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Abstract
Recently, Furuta obtained the results on monotonicity of a generalized Furuta-

type operator function $F(\lambda, \mu)=A^{-\lambda}\# 1-t+\lambda$ $(A^{\frac{-\iota}{2}B^{p}A^{\frac{-t}{2}}})^{\mu}$ .
$\overline{(p-t)\mu+\lambda}$

In this report, we shall show the result which considers a domain not considered
in Furuta’s one as follows: Let $A\geq B\geq 0$ with $A>0,$ $t\in[0,1]$ and $p\geq 1$ . Then
$F(\lambda, \mu)$ satisfies

$F(q, w)\geq F(t, 1)\geq F(r, s)\geq F(r’, s’)$

for any $s’\geq s\geq 1,$ $r’ \geq r\geq t,\frac{1-t}{p-t}\leq w\leq 1$ and $t-1\leq q\leq t$ .
We shall also discuss an equivalence relation related to Ando-Hiai inequality.

1 Introduction
This report is based on our recent paper [21] and preprint [4].

In this report, a capital letter means a bounded linear operator on a complex Hilbert
space $\mathcal{H}$ . An operator $T$ is said to be positive (denoted by $T\geq 0$) if $(Tx, x)\geq 0$ for all
$x\in \mathcal{H}$ , and also an operator $T$ is said to be strictly positive (denoted by $T>0$ ) if $T$ is
positive and invertible.

The following L\"owner-Heinz theorem is a famous order preserving operator inequality.

$A\geq B\geq 0$ implies $A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1]$ .

In 1987, Furuta inequality [11] is established as an extension of L\"owner-Heinz theorem.

Theorem 1.A (Furuta inequality [11]).

If $A\geq B\geq 0$ , then for each $r\geq 0$ ,

(i) $(B^{r}fA^{p}B^{r}z)^{\frac{\iota}{q}}\geq(B^{f}FB^{p}B^{r}\tau)^{\frac{1}{q}}$

and

(ii) $(A^{r}\S A^{p}A^{r}\pi)^{\frac{1}{q}}\geq(A^{r}zB^{p}A^{r}\delta)^{\frac{1}{q}}$

hold for $p\geq 0$ and $q\geq 1$ with $(1+r)q\geq p+r$ .
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By putting $r=0$ in Theorem 1. $A$ , we can get L\"owner-Heinz theorem. Altemative
proofs of Theorem 1. $A$ are given in [2, 22] and also an elementary one page proof in [12].
Tanahashi [25] showed that the domain drawn for $p,$ $q$ and $r$ in the Figure 1 is the best
possible one for Theorem 1. $A$ .

As stated in [22], when $A>0$ and $B\geq 0$ , (ii) of Theorem 1. $A$ can be arranged in
terms of $\alpha$-power mean $\#_{\alpha}$ for $\alpha\in[0,1]$ introduced by Kubo-Ando [24] as $A\#_{\alpha}B=$

$A^{\frac{1}{2}}(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})^{\alpha}A^{\frac{1}{2}}$ :

$A\geq B\geq$ Owith $A>0$ implies $A^{-r} \#\frac{1}{p}+^{\frac{r}{r}}\pm B^{p}\leq B\leq A$ for $p\geq$ land $r\geq 0$ . (F)

Next we shall discuss weaker order than usual one $A\geq B$ . For $A,$ $B>0$ , the order
$\log A\geq\log B$ is called chaotic order. It is well known that chaotic order is weaker than
usual one since $\log t$ is an operator monotone function for $t>0$ .

As a characterization of chaotic order, in [3] and [13] (see also [5, 27]), they showed
the following: For $A,$ $B>0$ ,

$\log A\geq\log B$ if and only if $A^{-r} \#\frac{r}{p+r}B^{p}\leq I$ for all $p\geq$ Oand $r\geq 0$ , (1.1)

and also

$\log A\geq\log B$ implies $A^{-r}\#_{\frac{\delta}{p}\llcorner r}+rB^{p}\leq B^{\delta}$ for $p\geq\delta\geq 0$ and $r\geq 0$ .

