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Abstract

In this paper, we start with studying a family of deterministic discrete-time
optimal control problems whose value functions converge to the oblique boundary
problems of first-order Hamilton-Jacobi equations. Our method is based on the
billiard semiflow. We finally apply this method to the case of second-order geometric
flow equations.

1 Introduction
This paper investigates several generalizations of our previous work in [4], which provides a
discrete game interpretation for the Neumann boundary problem of motion by curvature.
We recall that such kind of optimal control approach is first proposed by Kohn and Serfaty
(see [8, 9]), who drew a connection between two-person games and second-order PDEs.
It turns out that by the convergence argument, a time-optimal problem is related to the
Dirichlet problem of an elliptic equation and a time-dependent game corresponds to the
Cauchy problem of a parabolic equation; see [3, 7] for generalizations in distinct directions.
Our goal here is different, mainly resting on the general boundary problems of evolutionary
equations. To simplify our proofs and emphasize our idea, we mainly discuss first-order
Hamilton-Jacobi equations on the ground of deterministic optimal control theory (see,
e.g., [1] $)$ . The well-posedness of these oblique boundary problems in the viscosity sense is
due to [10] for first-order cases and [2, 5, 12, 13] for second-order ones.

A billiard semiflow is studied in [4]. Based on it, discrete deterministic games are
constructed so that their value functions converge to the unique solution of the Neumann
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boundary problem of curve shortening flow equation. In this paper, we apply the same
method to the first-order Hamilton-Jacobi equations with Neumann type boundary:

(El) $\{\begin{array}{ll}u_{t}(x, t)+\sup_{a\in A}\{-f(x, a)\cdot\nabla u(x, t)-l(x, a)\}=0 in \Omega\cross[0, \infty),\nabla u(x, t)\cdot\nu(x)=0 on \partial\Omega\cross[0, \infty),u(x, 0)=u_{0}(x) in \overline{\Omega},\end{array}$

where $\Omega$ is a $C^{2}$ and convex domain, $\nu(x)$ denotes the outward unit normal to $\partial\Omega$ at $x$ ,
and $f$ and $l$ are given functions. Refer to Section 3 for details. It is worthwhile to mention
that our approach can be distinguished from that in [10], which pioneers the study of the
boundary conditions in the viscosity sense and their applications in optimal control based
on the Skorokhod problem; see [11, 14] for the topic on the Skorokhod problem. We use
the very simple billiard law: the angle of incidence equals to the angle of reflection, in
place of the Skorokhod map or any of its discrete versions. However, it is interesting to
find that billiard and Skorokhod reflections are analogous in form [4, Lemma 2.3], which
makes our arguments more understandable.

Another way of generalizing [4] is to devise a more general billiard law, as we call the
oblique billiard, so as to get diffcrential gamcs for oblique boundary conditions. When
creating the obliqueness, we do not imitate the usual billiard law via angles at hitting
points, but instead follow the idea of decomposing each incident ray along the normal
and tangent and then simply switching the direction of its normal component. Such
an operation certainly gives a generalization of the classical billiard but its properties,
especially those about its singular phenomena, turn out to be obscure. In this paper,
without touching too complicated situations, we conduct our game interpretation for the
oblique boundary problem of Hamilton-Jacobi equations only in the half plane, where any
billiard move hits the boundary at most once, A typical equation is like

(E2) $\{\begin{array}{ll}u_{t}(x, t)+\sup_{a\in A}\{-f(x, a)\cdot\nabla u(x, t)-l(x, a)\}=0 in \Omega\cross[0, \infty),\nabla u(x, t)\cdot\gamma(x)=0 on \partial\Omega\cross[0, \infty),u(x, 0)=u_{0}(x) in \overline{\Omega},\end{array}$

where $\gamma(x)$ is the unit oblique normal, satisfying for every $x\in\partial\Omega$ ,
$\{\gamma(x),$ $\nu(x)\rangle=\theta$ , $0<\theta\leq 1$ .

In order to avoid redundancy, we slightly modify our proof for Neumann boundary prob-
lem to adapt it to this oblique boundary case. As a matter of fact, in this case, the
similarity between billiard and Skorokhod reflections still holds. We shall explain in de-
tail in Section 4. Another application of our oblique billiards to the curve shortening
equation is quite natural and a formal derivation is included as well in the section. A
question remains unsolved how to get any extension of our results or find another type of
oblique billiards for more general domains.

We remark that both first and second-order equations can be derived from discrete
game settings but their difference is spectacular. In contrast to the simple way of deducing
first-order Hamilton-Jacobi equations, for second-order time-dependent case, we usually
need to eliminate the first-order space term by adding a null condition and arrange the
coexistence of the first-order time derivative and second-order space derivatives by using
an irregular clock. Our previous work [3] contains a discussion on it.
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2 Planar Billiard Dynamics
Let us start with a review of the results about the normal billiard semiflow. (We specify the
word “normal” because a more general and complicated oblique billiard will be discussed
later.) All of the proofs, omitted in this paper, are given in [4]. We first recall the billiard
flow. Suppose that there is a domain $\Omega$ , said to be a billiard table, satisfying the following
assumption:

(Al) $\Omega$ is a bounded and convex domain in $\mathbb{R}^{2}$ with $C^{2}$ boundary.

