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ABSTRACT. In this paper, we give backgrounds why we study the colorings
of the fixed-point free maps, and give an announcement for our recent results
which calculates the exact value of the color number of a periodic homeomor-
phism without fixed-points on a finite connected graph.

1. INTRODUCTION

Let $f$ : $Xarrow X$ be a fixed-point free map. A subset (resp. closed subset) $A$ of
$X$ is called a color (resp. closed color) of (X, f) if $f(A)\cap A=\emptyset$ . A coloring (resp.
closed coloring) of (X, f) is a finite cover $\mathcal{U}$ of $X$ consisting of colors (resp. closed
colors). This notion was introduced in $[$2$]$ and $[$ 10$]$ , but the idea of the coloring
was appeared in the $1950s$ . Since finite open covers can be shrunk to closed
covers, and finite closed covers can be swelled to open covers, the closedness of
the coloring is irrelevant. Finite open covers do equally well. Here, we can easily
verify the following facts.

Proposition 1.1. Let $X$ be a regular space and $f$ : $Xarrow X$ a fixed-point free
map.

(1) For every $x\in X$ there exists a closed neighborhood $N_{x}$ of $x$ such that $N_{x}$

is a closed color of $(X, f)$ .
(2) If $X$ is compact, then we can take a closed coloring of $(X, f)$ .

By Proposition 1.1, every fixed-point free map admits a possibly infinite cover
consisting closed colors. This explains that we are interested in finite covers only.

The minimal cardinality of a closed coloring is called the color number of $(X, f)$ ,
denoted by col(X, f) (see [1] or [3]), i.e.,

col$( X, f)=\min${ $|U|$ : $U$ is a closed coloring of (X, $f)$ }.
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Let $C=\{C_{1},$ $\ldots,$
$C_{p}\}$ is a coloring $($ resp. closed coloring) of $(X, f)$ . If we

emphasize the number of colors of $C$ , we say that $C$ is a p-coloring (resp. p-closed
coloring) of $(X, f)$ . Now, we recall old results concerning the coloring. Here,
if $X$ is a Tychonoff space for which any autohomeomorphism $f$ with no fixed
points has an extension $\beta f$ without fixed points, we say that $X$ is fixed-point free
autohomeomorphisms extends or $FAE$ (see [15]). At first, we give the following
figure which may explain backgrounds why we study the coloring of the fixed-
point free self maps, where ” col $(X, f)<\aleph_{0}arrow\varphi$ ’ means that for some suitable
(X, f) we have col $(X, f)<\aleph_{0}$ implies $\varphi$ .

col $(X,$ $f)<\aleph_{0}$ $FAE$

$Non\downarrow$

-homogeneity of $\mathbb{N}^{*}=\beta \mathbb{N}\backslash \mathbb{N}$

$\ovalbox{\tt\small REJECT}$

Fixed-point free property
of a map from $\beta \mathbb{N}$ into $\mathbb{N}^{*}$

1.1. Non-homogeneity of $\mathbb{N}^{*}$ versus coloring. During a seminar at the Uni-
versity of Wisconsin in 1955, the following question was raised: If a space $X$ is
homogeneous, does it necessarily follow that the growth $X^{*}=\beta X\backslash X$ is also
homogeneous? Under CH, W. Rudin proved that $\mathbb{N}^{*}$ is not homogeneous (see
[13] and [14] $)$ , but the question above still had remained at that time. Afterward,
in the $1960s$ , Frol\’ik showed the following theorem $($see $[$ 16, Theorem 6.25$])$ :

Theorem 1.2 $(Froli’k[8])$ . If $f$ is $a$ one-to-one mapping of an extremally dis-
connected compact space $X$ into itself, then there exists a 3-clopen coloring of
$(X\backslash$ Fix$(f),$ $f|_{X\Psi i_{J}(f)})and$ Fix$(f)=\{x$ : $f(x)=x\}$ is clopen. In particular,
col $(X\backslash$ Fix $(f),$ $f|_{X*ix(f)})\leq 3$ .

