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ABSTRACT. In this paper we introduce a general notion of a symmetric cone. valid
for the finite and infinite dimensional case, and prove that one can deduce the
seminegative curvature of the Thompson part metric in this general setting: the
distance function between points evolving in time on two geodesics is a convex
function.

1. SYMMETRIC SETS WITH MIDPOINTS

A #-symmetric set consists of a binary system (X, e), with left translation $S_{x}y:=$

$x\bullet$ $y$ representing the point symmetry through $x$ , satisfying for all $a,$ $b,$ $c\in X$ :

(Sl) $a\bullet$ $a=a(S_{a}a=a)$ ;
(S2) $a\bullet$ $(a\bullet b)=b(S_{a}S_{a}=id_{X})$ ;
(S3) $a\bullet$ $(b\bullet c)=(a \bullet b)$ $\bullet$ $(a\bullet c)(S_{a}S_{b}=S_{S_{a}b}S_{a})$ ;
(S4) the equation $x\bullet$ $a=b(S_{x}a=b)$ has a unique solution $x\in X$ , called the

midpoint or mean of $a$ and $b$ , and denoted by $a\# b$ .

The axioms bear close resemblance to the Loos axioms for a symmetric space. A
binary system (X, $\bullet$ ) satisfying (Sl), (S2), and (S3) also satisfies (S4) if and only if
it is a quasigroup. Thus the preceding structures are also referred to as symmetr c
quasigroups. Systems satisfying only Axioms (1)$-(3)$ are called symmetric sets (or
involutive quandles in knot theory circles)

A pointed #-symmetric set is a triple $(X, \bullet, \epsilon)$ , where (X, o) is a #-symmetric set
and $\epsilon\in X$ is some distinguished point, called the base point. In this setting we define

$x^{0}=\epsilon$ , $x^{-1}:=S_{\epsilon}x$ , $x^{2}:=S_{x}\epsilon$ , $x^{1/2}:=\epsilon\# x$

and inductively from these definitions all dyadic powers are defined so that the fol-
lowing rules are satisfied:

$(x^{r})^{s}=x^{rs}$ , $x^{r}\# x^{s}=x^{\frac{(r+s)}{2}}$ .
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If we consider the dyadic rationals $D$ endowed with the #-symmetric structure $a$ $\bullet$ $b=$

$2a-b$ (the reflection of $b$ through $a$ ), then $a\# b=(a+b)/2$ , the usual midpoint. and
the map $t\mapsto x^{t}:Darrow X$ is both a e-homomorphism and #-homomorphism. From
this fact the preceding rules (and others) easily follow.

The displacement group $G(X)$ (also called the transvection group) of a #-symmetric

set $X$ is the group generated under the composition by all transformations of the form
$S_{x}S_{y},$ $x,$ $y\in X$ . If $X$ is pointed with base point $\epsilon$ , then $G(X)$ is generated by all $S_{x}S_{\epsilon}$

and $X$ embeds into $G(X)$ as a twisted subgroup (closed under $g$
$\bullet$ $h=gh^{-1}g$ ) via the

quadmtic representation $Q:Xarrow G(X)$ defined by $Q(x)=S_{x}S_{\epsilon}$ . The image $Q(X)$ is
a pointed #-symmetric set under the preceding e-operation and the quadratic repre-
sentation is an isomorphism between $X$ and $Q(X)$ . In particular, $Q(X)$ is uniquely
2-divisible and $Q(x\# y)=Q(x)\# Q(y),$ $Q(x^{1/2})=Q(x)^{1/2}([1,2])$ . For $x,$ $y\in X$ , we
write interchangeably as convenient

$x.y=Q(x)y=Q(x)(y)$ .

Example 1.1. Let $\mathbb{R}$ be equipped with the standard #-symmetric operation $x$ $\bullet$

$y$ $:=$

$2x-y$ and the usual metric. Then $x\# y=(x+y)/2$ , the usual midpoint operation,
and the metric is convex. Thus $(\mathbb{R}, \bullet, 0)$ is a pointed symmetmc space with convex
metric.

Definition 1.2. $A$ pointed symmetric space with convex metric is a pointed #-
$symmet_{7}\dot{n}c$ set $P$ equipped with a complete metric $d(\cdot,$ $\cdot)$ satisfying for all $x,$ $y\in P$ and
$g\in G(P)$

(i) $d(g.x, g.y)=d(x, y)$ ,

(ii) $d(x^{-1}, y^{-1})=d(x, y)$ ,
(iii) $d(x^{1/2}, y^{1/2}) \leq\frac{1}{2}d(x, y)$ ,
(iv) $x\mapsto x^{2}:Parrow P$ is continuous.

