FIBREWISE COMPACTNESS AND UNIFORMITIES

島根大学 博士研究員 小浪吉史 (Yoshifumi Konami) 三輪拓夫 (Takuo Miwa)

1. INTRODUCTION

In this report, firstly, we consider the relationship between fibrewise compactness and fibrewise uniformities. For this, I. M. James obtained the following result in [4].

Proposition 17.1([4]). Let X be a fibrewise compact and fibrewise regular space over B, with B regular. Then there exists a unique fibrewise uniform structure Ω on X, compatible with the fibrewise topology, in which the members of Ω are the nbds of the diagonal.

This proposition is false in a strict sense of the definition of "fibrewise uniform structure". We relieve this proposition by using the notion "fibrewise entourage uniformity" in [6].

Secondary, in section 3, we introduce a new notion of fibrewise quasi-uniform spaces which is a common extended one of both fibrewise uniform spaces ([6]) and quasi-uniform spaces ([2]). Further we investigate the fibrewise quasi-uniformazibility of fibrewise spaces.

Throughout this report, we use the following notation and terminology.

For a set X, a function $p: X \to B$, $W \subset \overline{B}$ and $b \in B$, $p^{-1}(W) = X_W$, $p^{-1}(b) = X_b$, $X_W \times X_W = X_W^2$ and $X \times X = X^2$. For $D, E \subset X^2$, $D \circ E = \{(x, z) | \exists y \in X \text{ such}$ that $(x, y) \in D, (y, z) \in E\}$, $D^{-1} = \{(y, x) | (x, y) \in D\}$ and $D[x] = \{y | (x, y) \in D\}$. For a quasi-uniformity \mathcal{U} on X, let $\mathcal{U}^{-1} = \{U^{-1} | U \in \mathcal{U}\}$, and \mathcal{U}^* be the fibrewise quasi-uniformity generated by $\{U \cap U^{-1} | U \in \mathcal{U}\}$. For a (fibrewise) quasi-uniform space $(X, \mathcal{U}), \tau(\mathcal{U}), \tau(\mathcal{U}^{-1})$ and $\tau(\mathcal{U}^*)$ are (fibrewise) topologies induced by $\mathcal{U}, \mathcal{U}^{-1}$ and \mathcal{U}^* , respectively.

Let B be a fixed topological space (as the base space) with a topology τ . We will use the abbreviation nbd(s) for neighborhood(s). For $b \in B$, N(b) is the family of all open nbds of b.

For other terminology and definitions in the topological category TOP and the fibrewise category TOP_B , one can consult [1] and [4], respectively, and for quasi-uniform spaces, see [2].

This report is a part of our paper [3].

2. FIBREWISE COMPACTNESS AND UNIFORMITIES

In this section, we discuss the difference of fibrewise uniformities of [4] and [6], and show that the assertion of Proposition 17.1 in [4] is false in the strict sense of definition of [4], and relieve it from difficulty by using the notion of "fibrewise entourage uniformity" in [6].

First, we begin with the definition of fibrewise uniform structure.

Definition 2.1. Let X be a fibrewise set over B. By a fibrewise uniform structure on X we mean a filter Ω on X^2 satisfying three conditions, as follows.

(FU1) Each $D \in \Omega$ contains the diagonal Δ of X.

- (FU2) For any $D \in \Omega$ and $b \in B$, there exist $W \in N(b)$ and $E \in \Omega$ such that $X_W^2 \cap E \subset D^{-1}$.
- (FU3) For any $D \in \Omega$ and $b \in B$, there exist $W \in N(b)$ and $E \in \Omega$ such that $(X_W^2 \cap E) \circ (X_W^2 \cap E) \subset D$.

In the fibrewise compact spaces, I.M.James (in [4]) obtained Proposition 17.1 (see Section 1). But this proposition is false in a strict sense of the definition of "fibrewise uniform structure". In fact, we can construct the following examples.

Example 2.2. Let X = B be the set of all positive real numbers with the usual topology and $p: X \to B$ be the identity map. Then X is a fibrewise compact and fibrewise regular space over B. Let \mathcal{B}_1 and \mathcal{B}_2 be two families of X^2 constructed as follows:

$$\begin{aligned} \mathcal{B}_1 &= \{ U_{\epsilon} | U_{\epsilon} = \{ (x, y) | x - \epsilon < y < x + \epsilon \}, \ \epsilon > 0 \}, \\ \mathcal{B}_2 &= \{ U_{\epsilon, a} | U_{\epsilon, a} = \{ (x, y) | x - \epsilon < y < \sqrt{x^2 + a} \}, \ \epsilon > 0, a > 0 \}. \end{aligned}$$

Let Ω_1 and Ω_2 be the filters on X^2 generated by \mathcal{B}_1 and \mathcal{B}_2 , respectively, and let Ω be the filter on X^2 which contains all nbds of the diagonal. Then it is easy to see that Ω_1, Ω_2 and Ω are different each other.