Applying Theorem 1.2, Frol\’ik showed the following (see [16, Theorem 6.33]):

Corollary 1.3 (Frol\’ik [8]). No infinite closed subspace of $N^{*}$ is homogeneous.
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1.2. Fixed-point free property versus coloring. It is well-known that $\mathbb{N}^{*}$

contains a copy of $\beta \mathbb{N}$ . In the $1960s$ , Kat\v{e}tov was interested in the following
question: Let $f$ be a homeomorphism of $\beta \mathbb{N}$ into $\mathbb{N}^{*}$ . Does such an $f$ have
fixed-points? In [11], Kat\v{e}tov showed the following:
Theorem 1.4 $($de Bruijn and Erd\"os $[$4$]$ and Kat\v{e}tov $[$ 11 $])$ . Let $X$ be a set and
$f$ : $Xarrow X$ a fixed-point free map (not necessarily continuous). Then there exists
a 3-coloring of $(X, f),$ $i.e$ ., col $($X, $f)\leq 3$ .

Applying Theorem 1.4, Kat\v{e}tov showed the following:
Corollary 1.5 (Kat\v{e}tov [11]). Let $f$ be a homeomorphism of $\beta \mathbb{N}$ into $\mathbb{N}^{*}$ . Then
$f$ has no fixed-point.

1.3. FAE versus coloring. By de $Bruijn- Erd\ddot{o}s- Kat\check{e}tov$ ’s theorem, it is natu-
rally to ask whether we can have colors as closed sets whenever $X$ is a topological
space? In the $1980s$ , Blaszczyk and Kim gave the following partial answer:
Theorem 1.6 $($Blaszczyk and Kim, $[$5$])$ . Let $X$ be a 0-dimensional paracompact
space and $f$ : $Xarrow X$ a fixed-point free homeomorphism. Then there exists a
3-clopen coloring of $($X, $f)$ , i. e., col $(X, f)\leq 3$ .

Afterward, van Douwen (see [6, Theorem 1.1]) showed the following:
Theorem 1.7 (van Douwen [6]). Let $X$ be an n-dimensional paracompact space
and $f$ : $Xarrow X$ a fixed-point free homeomorphism. Then there exists a $(2n+3)-$
closed coloring of $($X, $f)_{2}$ i. e., col $($X, $f)\leq 2n+3$ .

By Theorem 1.7, van Douwen pointed out that every finite dimensional para-
compact space is FAE:
Corollary 1.8 (van Douwen [6]). Let $X$ be a n-dimensional pamcompact space
and $f$ : $Xarrow X$ a fixed-point free homeomorphism. Then $\beta f$ is fixed-point free.
In particular, every finite dimensional paracompact space is $FAE$.

Furthermore, the following fact is known:

Theorem 1.9 (Douwen [6], Hartskamp-Mill [9]). Let $X$ be a normal space and
let $f$ : $Xarrow X$ be a fixed-point free map. Then the following conditions are
equivalent:

(1) $\beta f$ is fixed-point free.
(2) There exists a closed coloring of $(X, f)$ , i. e., col $(X, f)<\aleph_{0}$ .

On the other hand, Theorem 1.9 makes us have the following question: Is there
any “nice” space which is not FAE? For the question above, we need the following
folklore (see [7]).

Theorem 1.10 (Lusternik-Schnirelmann). If $\iota$ : $S^{n}arrow S^{n}$ is the antipodal map,
then every closed cover $y$ of $S^{n}$ such that $F\cap\iota(F)=\emptyset$ for $F\in y$ has at least
$n+2$ elements. In particular, col $(S^{n}, \iota)\geq n+2$ .
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By Theorem 1.10, van Douwen found the following example:

Example 1.11 (van Douwen [6]). Let $X$ be $\oplus_{n\in N}S^{n}$ , the topological sum of the
n-sphere $S^{n}$ , and let $f$ be the topological sum of the antipodal maps, i.e., $f|_{S^{n}}$ is
the antipodal map of $S^{n}$ for each $n\in N$ . Then $f$ is a fixed-point free autohome-
omorphism on $X$ such that $\beta f$ is not fixed-point free because col $(X, f)=\aleph_{0}$ . In
particular, $X$ is not FAE.

2. MOTIVATION

In the $1990s$ , an upper bound of the color number is improved as follows.

Theorem 2.1 (van Hartskamp and Vermeer [10]). Let $X$ be a paracompact Haus-
dorff space with $\dim X\leq n$ . If $f$ : $Xarrow X$ is a fixed-point free homeomorphism,
then col $($X, $f)\leq n+3$ .

In [12], van Mill gives a simple proof of the theorem above. By Theorem 2.1,
we can easily verify the following:

Corollary 2.2. Let $X$ be a 0-dimensional paracompact space and $f$ : $Xarrow X$ a
fixed-point free homeomorphism. If there exists an $x\in X$ such that $f^{3}(x)=x$ ,
then col $($X, $f)=3$ .

