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1. INTRODUCTION

In this report, firstly, we consider the relationship between fibrewise compactness and
fibrewise uniformities. For this, I. M. James obtained the following result in [4].

Proposition 17.1 ([4]). Let $X$ be a fibrewise compact and fibrewise regular space over $B$ ,
with $B$ regular. Then there exists a unique fibrewise uniform structure $\Omega$ on $X$ , compatible
with the fibrewise topology, in which the members of $\Omega$ are the nbds of the diagonal.

This proposition is false in a strict sense of the definition of “fibrewise uniform structure”.
We relieve this proposition by using the notion (fibrewise entourage uniformity” in [6].

Secondary, in section 3, we introduce a new notion of fibrewise quasi-uniform spaces
which is a common extended one of both fibrewise uniform spaces ([6]) and quasi-uniform
spaces ([2]). Further we investigate the fibrewise quasi-uniformaziblity of fibrewise spaces.

Throughout this report, we use the following notation and terminology.
For a set $X$ , a function $p:Xarrow B,$ $W\subset B$ and $b\in B,$ $p^{-1}(W)=X_{W},$ $p^{-1}(b)=X_{b}$ ,

$Xw\cross x_{w}=X_{W}^{2}$ and $X\cross X=X^{2}$ . For $D,$ $E\subset X^{2},$ $D\circ E=\{(x, z)|$ ョ$y\in X$ such
that $(x, y)\in D,$ $(y, z)\in E\},$ $D^{-1}=\{(y, x)|(x, y)\in D\}$ and $D[x]=\{y|(x, y)\in D\}$ . For a
quasi-uniformity $\mathcal{U}$ on $X$ , let $\mathcal{U}^{-1}=\{U^{-1}|U\in \mathcal{U}\}$ , and $\mathcal{U}^{*}$ be the fibrewise quasi-uniformity
generated by $\{U\cap U^{-1}|U\in \mathcal{U}\}$ . For a (fibrewise) quasi-uniform space $(X, \mathcal{U}),$ $\tau(\mathcal{U}),$ $\tau(\mathcal{U}^{-1})$

and $\tau(\mathcal{U}^{*})$ are (fibrewise) topologies induced by $\mathcal{U},$
$\mathcal{U}^{-1}$ and $\mathcal{U}^{*}$ , respectively.

Let $B$ be a fixed topological space (as the base space) with a topology $\tau$ . We will use
the abbreviation $nbd(s)$ for neighborhood(s). For $b\in B,$ $N(b)$ is the family of all open nbds
of $b$ .

For other terminology and definitions in the topological category TOP and the fibrewise
category $TOP_{B}$ , one can consult [1] and [4], respectively, and for quasi-uniform spaces, see
[2].

This report is a part of our paper [3].

数理解析研究所講究録
第 1634巻 2009年 30-34 30



2. FIBREWISE COMPACTNESS AND UNIFORMITIES

In this section, we discuss the difference of fibrewise uniformities of [4] and [6], and show
that the assertion of Proposition 17.1 in [4] is false in the strict sense of definition of [4],
and relieve it from difficulty by using the notion of “fibrewise entourage uniformity” in [6].

First, we begin with the definition of fibrewise uniform structure.

Definition 2.1. Let $X$ be a fibrewise set over $B$ . By a fibrewise uniform structure on $X$

we mean a filter $\Omega$ on $X^{2}$ satisfying three conditions, as follows.
(FUl) Each $D\in\Omega$ contains the diagonal $\triangle$ of $X$ .
(FU2) For any $D\in\Omega$ and $b\in B$ , there exist $W\in N(b)$ and $E\in\Omega$ such that $X_{W}^{2}\cap E\subset$

$D^{-1}$ .
(FU3)

$ForanyD\in(X_{W}^{2}\cap E)\subset D\Omega$ .and $b\in B$ , there exist $W\in N(b)$ and $E\in\Omega$ such that $(X_{W}^{2}\cap E)0$

In the fibrewise compact spaces, I.M.James (in [4]) obtained Proposition 17.1 (see Section
1 $)$ . But this proposition is false in a strict sense of the definition of “fibrewise uniform
structure”. In fact, we can construct the following examples.

