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Abstract

This note is concerned with operators on Hilbert space of the form $T=$
$D+u\otimes v$ , where $D$ is a diagonalizable normal operator and $u\otimes v$ is a rank-one
operator. We discuss point spectra of such operator $T$ and also an open problem:
does every rank-one perturbation $T=D+u\otimes v$ have a nontrivial hyperinvariant
subspace?

1. INTRODUCTION
This is based on the joint work with C. Foias, E. Ko, and C. Pearcy ([3], [4]) and

was presented at the 2008 RIMS conference which was held at Kyoto University on
Oct. 18-19, 2008. Let $\mathcal{H}$ be a separable, infinite dimensional, complex Hilbert space,
and denote by $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on $\mathcal{H}$ . For $T\in \mathcal{L}(\mathcal{H})$ ,
we write $\{T\}^{l}$ for the commutant of $T$ (i.e., for the algebra of all $S\in \mathcal{L}(\mathcal{H})$ such that
$TS=ST)$ and $\{T\}’’=(\{T\}’)’$ for the double commutant of $T$ . We choose an ordered
orthonormal basis $\{e_{n}\}_{n\in N}$ for $\mathcal{H}$ . If $\Lambda=\{\lambda_{n}\}_{n\in N}$ is any bounded sequence in $\mathbb{C}$ , we
write $D_{\Lambda}$ for the normal operator in $\mathcal{L}(\mathcal{H})$ determined by the equations

$D_{\Lambda}(e_{n})=\lambda_{n}e_{n}$ , $n\in \mathbb{N}$ . (1.1)

This notation for $\Lambda=\{\lambda_{n}\}_{n\in \mathbb{N}}$ and $D_{\Lambda}$ will also remain fixed throughout, as well the
notation $\Lambda’$ .the derived set of $\Lambda$ . By definition, we shall say that an operator $T$ in
$\mathcal{L}(\mathcal{H})$ is a rank-one perturbation of a diagonal normal operator if there exist nonzero
vectors

$u= \sum_{n\in N}\alpha_{n}e_{n}$ and
$v= \sum_{n\in N}\beta_{n}e_{n}$

(1.2)
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in $\mathcal{H}$ and a bounded sequence $\Lambda=\{\lambda_{7l}\}_{\iota\in N}$ in $\mathbb{C}$ such that $T$ is unitarily equivalent to
the operator $D_{\backslash }+u\otimes|)$ , where, as usual. $u\Theta v$ is the operator of rank one defined by

$(u\Theta u)(x)=\langle x,$ $v\}u,$ $x\in \mathcal{H}$ .

In this note, we discuss the following problem:

Problem 1.1. Does every rank-one perturbation $T=D_{\Lambda}+u\otimes v\in \mathcal{L}(\mathcal{H})\backslash \mathbb{C}1_{\mathcal{H}}$ of
a diagonal normal operator $D_{\Lambda}$ have a nontrivial invariant subspace $(n.i.s.)$ , or better
yet, a nontrivial hyperinvariant subspace $(n.h.s.)$ ?
which is one of the most annoying unsolved problems in operator theory (on Hilbert
space) for (at least) 30 years duration ([7]). And it is discussed in section 3 that if
$T\not\in \mathbb{C}1$ and the vectors $u$ and $v$ have Fourier coefficients $\{\alpha_{n}\}_{n=1}^{\infty}$ and $\{\beta_{n}\}_{n=1}^{\infty}$ with
respect to an orthonormal basis that diagonalizes $D$ that satisfy

$\sum_{n=1}^{\infty}(|\alpha_{n}|^{2/3}+|\beta_{n}|^{2/3})<\infty$ ,

then $T$ has a nontrivial hyperinvariant subspace.