The billiard flow in $\Omega$ , denoted by $T^{t}$ : $\overline{\Omega}\cross S^{1}arrow\overline{\Omega}(t\in \mathbb{R})$ , describes the billiard motion
in the table. By billiard motion, we mean that a mass point is moving along straight-lines
in the interior of the domain and following the optic law on the boundary, namely, the
angle of incidence equals the angle of reflection. For a fixed pair $(x, v),$ $T^{t}(x, v)$ represents
the ball’s position at time $t$ . The set $\{T^{t}(x, v)\in St : t\geq 0\}$ is called a billiard trajectory
starting from $(x, v)$ and the hitting points on the boundary are called vemhces of the
trajectory. It is obvious that $T^{t}$ satisfies the group property restricted in $\Omega\cross S^{1}$ with the
identity $T^{0}$ and $T^{-t}(x, v)=T^{t}(x, -v)$ for any $x\in\Omega$ and $v\in S^{1}$ .

We stress here that such a billiard motion is not always proper. Indeed, a so-called
terminating phenomenon may occur even in this $C^{2}$ domain, or in other words, the se-
quence of vertices $\{p_{n}\}_{n\geq 1}$ may converge to a point on $\partial\Omega$ . For further explanation, we
refer the readers to [6], from which an important property is drawn to be stated in Lemma
2.1 below.

We hereafter utilize the arc-length parametrization $\Gamma(\cdot)$ : $\mathbb{R}arrow \mathbb{R}^{2}$ , a function of class
$C^{2}$ , to represent $\partial\Omega$ . Its derivative with respect to $s$ is denoted by $\Gamma_{8}$ .

Lemma 2.1. $Su$ppose that $\Omega$ satisfies (Al). If a trajectory terminates at a poin$t\Gamma(s_{\infty})\in$

$\partial\Omega$ , with a sequence of vertices $\{\Gamma(s_{n})\}_{n\geq 1}$ arranged in order, then there exists $N>0$
such that for $n\geq N,$ $s_{n}$ monotonically converges to $s_{\infty}$ and $(\Gamma(s_{\infty})-\Gamma(s_{n}))/|s_{\infty}-s_{n}|$

converges to a unit $t$angent, denoted by $v_{\infty}$ , to the boundary at $\Gamma(s_{\infty})$ .
We next present a modified billiard dynamics as follows.

Definition 2.1. Let $\Omega$ satisfy (Al).

(i) If $x\in\partial\Omega$ , and $v$ equals to the tangent of $\partial\Omega$ , then

$S^{t}(x, v)$ $:=\Gamma(t)$ , for any $t\geq 0$ ,

where $\Gamma(\cdot)$ is the arc-length parametrization of $\partial\Omega$ such that $\Gamma(0)=x$ and $\Gamma_{s}(0)=v$ ;

(ii) If $x\in\Omega$ and $v$ is such that $T^{t}(x, v)$ terminates on $\partial\Omega$ at time $t_{0}$ , then

$S^{t}(x, v):=\{\begin{array}{ll}T^{t}(x, v) if 0\leq t<t_{0},S^{t-t_{0}}(T^{t_{0}}(x, v), v_{\infty}) if t\geq t_{0},\end{array}$

where $\iota_{\infty}$
) is obtained from Lemma 2.1;
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$($ iii $)$ If $x\in\partial\Omega$ and $v$ points inside $\Omega_{7}$ then

$S^{t}(x, v):=\{\begin{array}{ll}x if t=0,S^{t-\epsilon}(x+\epsilon v, v) if t>0,\end{array}$

where $\epsilon>0$ is such that $x+\delta v\in\Omega$ for all $\delta\in(0, \epsilon)$ .

It is easily seen that $S^{t}$ is a semiflow. For $t\geq 0,$ $x\in$ K7 and $v\in S^{1}$ , we set

(2.1) $\alpha^{t}(x, v)=x+tv-S^{t}(x, v)$

and call it the boundary adjustor. An important property of our semiflow is given in the
following lemma.

Lemma 2.2 ([4, Lemma 2.3]). Assume that $\Omega$ satisfies (Al). For any fixed $t\geq 0,$ $x\in\overline{\Omega}$

and $v\in S^{1}$ , let $\alpha^{t}(x, v)$ be the boundary adjustor of $S^{t}(x, v)$ . Then there exist $d_{l}\geq 0$ and
$y_{l}\in\partial\Omega\cap B_{t}(x),$ $l=1,2,$ $\ldots$ such that

(2.2) $\alpha^{t}(x, v)=\sum_{l=0}^{\infty}d_{l}\nu(y_{l})$ ,

where the convergence on the right hand side is in $\mathbb{R}^{2}$ . In addition, the following estimates
hold:

(2.3) $|\alpha^{t}(x, v)|\leq 2t$ .

