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ABSTRACT. In this note we give describe the spectra and essential spectra of a
bounded linear operator $T$ from the Banach space $d\tau\zeta$ into self using the same
spectra of its restrictions to invariant subspaces and mappings induced by $T$

over quotient subspaces.

1. INTRODUCTION

Given normed space $X$ , let $\mathcal{B}(X)$ denote the space of all bounded linear trans-
formations (equivalently, operators) from $X$ into self. For $T\in \mathcal{B}(X)$ , let $N(T)$ and
$R(T)$ denote, respectively, the null space and the range of the mapping $T$ . Let $n(T)$

and $d(T)$ denote. respectively, the dimension of $N(T)$ and the the codimension of
$R(T)$ . If the range $R(T)$ of $T\in \mathcal{B}(X)$ is closed and $n(T)<\infty$ $($ resp. $d(T)<\infty)$ ,
then $T$ is said to be an upper semi-Fredholm (resp. a lower semi-Fredholm) opera-
tor. If $T\in \mathcal{B}(X)$ ’s either upper or lower semi-Fredholm, then $T$ is called a semi-
Fredholm operator, and then the index of $T$ is defined by $ind(T)=n(T)-d(T)$ .
If both $n(T)$ and $d(T)$ are finite, then $T$ is a Fredholm operator. The essential
(Fredholm) spectrum $\sigma_{e}(T)$ is defined by

$\sigma_{e}(T)=$ { $\lambda\in \mathbb{C}$ : $T-\lambda$ is not Fredholm}.

In this paper. we start by considering the invertibility of a linear operator $T$ by
considering the restriction $T_{|E}$ of $T$ to an invariant subspace $E$ and the mapping
$\tau_{|X/E}$ determined by $T$ on the quotient space $X/E$ of this invariant subspace.

The motivation for such approach to spectral problems for linear operators we
deduced from a study of the spectrum, and distinguished parts thereof, for a upper
triangular matrix representation for a linear operators (see [4]. [6], [7], [8], [12],
[14] $)$ . Also. specially for many special classes of a Hilbert space operators, like
as, for example, hyponormal, quasi-hyponormal or p-hyponormal, there exists a
certain invariant subspaces that detcrmine spectral property of the operator. The
next examples will illustrate this:
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Example 1.1. Let $H$ is a Hilbert spacc H. and $T\in B(H)$ . If $E$ is (closed) subspace

of $H$ and $T(E)\subseteq E$ , then $E$ is complemented in $H$ and $T$ has an upper triangular

rcpresentation
$T=(\begin{array}{ll}A C0 B\end{array})(\begin{array}{l}EE^{\perp}\end{array})arrow(\begin{array}{l}EE^{\perp}\end{array})$ .

where with $A$ we denote the restriction of $T$ on $E$ . If $A$ and $B$ are invertible then

$T$ is invertible and
$T^{-1}=(\begin{array}{ll}A^{-1} -A^{-1}CB^{-1}0 B^{-1}\end{array})$ .

Hence, $\sigma(T)\subset\sigma(A)\cup\sigma(B)$ . Additionally, if $E^{\perp}$ is invariant for $T$ , i.e.

$T=(\begin{array}{ll}A 00 B\end{array})$

then $\sigma(T)=\sigma(A)\cup\sigma(B)$ .

For a Banach space $X$ and its complemented closed subspace $M$ that is invariant

for an operator $T\in B(X)$ , then (once again) $T$ has an upper triangular represen-

tation and the discussion is same.

Example 1.2. Let $H$ be a Hilbert space. Then for a hyponormal operator $T\in$

$B(H)(T^{*}T\leq TT^{*})$ , and its invariant subspace

$E=\{x\in H$ : $\Vert T^{k}x\Vert=\Vert T^{*k}x\Vert$ , for all $k=1,\cdot 2,$ $\ldots\}$

we have that $T_{|E}$ is normal.

The property that for some Hilbert space operator there exits a invariant sub-

space that the restriction of operator is one category lest is pretty usual.

An operator $T\in \mathcal{B}(H)$ is said to be p.hyponormal operator, $p\in(0,1]$ . if

$(T” T)^{p}\leq(TT^{*})^{p}$ and $T$ is a $(p.k)$-quasihyponormal if $T^{*k}(\Vert T\Vert^{2p}-\Vert T^{*}\Vert^{2p})T^{k}\geq 0$.

We have next theorem.

Theorem 1.3. If $T\in B(H)$ is a $(p.k)$ -quasihypono$al$ operator and the rank of
$T^{k}$ is not dense, then the restriction of $T$ on space $H_{1}=\overline{rank(T^{k})}$ is p-hypono7mal.

Moreover. the transformation $\tilde{T}$ : $H_{|H_{1}}arrow H_{|H_{1}}$ define with $\tilde{T}([x])=[Tx]$ is $karrow$

nilpotent.