2. POINT SPECTRA
The ideal of compact operators in $\mathcal{L}(\mathcal{H})$ will be denoted by $K$ and the Calkin map

$\mathcal{L}(\mathcal{H})arrow \mathcal{L}(\mathcal{H})/K$ by $\pi$ . For $T$ in $\mathcal{L}(\mathcal{H})$ we denote by $\sigma(T)$ the spectrum of $T$, by
$\sigma_{le}(T)[\sigma_{re}(T)]$ the left essential [right essential] spectrum of $T$ , and

$\sigma_{e}(T)=\sigma(\pi(T))=\sigma_{le}(T)\cup\sigma_{re}(T)$ , $\sigma_{lre}(T)=\sigma_{le}(T)\cap\sigma_{re}(T)$ .

Moreover, we write, as usual, $\sigma_{p}(T)$ for the point spectrum of $T$ . We first take note of
some cases treated in [6].

Proposition 2.1 ([6]). If $T=D_{\Lambda}+u\otimes v\in \mathcal{L}(\mathcal{H})\backslash \mathbb{C}1_{\mathcal{H}}$ and there emists $n_{0}\in \mathbb{N}$

such that $\alpha_{n_{0}}\beta_{n_{0}}=0$ , then either $\lambda_{n_{0}}\in\sigma_{p}(T)$ or $\overline{\lambda}_{n_{0}}\in\sigma_{p}(T^{*})$ . Moreover, if there
exist $m_{0},$ $n_{0}\in \mathbb{N}$ with $m_{0}\neq n_{0}$ such that $\lambda_{m_{0}}=\lambda_{n_{0}}$ , then $\lambda_{n_{0}}\in\sigma_{p}(T)$ . Finally, if
the derived set A‘ of $\Lambda$ is a singleton, then $\{T\}’$ contains a nonzero compact operator.
Consequently, in all cases $T$ has a n.h.s.

Thus in what follows we restrict our attention to the class $(\mathcal{R}\mathcal{O})$ consisting of all
operators $T=D_{\Lambda}+u\otimes v$ in $\mathcal{L}(\mathcal{H})$ for which all coefficients $\alpha_{n}$ and $\beta_{n}$ are nonzero,
$\Lambda=\{\lambda_{n}\}_{n\in N}$ is a one-to-one map of $\mathbb{N}$ into $\mathbb{C}$ , and $\Lambda’$ is not a singleton. We remark
that it follows easily that if $T_{1}=D_{\Lambda_{1}}+u_{1}\otimes v_{1}$ and $T_{2}=D_{\Lambda_{2}}+u_{2}\otimes v_{2}$ belong to
$(\mathcal{R}\mathcal{O})$ with $T_{1}=T_{2}$ , then the sequences $\Lambda_{1}$ and $\Lambda_{2}$ coincide and $u_{1}\otimes v_{1}=u_{2}\otimes v_{2}$

([6, Prop. 1.1]). It is also clear that for all $T=D_{\Lambda}+u\otimes v\in(\mathcal{R}\mathcal{O})$ , we have
$\sigma_{e}(T)=\sigma_{lre}(T)=\sigma_{lre}(D_{\Lambda})=\Lambda’$ .

The following proposition gives very useful necessary and sufficient conditions that
a number $\lambda\in \mathbb{C}$ belong to $\sigma_{p}(T)$ .

Proposition 2.2 ([6]). Let $T=D_{\Lambda}+u\otimes v\in(\mathcal{R}\mathcal{O})$ . Then a point $\mu\in \mathbb{C}$ is an
eigenvalue of $T$ if and only if
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a$)$ $\mu\not\in\Lambda$ ,

$b)\sum_{n\in N}\frac{|\alpha_{n}|^{2}}{|\mu-\lambda_{n}|^{2}}<+\infty$ (which implies by the $Schwar\approx inequality$ that $\sum_{n\in N}\frac{|\alpha_{n}/3_{n}|}{|\mu-\lambda_{n}|}<$

$+\infty)$ , and

c $)$ $f_{T}( \mu):=\sum_{n\in N}\frac{\alpha_{n}\overline{\beta}_{n}}{\mu-\lambda_{n}}=+1$ .
NIoreover, if $\mu\in\sigma_{p}(T)$ $[$ resp., $\overline{\mu}\in\sigma_{p}(T^{*})]$ , then the eigenspace associated with $\mu$ [resp.