Example 2.2. Let $X=B$ be the set of all positive real numbers with the usual topology
and $p:Xarrow B$ be the identity map. Then $X$ is a fibrewise compact and fibrewise regular
space over $B$ . Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be two families of $X^{2}$ constructed as follows:

$\mathcal{B}_{1}=\{U_{e}|U_{\epsilon}=\{(x, y)|x-\epsilon<y<x+\epsilon\}, \epsilon>0\}$ ,
$\mathcal{B}_{2}=\{U_{\epsilon,a}|U_{\epsilon_{1}a}=\{(x, y)|x-\epsilon<y<\sqrt{x^{2}+a}\}, \epsilon>0, a>0\}$.

Let $\Omega_{1}$ and $\Omega_{2}$ be the filters on $X^{2}$ generated by $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ , respectively, and let $\Omega$ be
the filter on $X^{2}$ which contains all nbds of the diagonal. Then it is easy to see that $\Omega_{1},$ $\Omega_{2}$

and $\Omega$ are different each other. ロ

On the other hand, we introduced a notion of slightly stronger fibrewise uniformity
(called by fibrewise entourage uniformity) in [6] in order to discuss the relationship between
the fibrewise uniformities by using entourages and coverings. This notion of fibrewise
entourage uniformity seems to relieve the difficulty in the above.

Deflnition 2.3. ([6]) Let $X$ be a fibrewise set over $B$ . By a fibrewise entourage uniformity
on $X$ we mean a filter $\Omega$ on $X^{2}$ satisfying four conditions: (FUl), (FU2) and (FU3) in
Definition 2.1, and

(FU4) If $D\subset X^{2}$ satisfies that for each $b\in B$ , there exist $W\in N(b)$ and
$E\in\Omega$ such that $X_{W}^{2}\cap E\subset D$ , then $D\in\Omega$ .

We call $X$ with $\Omega$ a fibrewise entourage unifo space, and denoted by $(X, \Omega)$ .

It is easily verified that, in Example 2.2, $\Omega_{1}$ and $\Omega_{2}$ are fibrewise uniform structures but
not fibrewise entourage uniformities on $X$ , and $\Omega$ is a fibrewise entourage uniformity on
X.
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To relieve Proposition 17.1 ([4]), we shall introduce some notions.
For a fibrewise entourage uniformity $\Omega$ on $X$ , a subfamily $\mathcal{B}$ of $\Omega$ is said to be a fibrewise

uniform base (briefly say, fibrewise u-base) if $\mathcal{B}$ is a filter-base and satisfies the conditions
(FUl), (FU2), (FU3) and the following:

For each $D\in\Omega$ and $b\in B$ , there exist $M^{7}\in N(b)$ and $E\in \mathcal{B}$ such that
$X_{W}^{2}\cap E\subset D$ .

A subfamily $S$ of $\Omega$ is said to be a fibrewise uniform subbase (briefly say, fibrewise $uarrow$

subbase) if $S$ is a filter-base and the family of all finite intersections of members of $S$ is a
fibrewise u-base of $\Omega$ .

A family $\mathcal{G}$ of subsets of $X^{2}$ is said to be a fibrewise uniform germ (briefly say, fibrewise u-
germ) if $\mathcal{G}$ is a filter-base and satisfies the conditions (FUl), (FU2) and (FU3). A family $S$

of subsets of $X^{2}$ is said to be a fibrewise uniform subgerm (briefly say, fibrewise u-subgerm)

if $S$ is a filter-base and the family of all finite intersections of members of $S$ is a fibrewise
u-germ.

It is clear that, for a fibrewise u-germ $\mathcal{G}$ , the family
$\Omega=\{D|\forall b\in B,$ ョ$W\in N(b),$ ョ$E\in \mathcal{G}$ such that $X_{W}^{2}\cap E\subset D\}$

is a fibrewise entourage uniformity on $X$ . Then it is clear that $\mathcal{G}$ is a fibrewise u-base of
$\Omega$ . ( $\Omega$ is said to be the fibrewise entourage uniformity generated by $\mathcal{G}$ ).

In Example 2.2, $\Omega_{1}$ and $\Omega_{2}$ are fibrewise u-germs and the fibrewise entourage uniformities
generated by $\Omega_{1}$ and $\Omega_{2}$ are equal to the fibrewise entourage uniformity $\Omega$ .