We remark that an excellent proof of (1.1) which used only Theorem 1. $A$ was shown in
[27]. We can summarize above results as follows: For $A,$ $B>0$ ,

$A\geq B$ $\Rightarrow$
$A^{-r}\#_{\frac{1}{p}\llcorner r}+rB^{P}\leq B\leq A$ for $p\geq$ $1$ and $r\geq 0$ .

$\Downarrow$

$A^{q}\geq B^{q}(q\in(O, 1))$ $\Rightarrow$
$A^{-r}\#z+rp\mp rB^{p}\leq B^{q}\leq A^{q}$ for $p\geq q$ and $r\geq 0$ .

$\Downarrow$

$\log A\geq\log B$ $\Leftrightarrow$ (1.1): $A^{-r}\#$命 $B^{p}\leq I$ 飴$r$ all $p\geq 0$ and $r\geq 0$ .
$\Downarrow$

$A^{-r} \#\frac{\delta}{p}\llcorner rB^{p}\leq B^{\delta}$

for $p\geq\delta\geq 0$ and $r\geq 0$ .

2 Equivalence relation related to Ando-Hiai inequal-
ity

In 1994, Ando and Hiai [1] have shown the following inequality.
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Theorem 2. $A$ (Ando-Hiai inequality [1]). For $A,$ $B>0$ ,

$A\#\alpha B\leq I$ for $\alpha\in(0,1)$ implies $A^{r}\#_{\alpha}B^{r}\leq I$ for $r\geq 1$ . (AH)

By (AH), they obtained that for $A,$ $B>0$ ,

$A^{-1} \#\frac{1}{p}A^{\frac{-1}{2}B^{p}A^{\frac{-1}{2}}}\leq I$ implies $A^{-r} \#\frac{1}{p}(A^{\frac{-1}{2}B^{p}A^{\frac{-1}{2}}})^{r}\leq I$ for $p\geq 1$ and $r\geq 1$ , (AH’)

that is,

$A\geq B>0$ implies $A^{r}\geq\{A^{\frac{r}{2}}(A^{\frac{-1}{2}B^{p}A\overline{\tau}^{1})^{r}A^{\frac{r}{2}}\}^{\frac{1}{p}}}$ for $p\geq 1$ and $r\geq 1$ . (AH”)

We remark that (AH”) is equivalent to the main result of $\log$ majorization.

In [8], it was pointed out that the following (C) is the essence of (F).

$A\geq B>0$ implies $A^{-r} \#\frac{r}{p+r}B^{p}\leq I$ for $p\geq 0$ and $r\geq 0$ . (C)

We remark that (F) implies (C) immediately by L\"owner-Heinz theorem. It was shown
in [7] that an equivalence relation holds between (AH) and (F) via (C). Here we can
obtain an equivalence relation between (AH) and (C) without using (F).

Theorem 2.1 ([4]). (AH) is equivalent to (C).

Proof of Theorem 2.1. Suppose that (C) holds and that $A\#\alpha B\leq I$ . We put $p= \frac{1}{\alpha}>1$ .
Then the assumption $A\#_{\alpha}B\leq I$ says that

$B_{1}=(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha}\leq A^{-1}=A_{1}$ .

Applying (C) to $A_{1}\geq B_{1}$ , we have

$A_{1}^{-r} \#\frac{r}{p+r}B_{1}^{p}\leq I$ for $r\geq 0$ .

Moreover it follows that for $p\geq 1$ and $r\geq 0$ ,

$A_{1}^{-r}\#_{p+^{\frac{r}{r}}}1\lrcorner B_{1}^{p}=B_{1}^{p}\#_{p+}L_{\frac{1}{r}}^{-}A_{1}^{-r}=B_{1}^{p}\#L-\underline{1}p(B_{1}^{p}\#_{\overline{p}+\overline{r}}LA_{1}^{-r})$

$=B_{1}^{p} \#L-\underline{1}p(A_{1}^{-r}\#\frac{r}{p+r}B_{1}^{p})\leq B_{1}^{p}\#L-\underline{1}pI=B_{1}\leq A_{1}$ .