Furthermore, for a fixed-point free involution, the upper bound of the color
number can be improved.

Theorem 2.3 (Aarts, Fokkink, and Vermeer [2]). Let $X$ be a paracompact Haus-
dorff space with $\dim X\leq n$ and $f$ : $Xarrow X$ a fixed-point free homeomorphism.
If $f$ is an involution, i. e., $f^{2}(x)=x$ for all $x\in X$ , then col $($X, f $)$ $\leq n+2$ .

By Theorem 2.3, we have the following:

Corollary 2.4. Let $X$ be a 0-dimensional paracompact space and $f$ : $Xarrow X$ a
fixed-point free involution. Then col$(X, f)=2$ .

Furthermore, Theorem 2.3 indicates that Lusternik-Schnirelmann’s theorem
can be improved as follows:

Corollary 2.5 (Lusternik-Schnirelmann). If $\iota$ : $S^{n}arrow S^{n}$ is the antipodal map,
then col $(S^{n},$ $\iota)=n+2$ .

More generally, the extension of Theorem 2.1 to fixed-point free continuous
maps. However, this requires extra conditions on the space.

Theorem 2.6 (van Hartskamp and Vermeer [10]). Let $X$ be a compact Hausdorff
space with $\dim X\leq n$ . If $f$ : $Xarrow X$ is a fixed-point free continuous map, then
col$(X, f)\leq n+3$ .
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For example, the color number of the rotation through 120 degree on a circle
is 4, and the color number of the rotation through 90 degree on a circle is 3.
Moreover, let $S_{Y}^{n}$ be the n-dimensional Y-sphere and $\gamma^{n+1}$ : $S_{Y}^{n}arrow S_{Y}^{n}$ the period
3 homeomorphism defined in $[$3, p.258$]$ . Then col $(S_{Y}^{n}, \gamma^{n+1})=n+3([3$ , Theorem
4$])$ . Here, $S_{Y}^{1}$ is the bipartite cubic graph on six nodes $K(3,3)$ .

By Theorem 2.1, it is naturally to ask the question whether col$(X, f)=n+3$
or not. Then, we have concentrated the following question.

Question 2.7. Let $X$ be a finite connected graph and $f$ : $Xarrow X$ a fixed-point
free homeomorphism on X. Which is true, col $(X, f)=3$ or col$(X, f)=4$ ?

In the rest of paper, we are going to give an announcement of our recent results
which give exact values of color numbers of periodic homeomorphisms.

3. FIXED-POINT FREE HOMEOMORPHISMS WITH A PERIOD THREE POINT

Let $X$ be a connected space and $f$ : $Xarrow X$ a fixed-point free homeomorphism.
Clearly, col $(X, f)\geq 3$ . Moreover, if $f^{3}(x)=x$ for each $x\in X$ , then col $($X, $f)\geq 4$

(cf. [2, Example $7(1)]$ ). In fact, suppose that there is a coloring $\{U_{1},$ $U_{2},$ $U_{3}\}$

of $(X, f)$ . We may assume that $U_{1}\cap U_{2}\neq\emptyset$ , and let $a\in U_{1}\cap U_{2}$ . Then we
have $f(a)\in U_{3}$ , so $f^{2}(a)\in U_{1}\cup U_{2}$ . However, $f^{3}(a)=a\in U_{1}\cap U_{2}$ , we have a
contradiction.

The next proposition below asserts that if a fixed-point free homeomorphism
on an arcwise-connected space has a point of period 3, then its color number is
at least 4.

Proposition 3.1. Let $X$ be an arcwise-connected space and $f$ : $Xarrow X$ a fixed-
point free homeomorphism with $f^{n}=id_{X}$ for some $n\in \mathbb{N}$ . If $f$ has a period 3
point in $X$ , then col $($X, f $)$ $\geq 4$ .

By Theorem 2.1 and Proposition 3.1, we have the following.

Corollary 3.2. Let $X$ be a l-dimensional arcwise-connected space and $f$ : $Xarrow$

$X$ a fixed-point free homeomorphism with $f^{n}=id_{X}$ for some $n\in \mathbb{N}$ . If $f$ has a
period 3 point in $X$ , then col$(X, f)=4$ .
Example 3.3. Let $Z_{n}=\{x_{0},$ $x_{1},$ $\ldots,$

$x_{n-1}\}$ be an n-points discrete space, $Z_{m}*Z_{n}$

a join of $Z_{m}$ and $Z_{n}$ . Define $f_{n}$ : $Z_{n}arrow Z_{n}$ by $f_{n}(x_{i})=x_{i+1}$ modulo $n$ for
$i=0,$ $\ldots,$ $n-1$ and $f_{m}*f_{n}:Z_{m}*Z_{n}arrow Z_{m}*Z_{n}$ the natural map constructing
$f_{m}$ and $f_{n}$ . By Corollary 3.2, col $(Z_{3}*Z_{n}, f_{3}*f_{n})=4$ for all $n\in \mathbb{N}$ with $n\geq 2$ .