(2.4) $| \sum_{l,=k}^{\infty}d_{l}\nu(y_{l})|\leq 4t$, for all $k=1,2,$ $\ldots$

(2.5) $\sum_{l=1}^{\infty}|y_{l+1}-y_{l}|\leq 2t$ .

This lemma tells us that the effect of billiard reflection is nothing but a series of inward
normal impacts. Such an observation, resembling the Skorokhod problem, turns out to
play a significant role in our game setting.

We conclude this section with another property, which is a direct consequence of the
separation theorem for convex sets in $\mathbb{R}^{2}$ .

Lemma 2.3 ([4, Lenima 2.4]). Assume that $\Omega$ satisfies (Al). Then

(2.6) $|x_{0}-S^{t}(x, v)|\leq|x_{0}-(x+tv)|$ for any $x,$ $x_{0}\in\overline{\Omega}_{\}}v\in S^{1}$ and $t\geq 0$ .

We discuss in this paper only a convex domain. For more general domains, we need
a few additional techniques since the above lemma no longer holds. See [4] for further
study.
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3Neumann Boundary of HJ Equations
We establish a discrete system on the basis of the billiard semiflow investigated in Section
2. At first assume

(A2) $A$ is a compact topological space,

(A3) $f$ : $\overline{\Omega}\cross Aarrow \mathbb{R}^{2}$ satisfies
$x\in^{\frac{s}{\Omega}},a\in Aup|f(x, a)|\leq M_{1}$

,

and

(A4) $|f(x_{1}, a)-f(x_{2}, a)|\leq L_{1}|x_{1}-x_{2}|$ for $L_{1}>0$ independent of $a\in A$ .

Notice that there exists a function $v_{f}$
; $\overline{\Omega}\cross Aarrow S^{1}=\{v\in \mathbb{R}^{2} : |v|=1\}$ such that for

any $(x, a)\in\overline{\Omega}\cross A$ ,
$f(x, a)=|f(x, a)|v_{f}(x, a)$ .

To formulate our control system, we take the step size $\epsilon>0$ and a sequence $y_{k},$ $k=$

$0,1,2,$ $\ldots$ , which satisfies the following:

(3.1) $\{\begin{array}{l}y_{k+1}=S^{|f_{k}|\epsilon}(y_{k}, v_{f}(y_{k}, a_{k+1}));y_{0}=x,\end{array}$

where the control variable $a_{k}\in A$ and $|f_{k}|=|f(y_{k}, a_{k+1})|$ for all $k=0,1,2,$ $\ldots$ It seems to
be at question whether our definition above is valid since $v_{f}$ is not uniquely determined
when $|f|=0$ . However, there is essentially no problem in the system (3.1) thanks to our
billiard structure, which yields a temporary stop whenever $f_{k}=0$ .

For every $t\geq 0$ , let $N$ be the largest integer less than $t/\epsilon$ . Given $x\in \mathbb{R}^{2},$ $t\geq 0$ and
$a=$ $(a_{1}, \ldots , a_{N})\in A^{N}$ , we define a control objective as

(3.2)
$J^{\epsilon}(x, t, a):= \sum_{k=1}^{N}\epsilon l(y_{k-1}, a_{k})+u_{0}(y_{N})$ , if $t\geq\epsilon$ and

$J^{\epsilon}(x, t, a)$ $:=u_{0}(x)$ , if $0\leq t<\epsilon$ ,

where $l$ : St $\cross Aarrow \mathbb{R}$ stands for the running cost fulfilling

(A5) $x\in^{\frac{s}{\Omega}},a\in Aup|l(x, a)|\leq M_{2}$
; and

(A6) $|l(x_{1}, a)-l(x_{2}, a)|\leq L_{2}|x_{1}-x_{2}|$ for $L_{2}>0$ independent of $a\in A$ .

and the function $u_{0}$ : $\overline{\Omega}arrow \mathbb{R}$ is a terminal cost. We next define a vaiue function for evcry
$x\in\overline{\Omega}$ and $t\geq 0$

(3.3) $u^{\epsilon}(x, t)$
$:= \inf_{a\in A^{N}}J^{\epsilon}(x, t, a)$

and it clearly satisfies the dynamic programming equation

$u^{\epsilon}(x, t)$ $:= \inf_{a\in A}\{u^{\epsilon}(S^{|f(x,a)|\epsilon}(x, v_{f}(x, a)), t-\epsilon)+\epsilon l(x, a)\}$

(DPP)
for all $x\in$ fi and $t\geq\epsilon$ .

