) >0
by the additional assumption on 7(u) and since (02/4)||v|Z2(,,) < < vz llZa )
by the Hardy type inequality (2.9), we have from (3.7) that

(L, v) L2(w) < —||Um||%2(w) + 01(0)|\11||2Lz(w1)
= —6l|vlliz@) — (1 = O)llvallZzg) + c1(O) vl Z20uy)
< —blvellay — {1 = 8)o?/4 — c1() HIvl|Z2(wy)
< —6(llvall 32wy + 10122 ()

(3.10)
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for v € C§°(R;) and hence for v € Hj(w), where we have used the fact that
(1 —-6)0?/4 —c;(0) > 6. This completes the proof of the uniform dissipative
case (1).

Next we consider the case where o > 2(¢ + 1); the case 0 < —2¢ can
be treated similarly and we omit the argument in this latter case. When
o > 2(q + 1), we have ¢;(0) > 02/4. Then we choose 6 > 0 so small that
c1(o) = 0?/4 + 36. Since r(u) = O(Ju|) for u — 0 and ¢(z) — 0 for z — oo,
we take a = a(d) > 0 so large that |r(¢)| < § for z > a. For this choice of a
and for € > 0, we take a test function v¢ as in (2.4):

0, 0<z<a,
vi(z) = { (z—a)(—d(z))’ V2, a<z<a+l, (3.11)
(—¢(z))/2+e), a+1<z.

Then we have

o0 (e @)
| [ Pri@ponds] <8 [~ (02w dz = 1,
0 a
so that we have from (3.7) that
(L0, 0 paay 2 ~ [0l By + (@1(0) = D[y (312)
Also, by straightforward computations, we find that

ez _ O@) +0%(1/2 + ) g (=d(a + 1))

||v€||2Lz(wl) O(1) + 5= (—¢(a + 1))%
_ 0@ +0*(1/2+ef(=dlat 1))’ o
O(e) + (—¢(a + 1)) 4

for € — 0. Thus we have ||v5 |22,/ 1117 2(w,) < 0°/4+ 6 for a suitably small
e = €(d) > 0. Consequently, we have from (3.12) that

<L’UE,’U6>L2(w) _ ”U;”%z(w)

+c(o) -6

H'U€”%2(w1)
> —(02/448) +c1(0) =6 > 6.

“Ueniz(wl)

This completes the proof of the non-dissipative case (2). Thus the proof of
Theorem 3.2 is complete. O
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In the special case where g(u) = 0 so that f(u) = %(~u)q“, we have
¢ = —(1 + z)~Y/9 and the operator L in (1.5) is reduced to

qg+1 v
Lov = v, ( ). 3.13

ov =+ q l1+z/z ( )
In this simplest case, we have the complete characterization of the dissipa-
tivity of the operator L.

Theorem 3.3. Let a.(q) :== 3+ 2/q. Then we have the complete character-
ization of the dissipativity of the operator Ly given in (3.13):

(1) Let —1 < a < a.(q). Then Lqy is uniformly dissipative in L%. Namely,
there is a positive constant § such that

(Lov,v)rz < —0(llvallzz + llvliz2_) for v € Hyp. (3.14)

(2) Let a = a.(q) or a = —1. Then Lyg is strictly dissipative in L%. Namely,
we have (Lov,v)rz <0 forv € Hy, with v # 0.

(3) Let a > a.(q) or a < —1. Then Lq can not be dissipative in L2. Namely,
we have (Lov,v)r2 > 0 for some v € H, , with v # 0.

Proof. In this case, we have ¢ = —(1 + z)"Y9, L = Ly and r(u) = 0.
Therefore, (3.7) is reduced to

(Lov, v)L2(w) = —”Umniz(w) + Cl(o-)”v”%ﬂ(wlﬁ (3.15)

where w and w; are the weight functions defined in (2.8) with ¢ = —(1 +
z)~Y9 and 0 = (a — 1)g. The desired conclusions easily follow from (3.15)
by applying the same argument as in Theorem 3.2. We omit the details. O

4 Nonlinear stability

The following stability result for the nonlinear problem (1.4) was obtained
in [2] as a refinement of the result in [14].

Theorem 4.1. Assume (1.2). Suppose that vg € L2 N L™ for some a with
1 € a < aq) := 3+ q/2. Then there is a positive constant &, such
that if [|wollLz < 61, then the problem (1.4) has a unique global solution
v € C°[0,00); L2 N LP) for each p with 2 < p < 00. Moreover, the so-
lution verifies the decay estimate

lo@®)llze < Cllvollzz + llvollze)(1 +¢) /47" (4.1)

fort > 0, where 2 < p < oo, v = (1/2)(1/2 — 1/p), and C is a positive
constant.
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Proof. A key to the proof of this theorem is to show the following space-time
weighted energy inequality:

1+ 07Nz + [ @+ (el + o)) dr )
0 4.2

t
< Cllunlzy +C [ L+ 1ol dr + €S}

for any v > 0 and f with 0 < 3 < a, where 1 < a < a,(q) :=3+2/¢q,C'is
a constant independent of v and 3, and

S50 = [ @+ 7Vl dr (43)

Here we give an outline of the proof of (4.2) and omit the other discussions.
We refer to [2, 14] for the complete proof of Theorem 4.1.