$A$ symmetric space with convex metric is a #-symmetric set equipped with a complete
metric that is a pointed $symmet_{7\dot{\eta}}c$ space with convex metric with respect to some
pointing.

We recall some basic results about symmetric spaces with convex metrics from [3].
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Theorem 1.3 ([3]). Let $P$ be a symmetric space with convex metnc. Then for distinct
$x,$ $y\in P$, there exists a unique continuous homomorphism $\alpha_{x.y}$ (called an s-geodesic) of
#-symmetric sets from $\mathbb{R}$ into $P$ satisfying $\alpha_{x.y}(0)=x$ and $\alpha_{x.y}(1)=y$ . Furthermore,

the maps

$(x, y)\mapsto x\bullet$ $y$ : $P\cross Parrow P$, $(t, x, y)\mapsto\alpha_{x,y}(t)$ $:=x\# ty$ : $\mathbb{R}\cross P\cross Parrow P$

are continuous.

The element $x\# ty$ is called the t-weighted mean of $x$ and $y$ . Note that $x\# y=$

$x\# 1/2y$ .

Theorem 1.4 ([3]). Let $P$ be a symmetr $c$ space with convex metric. For every pair
$(\beta, \gamma)$ of s-geodesics, the real function $t\mapsto d(\beta(t), \gamma(t))$ is a convex function.

Remark 1.5. We note that the unique s-geodesic line satisfying $\alpha_{x,y}(0)=x$ and
$\alpha_{x,y}(1)=y$ is

$\alpha_{x,y}(t)=x^{1/2}.(x^{-1/2}.y)^{t}$

and $\alpha_{y,x}(1-t)=\alpha_{x,y}(t),$ $t\in \mathbb{R}$ ([3]). In particular,

$(Q(y)x)^{t}=Q(y)Q(x^{1/2})(Q(x^{1/2})y^{2})^{t-1}$ . (1.1)

2. $\#$-SYMMETRIC CONES

Let $V$ be a real Banach space and let $\Omega$ henceforth denote a non-empty open convex
cone of $V:t\Omega\subset\Omega$ for all $t>0,$ $\Omega+\Omega\subset\Omega$ , and St $\cap-\overline{\Omega}=\{0\}$ , where St denotes the
closure of $\Omega$ . We consider the partial order on $V$ defined by

$x\leq y$ if and only if $y-x\in\overline{\Omega}$ .

We further assume that $\Omega$ is a nomal cone: there exists a constant $K$ with $||x||\leq$

$K||y||$ for all $x,$ $y\in\Omega$ with $x\leq y$ . Any member $a$ of $\Omega$ is an order unit for the ordered
space $(V, \leq)$ , and hence $|x|_{a}$ $:= \inf\{\lambda>0 : -\lambda a\leq x\leq\lambda a\}$ defines a norm. By
Proposition 1.1 in $[$6], for a normal cone 9, the order unit norm . $|_{a}$ is equivalent to
$||\cdot||$ .
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A. C. Thompson [7] (cf. [5], [6]) has proved that $\Omega$ is a complete metric space with
respect to the Thompson part metric defined by

$d(x, y)=m\ x\{\log M(x/y), \log M(y/x)\}$

where $M(x/y):= \inf\{\lambda>0:x\leq\lambda y\}=|x|_{y}$ . Furthermore, the topology induced by
the Thompson metric agrees with the relative Banach space topology.

Theorem 2.1 ([4]). Let $\Omega$ be an open convex normal cone in a Banach space $V$.
Suppose that there is a pointed #-symmetric structure on $\Omega$ satisfying

(i) $2x\leq\epsilon+x^{2}$

(ii) the squaring map $x\mapsto x^{2}=Q(x)\epsilon$ is continuous,
(iii) every basic displacement $Q(x)\iota s$ continuous and linear on $\Omega$ .

Then $\Omega$ is a pointed symmetric space with convex metric, the Thompson metric whose
metric topology agrees with the relative topology.

A JB-algebra $V$ is a Jordan algebra with unit $e$ endowed with a complete norm
$||\cdot||$ such that

1 $zw||\leq||z||||w||$ ,

$||z^{2}||=||z||^{2}$ ,

$||z||^{2}\leq||z^{2}+w^{2}||$ .