The first theorem we get is
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Theorem 3.1. Assume (Al)$-(A6)$ . Let $u^{\epsilon}$ be the game value in (3.3) and $u_{0}$ be a con-
tinuous function in St, then $u^{\epsilon}$ converges, as $\epsilonarrow 0$ , uniformly on every compact set of

$\overline{\Omega}\cross[0, \infty)$ to the unique $sol$ution of the Neumann $bo$undary problem ofHamilton-Jacobi
$eq$uation (El).

We below present the definition of viscosity solutions of (El).

Deflnition 3.1. An upper semicontinuous (resp., lower semicontinuous) function $u$ on
$\overline{\Omega}\cross[0, \infty)$ is a viscosity subsolution (resp., viscosity supersolution) of (El) if

$u(x, 0)\leq u_{0}(x)$ $($ resp., $u(x,$ $0)\geq u_{0}(x))$

and whenever there are $(\hat{x},\acute{t})\in\overline{\Omega}\cross(0, \infty)$ , a neighborhood $\mathcal{O}$ relative to $\overline{\Omega}\cross(0, \infty)$ of
$(\hat{x},\hat{t})$ and a smooth function $\varphi:\mathcal{O}arrow \mathbb{R}$ such that

$\max_{\mathcal{O}}(u-\varphi)=(u-\varphi)(\hat{x},\acute{t})$

$(resp.,$ $\min_{0}(u-\varphi)=(u-\varphi)(\hat{x}, t\gamma)$ ,

the following holds:

(i) If $\hat{x}\in\Omega$ , theii

$\partial_{t}\varphi(\hat{x},\hat{t})+\sup_{a\in A}\{-f(\hat{x}, a)\cdot\nabla\varphi(\hat{x},\hat{t})-l(\hat{x}, a)\}\leq 0$

$(resp.,$ $\partial_{t}\varphi(\hat{x}, t)+\sup_{a\in A}\{-f(\hat{x}, a)\cdot\nabla\varphi(\hat{x},\hat{t})-l(\hat{x}, a)\}\geq 0)$ .

(ii) If $\hat{x}\in\partial\Omega$ , then

$\partial_{t}\varphi(\hat{x}, t)+\sup_{a\in A}\{-f(\hat{x}, a)\cdot\nabla\varphi(\hat{x}, t)-l(\hat{x}, a)\}\leq 0$

$(resp.,$ $\partial_{t}\varphi(\hat{x},\hat{t})+\sup_{a\in A}\{-f(\hat{x}, a)\cdot\nabla\varphi(\hat{x},\hat{t})-l(\hat{x}, a)\}\geq 0)$

or
$\langle\nabla\varphi(\hat{x},\hat{t}),$ $\nu(\hat{x})\}\leq 0$ $($ resp., $\langle\nabla\varphi(\hat{x}, t\gamma, \nu(\hat{x})\rangle\geq 0)$ .

Deflnition 3.2. A function $u$ on St $\cross[0, \infty)$ is called a viscosity solution of (El) if it is
both a viscosity subsolution and a viscosity supersolution.

Before we prove Theorem 3.1, let us first introduce the upper and lower relaxed limits
of $u^{\epsilon}$ as

Of $(x_{1}t)$
$:= \lim_{\epsilonarrow}\sup_{0}*u^{\epsilon}(x, t)=\lim_{\deltaarrow 0}\sup\{u^{\epsilon}(y, s) : \epsilon<\delta, |x-y|+|t-s|<\delta\}$

and

$\underline{u}(x, t)$
$:= \lim_{\epsilonarrow}\inf_{0}*u^{\xi}(x, t)=\lim_{arrow 0}\inf\{u^{\epsilon}(y, s) : \hat{\vee\ulcorner}<\delta, |x-y|+|t-s|<\delta\}$ .

In what follows, we give our proof of Theorem 3.1 by showing it $=\underline{u}$ , which consists
of three propositions.
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Proposition 3.2. $\underline{u}(x, 0)=\overline{u}(x, 0)=u_{0}(x)$ .

Proof, We only show $\overline{u}(x, 0)\leq u_{0}(x)$ for every fixed $x\in$ St. A symmetric argument gives
$\underline{u}(x, 0)\geq u_{0}(x)$ and our conclusion is thus $reac\cdot Iied$ in virtue of a basic fact that $\underline{u}\leq\overline{u}$. To
this end, we adopt a barrier argument since our initial datum $u_{0}$ is only continuous and
needs regularizing. More precisely, for any $\lambda>0$ , there exists a constant $C_{\lambda}$ such that

$u_{0}(y)\leq\lambda+u_{0}(x_{0})+C_{\lambda}|y-x|$ for all $y\in\overline{\Omega}$ .