Summing up the above discussion, for each $p>1$ ,

$A \#\frac{1}{p}B\leq I$ implies $A^{r} \#\frac{1}{p}\llcorner rA^{-\frac{1}{2}}BA^{-1}z\leq A^{-1}$ , or $A^{r+1}\#_{\dot{p}+r}1\perp rB\leq I$ for $r\geq 0$ .

Noting that
$B\#_{p^{\frac{-1}{+r}}}\epsilon A^{r+1}=A^{r+1}\#_{\frac{1}{p}\llcorner r}+rB\leq I$ ,
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we apply it for $p_{1}= \frac{p+r}{p-1}$ in the following way;

$I \geq B^{r+1}\#_{\frac{1+r}{p_{1}+r}}A^{r+1}=A^{r+1}\#\frac{1}{p}B^{r+1}$

by
$1- \frac{1+r}{p_{1}+r,)\Rightarrow}=\frac{1}{p,)}Namelyweobtain(AH)(AH(Chasbeenalreadyshownin[7]$

. But we cite it for the sake of convenience:
It suffices to show that (C) holds for $p,$ $r>1$ under the assumption $A\geq B>0$ because
it holds for $0\leq p,$ $r\leq 1$ by L\"owner-Heinz theorem. So we take arbitrary $p,$ $r>1$ , and
put $\alpha=\frac{r}{p+r}$ and $q= \max\{p, r\}$ . Then, as noted in above, if $A\geq B>0$ , then (C) holds
for $p_{1}=pq$ and $r_{1}= \frac{r}{q}$ , i.e.,

$A^{-r_{1}}\#_{\overline{p}_{1}+\overline{r_{1}}}\lrcorner^{r}B^{p_{1}}\leq I$ .
We here apply (AH) to this, that is, we have

$I \geq A^{-r_{1}q}\#\frac{r_{1}q}{p_{1}q+r_{1}q}B^{p_{1}q}=A^{-r}\#\frac{f}{p+r}B^{p}$,

as desired. 口

3 A complement to monotonicity of generalized Furuta-
type operator functions

In 1995, lturuta [14] obtained the following theorem.

Theorem 3.$A$ (Grand Furuta inequality [14]). If $A\geq B\geq 0$ with $A>0$ , then for each
$t\in[0,1]$ and $p\geq 1$ ,

$F(r, s)=A^{\frac{-r}{2}} \{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{e}A^{\frac{r}{2}}\}\frac{1-l+r}{(p-t)s+r}A^{\frac{-r}{2}}$ (3.1)

is decreasing for $r\geq t$ and $s\geq 1$ , and
$A^{1-t+r} \geq\{A^{r}F(A^{\overline{\tau}^{t}}B^{p}A^{\frac{-t}{2}})^{s}A^{\frac{r}{2}}\}\frac{1-t+r}{(p-t)s+r}$ (3.2)

holds for $r\geq t$ and $s\geq 1$ .

Theorem 3. $A$ is established as a generalization of both Furuta inequality (F) and
Ando-Hiai inequality (AH”). In fact, Theorem 3. $A$ leads (F) by putting $t=0$ and $s=1$ ,
and also leads (AH”) by putting $t=1$ and $s=r$ . An altemative proof of Theorem 3.$A$

is given in [6] and an elementary one-page proof of (3.2) is in [15]. Related results to
Theorem 3.$A$ are shown in [16, 18, 19, 20, 29] and so on. It is shown in [26] (see also
[10, 28] $)$ that the outside exponents of (3.2) are the best possible. We remark that (3.1)
can be rewritten by using $\alpha$-power mean as follows:

$F( \lambda, \mu)=A^{-\lambda}\#\frac{1-t+\lambda}{(p-t)\mu+\lambda}(A\overline{\tau}^{t}B^{p}A\overline{\tau}^{t})^{\mu}$ . (3.1’)

Related to Theorem 3. $A$ , the following result was shown in [23, 9].
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Theorem 3. $B$ ([23, 9]). Let $A\geq B\geq 0$ with $A>0,$ $t\in[0,1]$ and $p\geq 1$ . Then

$A^{-r+t} \#\frac{1-t+r}{(p-t)*+r}(A^{t}\mathfrak{h}_{s}B^{p})\leq A^{t}\#_{\frac{1-t}{p-t}}B^{p}$

for $s\geq 1$ and $r\geq t$ , where $A\mathfrak{h}_{s}B=A^{1}\Sigma(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})^{\epsilon}A^{\frac{1}{2}}$ for $s\in \mathbb{R}$ .