Proof of (4.2) for 3= 0. The proof is based on the time weighted L? energy
method. First we note that

vl £ Moo, (4.4)

where Mo, = ||vollL~ + 2. This is an easy consequence of the maximum
principle (see [5] for the details). Now we multiply the equation (1.4) by v.
This yields

(%v"’)t +(F = vug)e + 02+ G =0, (4.5)

where

F=(f(6+v) - £(8))w - / @+ ) — £(8))dn,
G = / (P +m) - F(@))dn - e

We note that
1 ! 1 ’
F=cf (@) +0(1vf), G=3f"(¢)dv” + ¢:0(vf) (4.7)
for v — 0. Here, a careful computation, using (3.2) and (4.4), shows that

G>c(l+z) 2w =CQA+z) 7Yu? (4.8)

(4.6)

for any £ € R,. We integrate (4.5) over R, and substitute (4.8) into the
resulting equality, obtaining
1d

o= 0l + |32 + cllollZ2, < Clol3s -
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We multiply this inequality by (1 + ¢)” and integrate with respect t. This
yields the desired inequality (4.2) for 3 = 0.

Proof of (4.2) for 3 > 0. We apply the space-time weighted energy method
employed in [14, 2| (see also [3]). Let w > 0 be a smooth weight function
depending only on z, which will be specified later. We multiply (4.5) by w,
obtaining

() + (e o)

+ viw — (-;—11211)189c + Fwg — Gw) =0.

(4.9)

Here, using (4.7), we have

%Ume + Fw, — Gw = -;-v2(wm +waf'(6) — wf'(B)ds) + R, (4.10)

where R = w,O(|v]®) — wg.O(|v|®) for v — 0. Notice that the coefficient
Wez +We /(@) —wf" (@) ¢, in (4.10) is just the same as that appeared in (3.4).
Now we choose the weight function w and the corresponding w; by (2.8) with
o= (8—-1)g, where 0 < < cand 1 < a < a.q) := 3+ 2/q. Then we
have (3.5) with 0 = (8 — 1)g. Substituting these expressions into (4.9) and
integrating over R, , we obtain

1d
0132y + ]y = ()]

+/ v2r(¢)w1d.r=/ Rdx,
0 0

where ¢;(0) and r(¢) are given in (3.6) with 0 = (3 — 1)q. Here our weight
functions verify

(4.11)

w~(1+2z)°, w ~(1+2)P2 (4.12)

where the symbol ~ means the equivalence. This implies that the norms
| - l|22(w) and || - || z2(w,) are equivalent to || - || 13 and -l 13_, respectively.

We estimate (4.11) similarly as in (1) of Theorem 3.2. To this end, we
note that o1 < o < 0y, where 0; = —q and 03 = (a—1)q. Since ¢;(0) < 0%/4
for —2¢ < 0 < 2(¢ + 1) and since —2¢ < 07 < 03 < 2(q + 1), we can choose
0 > 0 so small that

Notice that this ¢ is independent of 3. For this choice of §, we take a =
a(é) > 0 so large that |r(¢)| < 6 for £ > a. Then we have

| [ oy da| < Slolag, + Cllela,,
0
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where C is a constant satisfying C' > (1 + z)?|r(¢)|w, for 0 < z < a. Also,
using the Hardy type inequality (02/4)”””%2(1”1) < Hva,H%z(w) in (2.9) and
estimating similarly as in (3.10), we have

Hvx”%'z(w) - 01(0)“0“%2(1‘;1) 2 5”%“%2(10) + 25”””%2(1111)7

where we have used the fact that (1—3)o?/4—c;(o) > 26. On the other hand,
using (4.4), we see that |R| < C(|w.|+we,)|v|3. Moreover, a straightforward
computation shows that |w,| + w¢, < C(1 + z)P~!. Substituting all these
estimates into (4.11), we obtain

1d |

2dt
where § and C are independent of 5. We multiply this inequality by (1 +¢)?
and integrate with respect to ¢. By virtue of (4.12), we have

[0l[Za) + 0(IvelZaq) + 10l1Z20y) < Cllvlizz, + Clivllzy_,  (4.13)

A+ 71Ol + [ Q4 eatr)Bg + o)) dr
< Clwly +C [ (147 o(r) g dr (4.14)

t
+ c/ (1 + 7)o ()22 dr + CS)(),
0 2

where the constant C is independent of v and 3. Here the third term on the
right hand side of (4.14) was already estimated by (4.2) with 8 = 0. Hence
we have proved (4.2) also for 0 < 8 < a. This completes the proof. |
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