We denote by $\overline{V}_{\lambda}$ the right hand side of the above inequality and now observe the same
discrete-time optimal control problem but only with the terminal cost changed from $u_{0}$

to $\overline{V}_{\lambda}$ . Let the value function of this new game be $\tilde{u}^{\epsilon}$ . Then, in view of the definition
(3.3), the boundedness of functions $f$ and $l$ (i.e., (A3) and (A5)) and (2.6) with $x_{0}=x$ ,
we directly evaluate for $y\in\overline{\Omega}$ and $t\geq 0$

$\tilde{u}^{\epsilon}(y, t)\leq M_{2}N\epsilon+\lambda+u_{0}(x)+C_{\lambda}(|y-x|+$ ル$f_{1}N\epsilon)$

$\leq\lambda+u_{0}(x)+C_{\lambda}|y-x|+(C_{\lambda}A/I_{1}+M_{2})t$.

Noting that game values preserve the order of objectives, that is $u^{\epsilon}\leq\tilde{u}^{\epsilon}$ in our special
case, we are thus led, by the definition of relaxed limits as $yarrow x$ and $tarrow 0$ , to

$\overline{u}(x, 0)\leq\lambda+u_{0}(x)$ .

Sending $\lambda\downarrow 0$ , we are done. ロ

Proposition 3.3. $\overline{u}$ is a $su$ bsolution of (El).

Proof. We argue by contradiction. Since I fulfills the initial data by Proposition 3.2,
assume there exist $(x_{0}, t_{0})\in\partial\Omega\cross(0, \infty)$ (our argument actually works for the case
$x_{0}\in\Omega$ as well), a $\delta$-neighborhood $B_{\delta}$ of $(x_{0}, t_{0})$ relative to $\overline{\Omega}\cross(0, \infty)$ and a smooth
function $\phi$ on St $\cross(O, \infty)$ such that

$($ i $)$ Of $(x_{0},$ $t_{0})-\phi(x_{0},$ $t_{0})>$ Of $(x,$ $t)-\phi(x,$ $t)$ for all $(x,$ $t)\in B_{\delta}$ ;

(ii) $\partial_{t}\phi(x_{0}, t_{0})+\sup_{a\in A}\{-f(x_{0}, a)\cdot\nabla\phi(x_{0}, t_{0})-l(x_{0}, a)\}\geq\eta_{0}>0$; and

(iii) $\nabla\phi(x_{0}, t_{0})\cdot\nu(x_{0})\geq\eta_{0}>0$ .

Assumption (ii), together with the continuity of $f$ and $l$ in $x$ (i.e., (A4) and (A6)), implies
the existence of $\overline{a}\in A$ satisfying

(3.4) $\partial_{t}\phi(x, t)-f(x,\overline{a})\cdot\nabla\phi(x, t)-l(x,\overline{a})\geq\eta_{0}/2$ for all $(x, t)\in B_{\delta}$

and (iii) gives rise to

(3.5) $\nabla\phi(x, t)\cdot\nu(x)\geq\eta_{0}/2$ for all $(x, t)\in B_{\delta}$ and $x\in\partial\Omega$ .

By the definition of Of, we can take a sequence $(x_{0}^{e}, t_{0}^{\epsilon})arrow(x_{0}, t_{0})$ with

$u^{\epsilon}(x_{0}^{\epsilon}, t_{0}^{\epsilon})arrow\overline{u}(x_{0}, t_{0})$ .
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Let us use the constant control $\overline{a}$ to get a sequence of states
$X_{1}\equiv(x_{1}, t_{1})=(x_{0}^{\epsilon}, t_{0}^{\epsilon})$ ;

$X_{k+1}\equiv(x_{k+1}, t_{k+1})=(S^{|f_{k}|\epsilon}(x_{k}, v_{f}(x_{t:},\hat{a})),$ $t_{k}-\epsilon),$ $k\geq 1$ .
We assume for the moment that any $X_{k}$ does not exceed $B_{\delta}$ , which requires that $k$ should
not be too large. In terms of the dynamic programming principle (DPP), we have
(3.6) $u^{\epsilon}(X_{k})\leq u^{\epsilon}(X_{k+1})+\epsilon l(x_{k}, \overline{a})$.
On the other hand, applying Taylor’s formula and the notion of boundary adjustor (2.1),
we get

(3.7) $\phi(X_{k+1})=\phi(X_{k})-\epsilon\phi_{t}(X_{k})+\nabla\phi(X_{k})\cdot(f(x_{k},\overline{a})\epsilon-\alpha_{k}^{\epsilon})$ .
(If $x_{0}$ is originally an interior point, taking a sufficient small $\delta$ makes all $a_{k}^{\epsilon}=0.$ ) Due to
the special structure of $\alpha$ as in (2.2) in Lemma 2.2 and an application of (3.5), the above
equality yields

(3.8) $\phi(X_{k+1})-\phi(X_{k})\leq\epsilon(-\phi_{t}(X_{k})+\nabla\phi(X_{k})\cdot f(x_{k}, \overline{a}))$ .
Combining (3.4), (3.6) and (3.8), we are led to

$(u^{\epsilon}- \phi)(X_{k+1})-(u^{\epsilon}-\phi)(X_{k})\geq\frac{\eta_{0}}{2}\epsilon$

and furthermore

$(u^{\epsilon}- \phi)(X_{k})-(u^{\epsilon}-\phi)(X_{1})\geq\frac{(k-1)\eta_{0}\epsilon}{2}$ for all $k=1,2,$ $\ldots$ .