On the other hand, we introduced a notion of slightly stronger fibrewise uniformity (called by *fibrewise entourage uniformity*) in [6] in order to discuss the relationship between the fibrewise uniformities by using entourages and coverings. This notion of fibrewise entourage uniformity seems to relieve the difficulty in the above.

Definition 2.3. ([6]) Let X be a fibrewise set over B. By a fibrewise entourage uniformity on X we mean a filter Ω on X^2 satisfying four conditions: (FU1), (FU2) and (FU3) in Definition 2.1, and

(FU4) If $D \subset X^2$ satisfies that for each $b \in B$, there exist $W \in N(b)$ and $E \in \Omega$ such that $X^2_W \cap E \subset D$, then $D \in \Omega$.

We call X with Ω a fibrewise entourage uniform space, and denoted by (X, Ω) .

It is easily verified that, in Example 2.2, Ω_1 and Ω_2 are fibrewise uniform structures but not fibrewise entourage uniformities on X, and Ω is a fibrewise entourage uniformity on X. To relieve Proposition 17.1 ([4]), we shall introduce some notions.

For a fibrewise entourage uniformity Ω on X, a subfamily \mathcal{B} of Ω is said to be a *fibrewise* uniform base (briefly say, *fibrewise u-base*) if \mathcal{B} is a filter-base and satisfies the conditions (FU1), (FU2), (FU3) and the following:

For each $D \in \Omega$ and $b \in B$, there exist $W \in N(b)$ and $E \in \mathcal{B}$ such that $X^2_W \cap E \subset D$.

A subfamily S of Ω is said to be a fibrewise uniform subbase (briefly say, fibrewise usubbase) if S is a filter-base and the family of all finite intersections of members of S is a fibrewise u-base of Ω .

A family \mathcal{G} of subsets of X^2 is said to be a fibrewise uniform germ (briefly say, fibrewise ugerm) if \mathcal{G} is a filter-base and satisfies the conditions (FU1), (FU2) and (FU3). A family \mathcal{S} of subsets of X^2 is said to be a fibrewise uniform subgerm (briefly say, fibrewise u-subgerm) if \mathcal{S} is a filter-base and the family of all finite intersections of members of \mathcal{S} is a fibrewise u-germ.

It is clear that, for a fibrewise u-germ \mathcal{G} , the family

$$\Omega = \{ D | \forall b \in B, \exists W \in N(b), \exists E \in \mathcal{G} \text{ such that } X_W^2 \cap E \subset D \}$$

is a fibrewise entourage uniformity on X. Then it is clear that \mathcal{G} is a fibrewise u-base of Ω . (Ω is said to be the fibrewise entourage uniformity generated by \mathcal{G}).

In Example 2.2, Ω_1 and Ω_2 are fibrewise u-germs and the fibrewise entourage uniformities generated by Ω_1 and Ω_2 are equal to the fibrewise entourage uniformity Ω .

We can relieve Proposition 17.1 and Corollary 17.2 ([4]) as the following forms. The fibrewise uniform topology is the fibrewise topology induced by the (entourage) uniformity (cf. [4] Section 13 and [6] Section 3). Proofs of theorems are almost all same as those in [4].

Theorem 2.4. Let X be a fibrewise compact and fibrewise regular space over B, with B regular. Then there exists a unique fibrewise entourage uniformity Ω on X, compatible with the fibrewise topology, in which the members of Ω are the nbds of the diagonal.

Theorem 2.5. Let $f: X \to Y$ be a fibrewise function, where X and Y are fibrewise entourage uniform space over B, with B regular. Suppose that X is fibrewise compact over B in the fibrewise uniform topology. If f is continuous, in the fibrewise uniform topology, then f is fibrewise uniformly continuous.

3. FIBREWISE QUASI-UNIFORMITIES

In this section, we define a new notion of fibrewise quasi-uniform spaces, and study fibrewise quasi-uniformizability of fibrewise spaces.

Definition 3.1. Let X be a fibrewise set over B. By a fibrewise quasi-uniformity on X, we mean a filter \mathcal{U} on X^2 satisfying the conditions (FU1), (FU3) and (FU4) in Definitions 2.1 and 2.3.

By a fibrewise quasi-uniform space (X, \mathcal{U}) we mean a fibrewise set X with a fibrewise quasi-uniformity \mathcal{U} .

Fibrewise quasi-uniform spaces over a point can be regarded as a quasi-uniform spaces in the ordinary sense. If \mathcal{U} is a fibrewise quasi-uniformity, then \mathcal{U}^{-1} is also a fibrewise quasi-uniformity and is called the *conjugate* of \mathcal{U} .