Proof. By [13, Lemma 1], $T$ has matrix representation $T=(\begin{array}{ll}A C0 B_{1}\end{array})$ where

$A=T_{1\overline{R(T^{k})}}$ is p-hyponormal and $B_{1}$ is k-nilpotent. Now, by the introduction of

[1], we have that in this situat\’ion $B=T_{|X/\overline{R(T^{k})}}$ and $B_{1}$ are similar that implies $B$

is k-nilpotent. ロ

The similar behavior we can find for the same classes of Banach space linear

operators, for example for a B-Fredholm operators. For a bounded linear operator

82



THE INVARIANT SUBSPACES AND SPECTRAL PROPERTIES OF LINEAR OPERATORS

$T\in B(X)$ and for each positive integer $n$ . definc $T_{r\iota}$ to be the restriction of $T$ to
$R(T^{n})$ viewed as a map from $R(T^{n})$ into $R(T^{n})$ (in particular $T_{0}=T$ ).

If for some positive integer $n$ , the range space $R(T”)$ is closed and $T_{n}$ is a
Fredholm operator, then $T$ is called a B-Fredholm operator (hence, every Fredholm
operator is B-Fredholm). In this case, for any intcger $m$ such that $m>n_{t}T_{m}$ is
Fredholm operator with $ind(T_{m})=ind(T_{n})$ . For more details see Berkani [2] and

[3].

Theorem 1.4. Let $T\in B(X)$ be a B-Fredholm operator. There exists an invari-
ant subspace $E\subset X$ such that $T$ restricted en $E$ is a Fredholm operator and the

transformation $\tilde{T}$ : $X_{|E}arrow X_{|E}$ define with $\tilde{T}([x])=[Tx]$ is nilpotent.

Proof. By proof of Lemma 4.1. in [2], follows that exist a closed subspaces $E$ and $F$

such that $X=E\oplus F$ and $A=T_{|E}$ is Fredholm operator and $B_{1}=T_{|F}$ is nilpotent.

Since the operator $B=\tau_{|x_{/E}’}$ is similar to $B_{1}$ (see end of the proof of Theorem
1.3), we have that $B$ is nilpotent too. ロ

2. SPECTRUM OF A LINEAR OPERATOR THROUGH ITS INVARIANT SUBSPACES

Let $T$ be a Banach space linear operator, $E\subset X$ closed T-invariant subspace.

For the aim of easier notation, with $A\in \mathcal{B}(E)$ we will notate the restriction of
$T$ on $E$ , i.e. $A=T_{|E}$ and. similarly, with $B\in \mathcal{B}(X/E)$ we will always notate
the mapping determined by $T$ on the quotient space $X/E$. In this section will be
discission relationship between the spectrums of the operators $T,$ $A$ and $B$ .

Theorem 2.1. If $T\in B(X)$ is a bounded operator and $E\in Inv(T)$ , then the
following holds.

(i) $\sigma(T)\subset\sigma(A)\cup\sigma(B)$ :
(ii) $\sigma(A)\subset\sigma(T)\cup\sigma(B)$ ;

(iii) $\sigma(B)\subset\sigma(T)\cup\sigma(A)$ .
Moreover,

(vi) if $\lambda\in(\sigma(A)\cup\sigma(B))\backslash \sigma(T),\cdot$ then $\lambda\in\sigma(A)\cap\sigma(B)$ ;

(v) if $\lambda\in(\sigma(T)\cup\sigma(B))\backslash \sigma(A)$ , then $\lambda\in\sigma(T)\cap\sigma(B)$ ;

(vi) if $\lambda\in(\sigma(T)\cup\sigma(A))\backslash \sigma(B)$ , then $\lambda\in\sigma(T)\cap\sigma(A)$ .

Proof. The proof of the theorem we can find partially in [1, Proposition 3 $(i)$ ] $\dot{\prime}[9$ ,
Theorem 2.1] and [10, Proposition 1.2.4] $)$ . ロ

It is interesting to find conditions when the spectrum of $T$ is equal to union of
the spectrums of the operators $A$ and $B$ . The next proposition give some of such
conditions.
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Proposition 2.2. Let $T\in B(X)$ and $E\in Inv(T)$ . If one of following conditions

holds
(i) $E$ is T-hype$7nnva7nant$ :

(ii) exists $F\in Inv(T)$ such that $X=E\oplus F$ ;

(iii) $\sigma(A)\cap\sigma(B)=\emptyset$ ;

$(\dot{\uparrow,}v)\sigma(A)\subset\sigma(T)$ or $\sigma(B)\subset\sigma(T)$ .
then $\sigma(T)=\sigma(A)\cup\sigma(B)$ .