It means that we can take a subsequence of $X_{k}$ , still indexed by $k$ , in $B_{\delta}$ but converging
to $(x’,t’)\neq(x_{0}, t_{0})$ . Hence, by letting $\epsilonarrow 0$ , we see

$(\overline{u}-\phi)(x’, t’)\geq(\overline{u}-\phi)(x_{0}, t_{0})$ ,

which is a contradiction to our assumption (i).
ロ

Proposition 3.4. $\underline{u}$ is a supersolution of (El).

Showing Proposition 3.4 is not largely different from what has been done for Proposi-
tion 3.3. We omit the whole process here.

The proof of Theorem 3.1 is actually completed. The last step in our proof is only a
comparison principle to obtain $\overline{u}\leq\underline{u}$ based on our three propositions above. This part
of work is classical and elaborated well in [10].

4 An Extension to Oblique Type Boundary
We mentioned before that our discrete-time optimal control setting also provides an ap-
proach of characterizing the general oblique boundary problem. In this section, our inten-
tion is to deal with the Hamilton-Jacobi equation (E2) and curve shortening flow equation
but only in the domain of a half plane, that is, we assume
(A7) $\Omega=\{(x_{1}, x_{2})\in \mathbb{R}^{2}:x_{2}>0\}$ .
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4.1 Hamilton-Jacobi Equation
We first necd to seek an oblique billiard, whose existence is suggested by the succeeding
simple example.

Under the assumption (A7), let us denote respectively by $iarrow$ and $\vec{j}$ the unit vectors in a
pair of coordinates, and then the outward normal of $\partial\Omega$ reduces to a constant vector $-\vec{j}$.
Furthermore, for any hitting point $x$ , we suppose,

(4.1) $\gamma(x)=-\sqrt{1-\theta^{2}i}-\theta\vec{j}$.

In this domain, a planar oblique billiard trajectory $S_{o}^{t}(x, v_{1})$ can be set as a straight
line with initial data $(x, v_{1})$ until it touches $\partial\Omega$ . At the hitting moment, varying from the
familiar optic reflection law, we linearly decompose the unit vector $v_{1}$ according to the
vectors $\gamma$ and $iarrow$, only oppose the sign of its component in the $\gamma$ direction, and in this way
get the reflected-off vector $v_{2}$ which will lead another straight line move. More precisely,
taking a linear transformation

(4.2) $R=(\begin{array}{ll}1 -2\frac{\sqrt{1-\theta}}{\theta}0 -1\end{array})$ ,

we can express the new type of reflection by

(4.3) $v_{2}=Rv_{1}$ ,

where $v_{1}$ satisfies $\langle v_{1},\vec{j}\}\leq 0$ .
It merits mentioning that $v_{1}$ and $v_{2}$ here should be viewed as speed vectors in stead

of directions, because $|v_{2}|\neq 1$ in general. In other words, the speed shifts at vertices,
whose total number is however evidently not more than 1 in this half plane case. For
a general domain, the number of vertices could be very large and we know little about
the singular phenomena especially the termination. This problem actually obstructs us
to handle more complicated domains. It is of great interest if one can generalize Lemma
2.1 for our application in this new circumstance.

In our special domain, the dcfinition of $S_{o}^{t}$ is

Deflnition 4.1. Assume (A7) and let $t_{0}$ be the hitting time, and then define $S_{o}^{t}(\cdot,$ $\cdot)$ :
St $\cross S^{1}arrow$ St as

(4.4) $S_{o}^{t}(x, v)=\{\begin{array}{ll}x+tv if t\leq t_{0}x+t_{0}v+(t-t_{0})Rv if t>t_{0},\end{array}$

where $R$ is given in (4.2).

Generalized from normal billiards, this oblique billiard dynamic has an analogue of
(2.2) in Lemma 2.2 as

(4.5) $\beta^{t}(x, v)$ $:=x+tv-S_{o}^{t}(x, v)=C(t)\gamma$ and $| \beta^{t}|=C(t)\leq\frac{2t}{\theta}$ ,

where $C(t)$ is a constant depending on $t$ .
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With all the preparation above, the game corresponding to (E2) can be established
almost the same as we have done in Section 3. Merely substituting $S^{t}$ with $S_{o}^{t}$ , one
confirms that the new value function $u^{e}$ satisfies

$u^{\epsilon}(x, t)$ $:= \inf_{a\in A}\{u^{\epsilon}(S_{o}^{|f(x_{1}a)|\epsilon}(x, v_{f}(x, a)), t-\epsilon)+\epsilon l(x, a)\}$

(4.6)
for all $x\in\overline{\Omega}$ and $t\geq\epsilon$ .