4. FIXED-POINT FREE HOMEOMORPHISMS WITHOUT PERIOD THREE POINT

In this section, we calculate the exact value of the color number for a fixed-point
free homeomorphism without period 3 points on a finite connected graph.
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For any homeomorphism $f$ : $Xarrow X$ and any periodic point $x\in X$ , we write
$n_{x}= \min\{m$ : $f^{m}(x)=x\}$ . Set $P(f)=\{x$ : $x$ is a periodic point of $f\}$ and
Per $(f)=\{n_{x} : x\in P(f)\}$ . Now, we give the following main lemma without
proof.

Lemma 4.1. Let $T$ be a triangulation of a finite connected graph $X$ and $f$ :
$Xarrow X$ a fixed-point free homeomorphism with $P(f)\neq\emptyset$ . If there exists an
$n\in \mathbb{N}\backslash \{1,3\}$ such that $n_{x}$ is a multiple of $n$ for each $x\in P(f)$ , then col$(X, f)=3$ .

Let $\{a_{1},$
$\ldots,$

$a_{m}\}\subset \mathbb{N}$ , and let us denote by $gcd\{a_{1},$
$\ldots,$

$a_{m}\}$ the great common
divisor of $a_{1},$ $a_{2},$ $\ldots,$ $a_{m}$ .

Theorem 4.2. Let $f$ : $Xarrow X$ be a fixed-point free homeomorphism on a finite
connected graph $X$ with Per $(f)\neq\emptyset$ . If $gcd(Per(f))\neq 1,3,$ then col $(X,$ $f)=3$ .

Proof. At first, we need the following fact:
Fact. Let $\{a_{1},$

$\ldots,$
$a_{m}\}$ be a subset of natural numbers. Then the following

conditions are equivalent:
(1) There exists an $n\in N\backslash \{1,3\}$ such that $a_{k}$ is a multiple of $n$ for each

$k=1$ , . . . , $m$ .
(2) $gcd\{a_{1},$

$\ldots,$
$a_{m}\}\neq 1,3$ .

By Lemma 4.1 and the fact above, the proof is complete. 口

Corollary 4.3. Let $X$ be a finite connected graph and $f$ : $Xarrow X$ a fixed-point
free homeomorphism. If there exists an $m\in \mathbb{N}\backslash \{1,3\}$ such that $f^{p}(x)\neq x$ with
$1\leq p<m$ and $f^{m}(x)=x$ for each $x\in X$ , then col $($X, $f)=3$ .
Corollary 4.4. Let $X$ be a finite connected graph and $f$ : $Xarrow X$ a fixed-point
free homeomorphism. Then col$(X, f)=3$ if either the following conditions is
fulfilled:

(1) Per $(f)$ consists of even numbers.
(2) Per $(f)$ consists of the power of some prime number $p$ except 3.

Example 4.5. (1) Let $S^{1}=\{(\cos\theta, \sin\theta)\in \mathbb{R}^{2}|0\leq\theta\leq 2\pi\}$ , and let $R_{m}$ : $S^{1}arrow$

$S^{1}$ be defined by $R_{m}(\cos\theta, \sin\theta)=(\cos(\theta+2\pi/n), \sin(\theta+2\pi/n))$ for $n\in$ N. If
$n\neq 1,3$ , by Corollary 4.3, col $(S^{1}, R_{n})=3$ . On the other hand, by Theorem 2.1
and Proposition 3.1, col $(S^{1},$ $R_{3})=4$ .
(2) Let $Z_{4}*Z_{4}$ be as in Example 3.3. By Corollary 4.4, col $(Z_{4}*Z_{4}, f)=3$

for any fixed-point free homeomorphism $f$ : $Z_{4}*Z_{4}arrow Z_{4}*Z_{4}$ . This shows
that a condition that col$(X, f)\leq n+3$ for any fixed-point free homeomorphism
$f$ : $Xarrow X$ of period $k$ for some $k\in \mathbb{N}$ does not imply $\dim X\leq n$ .
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