Example 2.2. (1) The positive cone of hermitian elements of a $C^{*}$ -algebra.
(2) Spin factors and Lorentz cones: Let $(H, \langle\cdot|\cdot\rangle)$ be a real Hilbert space with

$\dim H\geq 2$ and let $V=\mathbb{R}\cross H$ equipped with the Banach space norm $||(t, x)||=$

$|t|+\sqrt{\langle x|x\}}$ . We define the Jordan product on $V$ by

$(s, y)o(t, x)=(st+\{y|x\}, sx+ty)$ .

The element $e=(1,0)\in V$ acts as a unit element. The corresponding symmetric
cone is given by (the Lorentz cone, forward light cone)

$\Omega=\{(t, x)\in V : t>||x||=\sqrt{\langle x|x\rangle}\}$ .

For $x\in V$ we write $L(x)(y)=xy$ , the multiplication operator. We consider the set

$\Omega$ $:=\{x\in V:Spec(L(x))\subset(O, \infty)\}$ .
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Then $\Omega$ is an open convex cone of $V$ and is realized as $\Omega=\exp$ (1,“) $:=\{\exp(x)$ : $x\in$

$V\}$ .

The Banach algebra norm agrees with the order unit norm $|x|_{\epsilon}$ $:= \inf\{t>0$ :

$t\epsilon\pm x\geq 0\}$ , or equivalently $\Omega$ is a normal cone. The quadratic representation of the

Jordan algebra is defined by $P(z)=2L(z)^{2}-L(z^{2})$ . It is well-known that for each
$z\in\Omega,$ $P(z)\in G(\Omega)$ the linear automorphism group of $\Omega$ . In fact, there is a polar

decomposition $G(\Omega)=P(\Omega)$Aut (V) where Aut(V) denotes the Jordan automorphism

group of $V$. We further note that Aut(V) $=\{g\in G(\Omega) : g(e)=e\}$ . The basic
properties

$P(z)z^{-1}=z,$ $P(z)^{-1}=P(z^{-1}),$ $P(P(z)w)=P(z)P(w)P(z)$

yield a pointed symmetric set structure $x$ $\bullet$ $y=P(x)y^{-1}$ with $e=\epsilon$ as base point on
the set of invertible elements, in particular on the cone $\Omega$ . In symmetric set notation,

$P(a)=Q(a)$ and the symmetric set inverse $a^{-1}$ $:=e$ $\bullet$ $a$ agrees with the Jordan inverse

of $a$ .
Next, we show that the pointed symmetric space $(\Omega, \epsilon=e)$ is #-symmetric. Let

$x,$ $y\in\Omega$ such that $x^{2}=y^{2}$ . Then by the commutativity of Jordan products, $0=$

$x^{2}+y^{2}=L(x+y)(x-y)$ . Since $L(z)$ is invertible for all $z\in\Omega,$ $x-y=0$ . This implies

that each element of $\Omega$ has a unique square root. Note that if $a=\exp(x),$ $x\in V$ then
$a^{1/2}= \exp(\frac{1}{2}x)$ . Moreover, if $a,$ $b\in\Omega$ then the quadratic equation $P(x)a^{-1}=b$ has a
unique solution in $\Omega$ . Note that $x=P(a^{1/2})(P(a^{-1/2})b)^{1/2}\in\Omega$ solves the equation.

Suppose that $x$ and $y$ are solutions in $\Omega$ . Then

$(P(a^{-1/2})x)^{2}$ $=$ $P(P(a^{-1/2})x)\epsilon=P(a^{-1/2})P(x)P(a^{-1/2})\epsilon$

$=$ $P(a^{-1/2})(P(x)a^{-1})$

$=$ $P(a^{-1/2})b=P(a^{-1/2})(P(y)a^{-1})$

$=$ $P(a^{-1/2})P(y)P(a^{-1/2})\epsilon$

$=$ $(P(a^{-1/2})y)^{2}$

and hence $P(a^{-1/2})x=P(a^{-1/2})y$ , so $x=y$ . We conclude that the open convex cone
$\Omega$ is a #-symmetric set under the operation $x$ $\bullet$ $y=P(x)y^{-1}$ . In this case the dyadic
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power $a^{t}$ of $a=\exp(x)$ agrees with $\exp(tx)$ and the geometric mean $(x\# b$ of $a$ and $b$ is

$a\# b\simeq P(a^{1/2})(P(a^{-1/\underline{9}})b)^{1/2}$ .

Corollary 2.3. Let $V$ be a JB-algebm and let $\Omega$ be the associated symmetric cone.
Then $\Omega$ is a symmetric space with convex metric with respect to the Thompson metric.
In particular, the distance function between points evolving in time on two geodesics
is a convex function.
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