Then we get

Theorem 4.1. Assume $(A2)-(A7)$ . Let $u^{\epsilon}$ \’oe the value function of the game based on
obliq $ue$ billiards above and $u_{0}$ be a continuous function in St. Then $u^{\epsilon}$ converges, as $\epsilonarrow 0$ ,
uniformly on every compact $su$bset of St $\cross[0, \infty)$ to the unique viscosity solution of (E2).

Remark 4.1. The definition of solutions of (E2) appears the same as that of (El) if one
replaces $\nu$ by $\gamma$ in Definition 3.1 and 3.2.

Proof. We almost repeat the proof in Section 3. Indeed, the proof of Proposition 3.2 needs
little modification. A crucial point is that, in light of (4.5), for oblique billiard games the
distance of each move is still bounded in spite of a necessary alteration of the bound from
$\epsilon$ to $(1+2/\theta)\epsilon$ . Variants of Propositions 3.3 and 3.4 work well too and probably even
simpler in that our boundary adjustor now is not a series of normals but instead a single
oblique one. ロ

4.2 Curve Shortening Flow Equation
Another example of oblique billiards related PDEs is the Neumann boundary problem of
two-dimensional curvature flow equation:

(E3) $\{\begin{array}{ll}\partial_{t}u-\Delta u+(\nabla^{2}u\frac{\nabla u}{|\nabla u|})\cdot\frac{\nablau}{|\nabla u|}=0 in \Omega\cross(O,T),u(x, T)=u_{0}(x) in \overline{\Omega},\nabla u(x,t)\cdot\gamma(x)=0 on \partial\Omega\cross(0, T),\end{array}$

where $\gamma(x)$ is the outward oblique normal, defined in the same way as in the Section 4.1.
We again consider the problem in the half plane, i.e., $\Omega$ is assumed to satisfy (A7).

For a second-order equation like (E3), optimal control theory is generally inadequate
to give any explicit representation for its solution. Instead, we resort to the two-person
games, in which both players adopt measures adverse to their opponents. Although the
game theory is known to connect again with first-order Hamilton-Jacobi equations ([1]), it
sometimes behaves more interesting than just optimal control by two controllers. In fact,
the conflict of players could cause singularity. To be more precise, we recall in the proof of
Proposition 3.3 that Taylor expansion (equation (3)) of the test function $\phi$ only involves
first derivatives. For second-order games, the expansion is conducted up to second-order
while the first-order term come to vanish when $\epsilon$ tends to $0$ . Such heuristics being carried
out and combined with a scaled clock. deterministic game values may approximate the
solution of a second-order equation, See [8] or [3, 4, 7] for a better understanding.

We next pose the game setting in a concise manner. Start the game at $x\in\overline{\Omega}$ and
$t=0$. We keep in mind that for any $\epsilon>0$ each step brings about a movement of length
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$\sqrt{2}\epsilon$ but costs time $\epsilon^{2}$ , which certainly implies that for any time $t$ , the total of game steps
$N$ equals the largest integer less than or equal to $t/\epsilon^{2}$ .

The discrete system now writes

$y_{k}=S_{o}^{\sqrt{2}\epsilon}(y_{k-1}, b_{k}v_{k}),$ $b_{k}=\pm 1$ and $v_{k}\in S^{1}$ for all $k=1,2,$ $\ldots,$
$N$ ;

$y_{0}=x\in\overline{\Omega}$,

where $v$ and $b$ are control variables of two players who are adverse to each other on the
quantity $u_{0}(y_{N})$ . Giving the information advantage to the player in charge of control $b$ ,
we define the value function as

(4.7)
$u^{\epsilon}(x, t)= \inf_{|v_{1}|=1}\sup_{b_{1}=\pm 1}\ldots\inf_{|v_{N}|=1}\sup_{b_{N}=\pm 1}u_{0}(y(N))$

,

which, in particular, implies $u^{\epsilon}(x, t)=u_{0}(x)$ when $t\in[0, \epsilon^{2})$ . As usual, we can show that
$u^{\epsilon}$ satisfies the dynamic programming principle

(4.8) $u^{\epsilon}(x, t)= \inf_{|v|=1}\sup_{b=\pm 1}u^{\epsilon}(S_{o}^{\sqrt{2}\epsilon}(x, bv),$ $t-\epsilon^{2})$ for all $t\in[\epsilon^{2}, \infty)$ .