We can relieve Proposition 17.1 and Corollary 17.2 ([4]) as the following forms. The
fibrewise uniform topology is the fibrewise topology induced by the (entourage) uniformity
(cf. [4] Section 13 and [6] Section 3). Proofs of theorems are almost all same as those in
[4].

Theorem 2.4. Let $X$ be a fibrewise compact and fibrewise regular space over $B$ , with $B$

regular. Then there exists a unique fibrewise entourage uniformity $\Omega$ on $X$ , compatible
with the fibrewise topology, in which the members of $\Omega$ are the nbds of the diagonal.

Theorem 2.5. Let $f$ : $Xarrow Y$ be a fibrewise function, where $X$ and $Y$ are fibrewise
entourage uniform space over $B$ , with $B$ regular. Suppose that $X$ is fibrewise compact
over $B$ in the fibrewise uniform topology. If $f$ is continuous, in the fibrewise uniform
topology, then $f$ is fibrewise uniformly continuous.

3. FIBREWISE QUASI-UNIFORMITIES

In this section, we define a new notion of fibrewise quasi-uniform spaces, and study
fibrewise quasi-uniformizability of fibrewise spaces.

Definition 3.1. Let $X$ be a fibrewise set over $B$ . By a fibrewise quasi-uniformity on $X$ ,
we mean a filter $\mathcal{U}$ on $X^{2}$ satisfying the conditions (FUl), (FU3) and (FU4) in Definitions
2.1 and 2.3.
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By a fibrewise quasi-uniform space $(X,\mathcal{U})$ we mean a fibrewise set $X$ with a fibrewise
quasi-uniformity $\mathcal{U}$ .

Fibrewise quasi-uniform spaces over a point can be regarded as a quasi-uniform spaces
in the ordinary sense. If $\mathcal{U}$ is a fibrewise quasi-uniformity, then $\mathcal{U}^{-1}$ is also a fibrewise
quasi-uniformity and is called the conjugate of $\mathcal{U}$ .

Further, note that our definition of fibrewise quasi-uniformity is an extended version of
a fibrewise entourage uniformity (Definition 2.3), and is not an extended one of fibrewise
uniform structure (Definition 2.1).

It is easily verified that for a fibrewise quasi-uniformity $\mathcal{U}$ on $X$ the filter $\mathcal{U}^{*}$ is a fibrewise
entourage uniformity on $X$ .

For a fibrewise quasi-uniformity $\mathcal{U}$ on $X$ , a subfamily $\mathcal{B}$ of $\mathcal{U}$ is said to be a fibrewise
quasi-uniform base (briefly say, fibrewise qu-base) if $\mathcal{B}$ is a filter-base and satisfies the
conditions (FUl), (FU3) and the following:

For each $U\in \mathcal{U}$ and $b\in B$ , there exist $W\in N(b)$ and $V\in \mathcal{B}$ such that
$X_{W}^{2}\cap V\subset U$ .

A subfamily $S$ of $\mathcal{U}$ is said to be a fibrewise $quasi-\uparrow 4nifonn$ subbase (briefly say, fibrewise
qu-subbase) if $S$ is a filter-base and the family of all finite intersections of members of $S$ is
a fibrewise qu-base of $\mathcal{U}$ .

A family $\mathcal{G}$ of subsets of $X^{2}$ is said to be a fibrewise quasi-uniform $ge$ (briefly say,
fibrewise qu-germ) if $\mathcal{G}$ is a filter-base and satisfies the conditions (FUl) and (FU3). A
family $S$ of subsets of $X^{2}$ is said to be a fibrewise quasi-uniform subgerm (briefly say,
fibrewise qu-subgerm) if $S$ is a filter-base and the family of all finite intersections of members
of $S$ is a fibrewise qu-germ.

It is clear that, for a fibrewise qu-germ $\mathcal{G}$ , the family
$\mathcal{U}=\{U|\forall b\in B$ , ” $V\in \mathcal{G}$ such that $V\cap X_{W}^{2}\subset U\}$

is a fibrewise quasi-uniformity on $X$ . Then it is clear that $\mathcal{G}$ is a fibrewise qu-base of $\mathcal{U}$ .
( $\mathcal{U}$ is said to be the fibrewise quasi-uniformity generated by $\mathcal{G}$ ).