Very recently, as a generalization of Theorem 3. $B$ , the following theorem was shown
on monotonicity of a generalized Furuta-type operator function (3.1’).

Theorem 3. $C$ ([17]). Define $F(\lambda, \mu)$ as (3.1’). Let $A\geq B\geq 0$ with $A>0,$ $t\in[0,1]$

and $p\geq 1$ . Then $F(\lambda, \mu)$ satisfies the following properties:

(i) $F(r, w)\geq F(r, 1)\geq F(r, s)\geq F(r, s’)$

holds for any $s’\geq s\geq 1,$ $r\geq t$ and $\frac{1-t}{p-t}\leq w\leq 1$ .

(ii) $F(q, s)\geq F(t, s)\geq F(r, s)\geq F(r^{l}, s)$

holds for any $r’\geq r\geq t,$ $s\geq 1$ and $t-1\leq q\leq t$ .

$F(\lambda, \mu)$ is not always decreasing for $\frac{1-t}{p-t}\leq\lambda\leq 1$ and $t-1\leq\mu\leq t$ (see [17]).
But Theorem 3. $C$ says that we can compare $F(r, w)$ with $F(r, 1)$ for $\frac{1-t}{p-t}\leq w\leq 1$ , and
$F(q, s)$ with $F(t, s)$ for $t-1\leq q\leq t$ . We remark that Theorem 3. $C$ leads Theorem 3. $B$

by putting $w= \frac{1-t}{p-t}$ in (i) or $q=0$ in (ii).

Here, we shall consider a domain not considered in Theorem 3. $C$ , that is, we shall
show that we can also compare $F(q, w)$ with $F(t, 1)$ for $\frac{1-t}{p-t}\leq w\leq 1$ and $t-1\leq q\leq t$ .

Theorem 3.1 ([21]). Define $F(\lambda, \mu)$ as (3.1’). Let $A\geq B\geq 0$ with $A>0,$ $t\in[0,1]$

and $p\geq 1$ . Then $F(\lambda, \mu)$ satisfies
$F(q, w)\geq F(t, 1)\geq F(r, s)\geq F(r’, s’)$

for any $s’\geq s\geq 1,$ $r’ \geq r\geq t,\frac{1-t}{p-t}\leq w\leq 1$ and $t-1\leq q\leq t$ .

Proof of Theorem 3.1. We have only to show $F(q, w)\geq F(t, 1)$ since $F(t, 1)\geq F(r, s)\geq$

$F(r’, s’)$ is just Theorem 3. $A$ .
By L\"owner-Heinz theorem, $A^{t-q}\geq B^{t-q}$ since $t-q\in[0,1]$ and $A^{t}\geq B^{t}$ since

$t\in[0,1]$ , so that we have

$F(q, w)=A^{-q} \#\frac{1-t+q}{(p-\ell)w+q}(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{w}=A^{\frac{-t}{2}}\{A^{t-q}\#\frac{1-t+q}{(p-t)w+q}(A^{t}\# wB^{p})\}A\overline{\tau}^{t}$

$\geq A^{\frac{-t}{2}}\{B^{t-q}\#\frac{1-t+q}{(p-t)w+q}(B^{t}\# wB^{p})\}A^{\overline{\tau}^{t}}=A^{\frac{-t}{2}}BA^{\frac{-t}{2}}=A^{-t}\#\frac{1}{p}(A^{\frac{-t}{2}B^{p}A^{\frac{-t}{2}})}$

$=F(t, 1)$ .
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Hence the proof is complete. 口

Figure 2 expresses the domain of $\lambda$ and $\mu$ in which Theorem 3. $A$ , Theorem 3. $C$ and
Theorem 3.1 hold.

FIGURE 2
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