$\overline{\mu}]$ is spanned by the single vector $\sum_{n\in \mathbb{N}}(\frac{\alpha_{n}}{\mu-\lambda_{n}})e_{n}$ [resp., $\sum_{n\in N}(\frac{\beta_{n}}{\overline{\mu}-\lambda_{n}})e_{n}$ ], and so is one-
dimensional. Finally, $(\Lambda\backslash \Lambda’)\cap\sigma(T)=\emptyset(i.e.$ , all isolated points $\lambda_{n}$ of the set $\Lambda$ lie
outside of $\sigma(T))$ .

We observe that the last statement of Proposition 2.2 can be proved in two lines
by noting that if $\lambda_{n}$ is isolated in $\Lambda$ , then $(D_{\Lambda}-\lambda_{n})$ (and thus $(T-\lambda_{n})$ ) is a Fredholm
operator of index zero, and hence necessarily either $\lambda_{n}\in\sigma_{p}(T)$ or $\lambda_{n}\in \mathbb{C}\backslash \sigma(T)$ .

One might expect that an arbitrary $T$ in $(\mathcal{R}\mathcal{O})$ would satisfy $\sigma_{p}(T)\cup\sigma_{p}(T^{*})\neq\emptyset$

(and thus trivially have a n.h. $s.$ ), but that this is false has been known (in the case
$D_{\Lambda}=D_{\Lambda}^{*})$ for at least fifty years (cf., e.g., [1]).

Example 2.3 ([9]). Let $\{D_{n}\}_{n\in N}$ be the (non-tangential) disjoint open disks
centered at $\lambda_{n}$ and has radius $r_{n}$ with $D_{n}\subset D$ such that $m( D\backslash \bigcup_{n\in N}\overline{D}_{n})=0$ and
$\sum_{n\in N}r_{n}<\infty$ . In fact, $\{D_{n}\}$ can be constructed using an introduction argument,
covering at each step a closed set of whose measure is a fixed nonzero fraction of the
measure of the open set uncovered by the disk constructed at previous steps. Now
consider $u= \sum r_{n}e_{n}$ . If $z\not\in\overline{D}$ , then $f_{T}(z)=1/z$ . By Proposition 2.2, obviously $z$ is
not eigenvalue of $T$ for any $z\not\in\overline{\mathbb{D}}$ . For $z \in\overline{D}\backslash \bigcup_{n\in N}D_{n}$ , we have $f_{T}(z)=\overline{\sim\gamma}$ , and so
such $z$ is eigenvalue of $T$ if and only if $z=1$ . Finally, suppose $z\in\overline{D}_{n}\backslash \{\lambda_{n}\}$ . Then
$f_{T}(z)=\infty$ . Hence by Proposition 2.2, $\sigma_{p}(T)=\{1\}$ .

It looks that the first example of an operator $T\in(\mathcal{R}\mathcal{O})$ such that $\Lambda’$ has positive
planar Lebesgue measure and $\sigma_{p}(T)=\emptyset$ was given by Stampfli [8]. Hence it is impor-
tant to construct other methods different from finding point spectra to find invariant
subspaces for an operator.

3. HYPERINVARIANT SUBSPACES
The following is a partial solution of Problem 1.1 and the results in this section

come from [3].

Theorem 3.1. Let $T=D_{\Lambda}+u\otimes v$ be any rank-one perturbation of a diagonal
normal operator such that $T\not\in \mathbb{C}1_{\mathcal{H}}$ and $\sum_{n\in N}(|\alpha_{n}|^{2/3}+|\beta_{n}|^{2/3})<+\infty$ . Then $T$ has
a $n.h.s$ .

The following theorem is technical result to represent Theorem 3.1.
Theorem 3.2. Suppose $T=D_{\Lambda}+u\otimes v$ is such that
i $)$ the map $narrow\lambda_{n}$ of $\mathbb{N}$ onto $\Lambda$ is injective and $\Lambda’$ is not a singleton,
ii) for every $n\in \mathbb{N},$ $\alpha_{n}\beta_{n}\neq 0$ , and
iii) $\sum_{n\in N}(|\alpha_{n}|^{2/3}+|\beta_{n}|^{2/3})<+\infty$ (the nontrivial assumption).