Now, we prove that every fibrewise space is fibrewise quasi-uniformizable; that is, there
exists a fibrewise quasi-uniformity $\mathcal{U}$ on $X$ such that $\tau(\mathcal{U})=\tau_{X}$ . This idea is an analogous
one of Pervin quasi-uniformity [2]. Further, we refer to the definition of “quasi-uniform
space over $B$” in Park and Lee [7].

Let $X$ be a set. For every subset $A$ of $X$ , let

$S(A)$ $:=AxA\cup(X-A)\cross X$ .
Theorem 3.2. Let $(X, \tau_{X})$ be a fibrewise space over $B$ . Then $S=\{S(A)|A\in\tau_{X}\}$ is a
fibrewise qu-subgerm for a fibrewise quasi-uniformity on $X$ compatible with $\tau_{X}$ .
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Proof. For each $A\in\tau_{X}$ , it is clear that $\Delta\subset S(A)$ , and we can easily show that $S(A)\circ$

$S(A)=S(A)$ . Thus $S$ is a fibrewise qu-subgerm for a fibrewise quasi-uniformity on $X$ .
Let $\tau(\mathcal{U})$ be the topology defined by the fibrewise quasi-uniformity $\mathcal{U}$ which is generated

by the qu-subgerm $S$ . Now we shall show that $\tau(\mathcal{U})=\tau_{X}$ .
Let $O\in\tau_{X}$ and $x\in O$ . Then $x\in S(O)[x]=O$ . Thus $O\in\tau(\mathcal{U})$ .
Conversely, let $O\in\tau(\mathcal{U})$ and $x\in O$ . Then there exist $W\in N(p(x))$ and $O_{1},$

$\cdots,$ $O_{n}\in\tau$

such that $x \in\bigcap_{i=1}^{n}S(O_{i})[x]\cap X_{W}\subset O$ . In fact, If $x \not\in\bigcup_{i=1}^{n}O_{i}$ , then $X= \bigcap_{i=1}^{n}S(O_{i})[x]\subset$

$U[x]$ . Therefore $U[x]=X\in\tau_{X}$ . If $x \in\bigcup_{i=1}^{n}O_{i}$ , then $\bigcap_{i=1}^{n}S(O_{i})[x]=\bigcap_{i=1}^{n}\{O_{i}|x\in O_{i}\}$

is a $\tau$-open set and $X_{W}$ is also $\tau$-open. Thus $\bigcap_{t=1}^{n}S(O_{i})[x]\cap X_{W}$ is a $\tau$-open set. Hence
$O\in\tau$ . 口

We call the fibrewise quasi-uniformity constructed in this theorem fibrewise Pervin quasi-
uniformity.

Last, we shall note the definition of “quasi-uniform space over $B$” in Park and Lee [7].
Their definition is as follow: By a quasi-uniform space $X$ over $B$ they mean a function
$p:Xarrow B$ in which both of $X$ and $B$ are quasi-uniform spaces and $p$ is a quasi-uniformly
continuous map. This definifion is a generalization of I.M.James’ in [5]. In [5], he studied
$p:Xarrow B$ in the situation that both of $X$ and $B$ are uniform spaces and $p$ is a uniformly
continuous map. On the other hand, our definition of fibrewise quasi-uniformity in this
section is a generalization along Konami and Miwa in [6] (and James’ in [4] as an idea).

In connection with the Pervin quasi-uniformity [2], the following proposition was ob-
tained in [2].

Proposition 2.17 ([2]). For every continuous map $f$ : $(X, \tau_{X})arrow(B, \tau_{B})$ , let $\mathcal{U}$ and $\mathcal{V}$

be the Pervin quasi-uniformities on $X$ and $B$ respectively, then $f$ : $(X,\mathcal{U})arrow(B, \mathcal{V})$ is
quasi-uniformly continuous.

If we consider this proposition, we can say that every fibrewise space $X$ over $B$ can be
considered as “quasi-uniform space $X$ over $B$” (in [7]) if we introduce the Pervin quasi-
uniformities to $X$ and $B$ .
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