It follows formally by Taylor’s formula and the billiard representation (4.5) that at $(x, t)$

$0 \approx-\epsilon^{2}u_{t}^{\epsilon}+\inf_{|v|=1}\sup_{b=\pm 1}\{$ $\nabla u^{\epsilon}\cdot(\sqrt{2}\epsilon bv-\beta^{\sqrt{2}\epsilon})$

(4.9)
$+ \frac{1}{2}\nabla^{2}u^{\epsilon}(f$$2\epsilon bv-\beta^{\sqrt{2}\epsilon})\cdot(\sqrt{2}\epsilon bv-\beta^{\sqrt{2}\epsilon})\}$ .

Moreover, we assume $x\in\partial\Omega$ since the case $x\in\Omega$ is comparatively easy, as already
seen in the proof of Theorem 3.1. Viewing for the moment that $u^{\epsilon}(x, t)$ has bounded
derivatives and converges in some sense to a function $u(x, t)$ , we discuss two cases for
every subsequence, still indexed by $\epsilon$ :

1. Boundary condition dominant case: There exists $C>0$ such that

$\lim_{\epsilonarrow 0}\frac{1}{\epsilon}|\beta^{\sqrt{2}\epsilon}|=C$.

We then divide both sides of (4.9) by $\epsilon$ , pass to the limit $\epsilonarrow 0$ and get via (4.5) that

$0= \sqrt{2}\inf_{|v|=1}\sup_{b=\pm 1}|\nabla u(x, t)\cdot bv|-C\nabla u(x, t)\cdot\gamma(x)$.

Since the first term on the right hand side is zero, the classical oblique boundary condition
remains.

2. Mixed type case: Assume on the contrary to the former case

$\lim_{\epsilonarrow 0}\frac{1}{\epsilon}|\beta^{\sqrt{2}\epsilon}|=0$ .

Then the same first-order operation as above yields that the “$inf\sup$” is attained at
$v= \frac{\nabla^{\perp}u}{|\nabla u|}$ , where $\nabla^{\perp}=(-\partial_{x_{2}}, \partial_{x_{1}})$ . To avoid directly realizing the oblique boundary
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again, we additionally assume that $\nabla u(x, t)\neq 0$ . If $\pi_{e}^{1}|\beta^{\sqrt{2}\epsilon}|arrow\infty$ as $\epsilonarrow 0_{\backslash ,\prime}$ we divide
both sides of (4.9) by $|\beta^{\sqrt{2}\epsilon}|$ and send $\xi jarrow 0$ to get

$\nabla u(x, t)\cdot\gamma(x)=0$.

If $|\beta^{\sqrt{2}\epsilon}|$ is of order $o(\epsilon^{2})$ , we in turn use $\epsilon^{2}$ as the divisor and obtain the limit equation

$u_{t}- \nabla^{2}u\frac{\nabla^{\perp}u}{|\nabla u|}\cdot\frac{\nabla^{\perp}u}{|\nabla u|}=0$ at $(x, t)$ .

Even when $|\alpha^{\sqrt{2}\in}|$ exactly has the order $\epsilon^{2}$ , the limit of the divided equation then is

$u_{t}(x, t)- \nabla^{2}u(x, t)\frac{\nabla^{\perp}u(x,t)}{|\nabla u(x,t)|}\cdot\frac{\nabla^{\perp}u(x,t)}{|\nabla u(x,t)|}+M\nabla u(x, t)\cdot\gamma(x)=0$ ,

where $M$ is a positive constant. It follows that either

$u_{t}- \nabla^{2}u\frac{\nabla^{\perp}u}{|\nabla u|}\cdot\frac{\nabla^{\perp}u}{|\nabla u|}\geq 0$ and $\nabla u\cdot\gamma(x)\leq 0$ at $(x, t)$

or
$u_{t}- \nabla^{2}u\frac{\nabla^{\perp}u}{|\nabla u|}\cdot\frac{\nabla^{\perp}u}{|\nabla u|}\leq 0$ and $\nabla u\cdot\gamma(x)\geq 0$ at $(x, t)$ ,

which reveals that $u$ fulfills the boundary condition in the viscosity sense,

The preceding mechanism gives rise to the following result.

Theorem 4.2. Assume that $\Omega$ satisfies (A7) and $u_{0}$ is a continuous function in $\overline{\Omega}$ . Let
$u^{\Xi}$ be the $i^{\gamma}alue$ function of the game defined by (4.7). Then $u^{\epsilon}$ converges, as $\epsilonarrow 0$ , to
the unique viscosity solution of (E3) uniformly on compact $su$bsets $of\overline{\Omega}\cross[0, \infty)$ .

As the formal deduction is well developed above, a rigorous proof is skipped. One may
find such a proof for the Neumann boundary problem of curve shortening flow equation
in [4], which is closely related to the problem here. The existence and uniqueness of the
solution of (E3) is clarified in [13] and the comparison theorem we shall rely on is included
there as well.

We conclude finally that a deterministic game interpretation is given for our oblique
boundary problem but the domain is too special. It is of further interest to tackle more
general domains. The central part is an appropriate definition of oblique billiard dynamics.
There may be several ways to implement it and we are looking for the most sensible one.
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