Then either
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I $)$ there exists an idempotent $F$ with $0\neq F\neq 1_{\mathcal{H}}$ such that $F\in\{T\}’’$ . and
consequently, $T$ has a complemented n.h.s. ( $i.e.$ . there exist n.h.s. $\mathcal{M}$ and )$\vee$ of $T$

with $\mathcal{M}\cap \mathcal{N}=(0)$ and $\mathcal{M}+\mathcal{N}=\mathcal{H}$ ). or
II) there exists an uncountable set $\{\mu : \mu\in P\}$ of eigenvalues of $T$ and an associ-

ated family $\{u_{\mu}\}_{\mu\in P}$ of linearly independent eigenvectors $($ with $Tu_{\mu}=\mu u_{\mu})$ such that
$\mathcal{M}=_{\mu\in P}\{u_{\mu}\}$ is a $n.h.s$ . for $T$ and $\mathcal{H}\ominus \mathcal{M}$ is infinite dimensional.

In [4] it is established that the commutants of such rank-one perturbation operators
are abelian, paralleling thereby the properties of the commutants of normal operators
of multiplicity one. Also it is shown by example that this behavior does not extend
to the commutants of rank-one perturbations of all normal operators of multiplicity
one, and we discuss similarity and quasisimilarity questions associated with this class
of operators below.

For operators $T=D_{\Lambda}+u\otimes v\in(\mathcal{R}\mathcal{O})$ , we now turn to a certain property of the
commutant $\{T\}’$ of $T$.

Theorem 3.3. Suppose $T=D_{\Lambda}+u\otimes v\in(\mathcal{R}\mathcal{O})$ , where $\Lambda=\{\lambda_{n}\}_{n\in N},$ $D_{\Lambda}$ , and $u$

and $v$ are as in (1.1) and (1.2) (and the definition of the class $(\mathcal{R}\mathcal{O})$ ). Then the map
$\varphi$ : $\{T\}’arrow\{T\}’u$ defined by $\varphi(A)=Au$ for $A\in\{T\}’$ is $a$ one-to-one, bounded linear
transformation from $\{T\}’$ onto the linear manifold $\{T\}’u$ .

The following is one of main results in $[$4$]$ .

Theorem 3.4. Suppose $T=D_{\Lambda}+u\oplus v\in(\mathcal{R}\mathcal{O})$ , where the notation is as
established in (1.1) and (1.2). Then (the unital, WOT-closed algebra) $\{T\}’$ is abelian.

The following corollary comes from [4], which should be compared with Theorem
3.1.

Proposition 3.5. Suppose $T=D_{\Lambda}+u\otimes v\in(\mathcal{R}\mathcal{O}),$ $0\in\Lambda’\backslash (\Lambda\cup\sigma_{p}(T)\cup\sigma_{p}(T^{*}))$ ,
and $D_{\Lambda}^{1/2}$ is any fixed square root of the (normal) operator $D_{\Lambda}$ . If

$\sum_{n\in N}(|\alpha_{n}||\lambda_{n}^{-1/2}|)^{2/3}<\infty$
, and

$\sum_{n\in N}(|\beta_{n}||\lambda_{n}^{1/2}|)^{2/3}<\infty$
,

then $T$ has a n.h.s.

Remark 3.6. It is worthwhile to study the normality, hyponormality, and weak
hyponormality of operators $T=D_{\Lambda}+u\otimes v$ . In [8], the characterization for rank-one
perturbation of isometries was developed by finding operator matrix structures. This
technique will be applied to p-hyponormality for rank-one perturbation of weighted
shifts. In [2], they studied a special rank-one perturbation of weighted shifts and
operator gaps.

Remark 3.7. The idea of this article will be important in the sequel [5] in proving
the decomposability of the operators in the class $(\mathcal{R}\mathcal{O})$ .
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