$ProoJ^{\rho}$. (i) [1, Proposition 3(3)].

(ii) Let $T=A\oplus B_{1}$ on $X=E\oplus F$ . Then $B_{1}$ and $B$ are similar operator. and
$\sigma(T)=\sigma(A)\cup\sigma(B_{1})=\sigma(A)\cup\sigma(B)$ .

(iii) and (iv) are direct consequences of Theorem 2.1. a

3. $ESSENT:AL$ SPECTRUM OF A LINEAR OPERATOR THROUGH ITS INVARIANT

SUBSPACES

Given a Banach space $X$ , let $\Phi_{+}(X)$and $\Phi_{-}(X)$ denote, respectively, the set of

upper and lower semi-Fredholm operators and $\Phi(X)=\Phi_{+}(X)\cap\Phi_{-}(X)$ denote the

set of Frcdholm operators. Let $E\in Inv(T)$ , and let $A$ and $B$ be defined as in the

previous section.
The kemel and rang of an operator take main role in observation of the Fred-

holmes of an operators. It is clearly that $N(A)\subset N(T)$ , and consequently $n(A)\leq$

$n(T)$ . Bames in [1] showed if $n(A)<\infty$ and $n(B)<\infty$ . then $n(A)\leq n(T)\leq$

$n(A)+n(B)$ , and if $d(A)<\infty$ and $d(B)<\infty$ , then $d(B)\leq d(T)\leq d(A)+d(B)$ .
Also, by [1, Theorem 8], if $T$ is a Fredholm operator, then $A$ is upper semi-Fredholm

and $B$ is lower semi-Fredholm. Using the Theorem 8 in [1] we can get next results

(see also [9, Theorem 3.1]).

Theorem 3.1. Let $T\in B(X)$ , be a bounded operator and $E\in Inv(T)$ . Then the

following properties hold.
(i) $\sigma_{e}(T)\subset\sigma_{e}(A)\cup\sigma_{e}(B)$;

(ii) $\sigma_{e}(A)\subset\sigma_{e}(T)\cup\sigma_{e}(B)$ ;

(iii) $\sigma_{e}(B)\subset\sigma_{e}(T)\cup\sigma_{e}(A)$ .
Moreover.
(vi) if $\lambda\in(\sigma_{e}(A)\cup\sigma_{e}(B))\backslash \sigma_{e}(T)$ . then $\lambda\in\sigma_{e}(A)\cap\sigma_{e}(B)$ ;

(v) if $\lambda\in(\sigma_{e}(T)\cup\sigma_{e}(B))\backslash \sigma_{e}(A)$ , then $\lambda\in\sigma_{e}(T)\cap\sigma_{e}(B)$ ;

(vi) if $\lambda\in(\sigma_{e}(T)\cup\sigma_{e}(A))\backslash \sigma_{e}(B)$ . then $\lambda\in\sigma_{e}(T)\cap\sigma_{e}(A)$ .

Proof. The proof of (i) is straightforward $hom$ [ $1$ , Theorem 8].
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(ii) Let $T$ and $B$ are Fredholm. Then by [1, Proposition 8] follows $A$ upper
semi-Fredholm opcrator and from [1, Theorem 8] $d(A)<\infty$ . i.e. $A$ is Fredholm.

(iii) In thc similar way like (ii).
(iv) From an argument of type:

$\lambda\not\in(\sigma_{e}(A)\cup\sigma_{e}(B))$ $\Leftrightarrow$ $A-\lambda$ and $B-\lambda$ are Fredholm
$\Leftrightarrow$ $T-\lambda$ , and $A-\lambda$ or $B-\lambda$ are Fredholm
$\Leftrightarrow$ $\lambda\not\in\sigma_{e}(T)\cup\{\sigma_{e}(A)\cap\sigma_{e}(B)\}$ .

follows that $\sigma_{e}(A)\cup\sigma_{e}(B)=\sigma_{e}(T)\cup\{\sigma_{e}(A)\cap\sigma_{e}(B)\}$, i.e. $(\sigma_{e}(A)\cup\sigma_{e}(B))\backslash$

$\sigma_{e}(T)\subset\sigma_{e}(A)\cap\sigma_{e}(B)$ .

(v) and (vi) in the same way like (iv). ロ

Corollary 3.2. If two of the operators $A,$ $B$ and $T$ are Fredholm. then the third
one is Fredholm too.

Theorem 3.1 gives us some conditions that the essential spectmm of $T$ is union
of the essential spectrums of $A$ and $B$ .

Corollary 3.3. Let $T\in B(X)$ and $E\in Inv(T)$ . If one of following conditions
holds:

(i) $\sigma_{e}(A)\cap\sigma_{e}(B)=\emptyset$ ;
(ii) $\sigma_{e}(A)\subset\sigma_{e}(T)$ or $\sigma_{e}(B)\subset\sigma_{e}(T)$ ;

then $\sigma_{e}(T)=\sigma_{e}(A)\cup\sigma_{e}(B)$ .

Remark 3.4. In the way of Proposition 2.2 we can to find some new conditions
that imply $\sigma_{e}(T)=\sigma_{e}(A)\cup\sigma_{e}(B)$ .

If $E$ is T-hyperinvariant, then it is easily seen that $T^{-1}(E)=E$ ; applying [1,
Corollary 9] it follows that $\sigma_{e}(T)=\sigma_{e}(A)\cup\sigma_{e}(B)$ .

Also, if $E$ has direct complement $F$ and $T=A\oplus B_{1}$ on $X=E\oplus F$ . Then $B_{1}$

and $B$ are similar operators, and $\sigma_{e}(T)=\sigma_{e}(A)\cup\sigma_{e}(B_{1})=\sigma_{e}(A)\cup\sigma_{e}(B)$ .

If $T\in \mathcal{B}(X)$ is a Fredholm operator with index zero, then $T$ is called a Weyl
operator. The Weyl spectrum, in notation $\sigma_{w}(T)$ , is defined by

$\sigma_{w}(T)=$ { $\lambda\in \mathbb{C}$ : $T-\lambda$ is not Weyl}.

The relationship between the Weyl spectra of $A,$ $B$ and $T$ is a bit more delicate, and
relationship of type of Proposition 2.2, Corollary 3.3 or Remark 3.4 is not possible
for the Weyl spectrum. Even in the case when the invariant closed subspace $E$ has
closed complement $F$ that is also invariant for $T,$ $\sigma_{w}(T)$ is not equal to union of
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thc Weyl spectrums of $A$ and $B$ (see [11. Lcmma 1]). However. with additional

hypotheses one is able to relate the Weyl spectra of A. $B$ md $T$ .

Theorem 3.5. Let $T\in B(X)$ . be a bounded operator and $E\in Inv(T)$ . Then if
one of the following equivalent conditions holds

$(a)T^{-1}(E)=N(T)+E$ , or
$(b)T(E)=R(T)\cap E$ ,

then
(i) $\sigma_{w}(T)\subset\sigma_{w}(A)\cup\sigma_{w}(B)$ ;

(ii) $\sigma_{w}(A)\subset\sigma_{w}(T)\cup\sigma_{w}(B)$ ;

(iii) $\sigma_{w}(B)\subset\sigma_{w}(T)\cup\sigma_{w}(A)$ .
Moreover,

(vi) if $\lambda\in(\sigma_{e}(w)\cup\sigma_{u\prime}(B))\backslash \sigma_{w}(T)$ . then $\lambda\in\sigma_{w}(A)\cap\sigma_{w}(B)$ ;

(v) if $\lambda\in(\sigma_{w}(T)\cup\sigma_{w}(B))\backslash \sigma_{w}(A)$ , then $\lambda\in\sigma_{w}(T)\cap\sigma_{w}(B)$ ;

(vi) if $\lambda\in(\sigma_{w}(T)\cup\sigma_{w}(A))\backslash \sigma_{w}(B)$ , then $\lambda\in\sigma_{w}(T)\cap\sigma_{w}(A)$ .

Proof. The equivalency of the conditions (a) and (b) follows from [1, Proposition

7, (1) $]$ and from same proposition we have that

ind $(T-\lambda)=$ ind$(A-\lambda)+$ ind $(B-\lambda)$ .

(i) Let $A$ and $B$ are Weyl. Then by Corollary 3.2, $T$ is Fredholm, and by first
part of theorem

ind $(T-\lambda)=$ ind$(A-\lambda)+$ ind $(B-\lambda)=0$ ,

i.e. $T$ is Weyl too.

The proofs of (ii) and (iii) are similar to (i).

(iv) Whenever either the left hand side or the right hand side in the equality

ind $(T-\lambda)=$ ind $(A-\lambda)+$ ind $(B-\lambda)$ is finite, then $\sigma_{w}(A)\cup\sigma_{w}(B)=\sigma_{w}(T)\cup$

$\{\sigma_{w}(A)\cap\sigma_{w}(B)\}$ : this follows ffom the following implications.

$\lambda\not\in\sigma_{w}(A)\cup\sigma_{w}(B)$

$\Leftrightarrow$ $A-\lambda$ and $B-\lambda$ are Weyl

$\Leftrightarrow$ $T-\lambda$ and $A-\lambda$ , or, $T-\lambda$ and $B-\lambda$ are Weyl

$\Leftrightarrow$ $\lambda\not\in\sigma_{w}(T)\cup\{\sigma_{w}(A)\cap\sigma_{w}(B)\}$ .

The proofs of (v) and (vi) are similar to (iv). $\square$
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