Further, note that our definition of fibrewise quasi-uniformity is an extended version of a fibrewise entourage uniformity (Definition 2.3), and is not an extended one of fibrewise uniform structure (Definition 2.1).

It is easily verified that for a fibrewise quasi-uniformity \mathcal{U} on X the filter \mathcal{U}^* is a fibrewise entourage uniformity on X.

For a fibrewise quasi-uniformity \mathcal{U} on X, a subfamily \mathcal{B} of \mathcal{U} is said to be a *fibrewise* quasi-uniform base (briefly say, *fibrewise* qu-base) if \mathcal{B} is a filter-base and satisfies the conditions (FU1), (FU3) and the following:

For each $U \in \mathcal{U}$ and $b \in B$, there exist $W \in N(b)$ and $V \in \mathcal{B}$ such that $X^2_W \cap V \subset U$.

A subfamily S of U is said to be a *fibrewise quasi-uniform subbase* (briefly say, *fibrewise qu-subbase*) if S is a filter-base and the family of all finite intersections of members of S is a fibrewise qu-base of U.

A family \mathcal{G} of subsets of X^2 is said to be a fibrewise quasi-uniform germ (briefly say, fibrewise qu-germ) if \mathcal{G} is a filter-base and satisfies the conditions (FU1) and (FU3). A family S of subsets of X^2 is said to be a fibrewise quasi-uniform subgerm (briefly say, fibrewise qu-subgerm) if S is a filter-base and the family of all finite intersections of members of S is a fibrewise qu-germ.

It is clear that, for a fibrewise qu-germ \mathcal{G} , the family

$$\mathcal{U} = \{ U | \forall b \in B, \exists V \in \mathcal{G} \text{ such that } V \cap X_W^2 \subset U \}$$

is a fibrewise quasi-uniformity on X. Then it is clear that \mathcal{G} is a fibrewise qu-base of \mathcal{U} . (\mathcal{U} is said to be the fibrewise quasi-uniformity generated by \mathcal{G}).

Now, we prove that every fibrewise space is fibrewise quasi-uniformizable; that is, there exists a fibrewise quasi-uniformity \mathcal{U} on X such that $\tau(\mathcal{U}) = \tau_X$. This idea is an analogous one of Pervin quasi-uniformity [2]. Further, we refer to the definition of "quasi-uniform space over B" in Park and Lee [7].

Let X be a set. For every subset A of X, let

$$S(A) := A \times A \cup (X - A) \times X.$$

Theorem 3.2. Let (X, τ_X) be a fibrewise space over B. Then $S = \{S(A) | A \in \tau_X\}$ is a fibrewise qu-subgerm for a fibrewise quasi-uniformity on X compatible with τ_X .

Proof. For each $A \in \tau_X$, it is clear that $\Delta \subset S(A)$, and we can easily show that $S(A) \circ S(A) = S(A)$. Thus S is a fibrewise qu-subgerm for a fibrewise quasi-uniformity on X.

Let $\tau(\mathcal{U})$ be the topology defined by the fibrewise quasi-uniformity \mathcal{U} which is generated by the qu-subgerm \mathcal{S} . Now we shall show that $\tau(\mathcal{U}) = \tau_X$.

Let $O \in \tau_X$ and $x \in O$. Then $x \in S(O)[x] = O$. Thus $O \in \tau(\mathcal{U})$.

Conversely, let $O \in \tau(\mathcal{U})$ and $x \in O$. Then there exist $W \in N(p(x))$ and $O_1, \dots, O_n \in \tau$ such that $x \in \bigcap_{i=1}^n S(O_i)[x] \cap X_W \subset O$. In fact, If $x \notin \bigcup_{i=1}^n O_i$, then $X = \bigcap_{i=1}^n S(O_i)[x] \subset U[x]$. Therefore $U[x] = X \in \tau_X$. If $x \in \bigcup_{i=1}^n O_i$, then $\bigcap_{i=1}^n S(O_i)[x] = \bigcap_{i=1}^n \{O_i | x \in O_i\}$ is a τ -open set and X_W is also τ -open. Thus $\bigcap_{i=1}^n S(O_i)[x] \cap X_W$ is a τ -open set. Hence $O \in \tau$.

We call the fibrewise quasi-uniformity constructed in this theorem *fibrewise Pervin quasi-uniformity*.

Last, we shall note the definition of "quasi-uniform space over B" in Park and Lee [7]. Their definition is as follow: By a *quasi-uniform space* X over B they mean a function $p: X \to B$ in which both of X and B are quasi-uniform spaces and p is a quasi-uniformly continuous map. This definition is a generalization of I.M.James' in [5]. In [5], he studied $p: X \to B$ in the situation that both of X and B are uniform spaces and p is a uniformly continuous map. On the other hand, our definition of fibrewise quasi-uniformity in this section is a generalization along Konami and Miwa in [6] (and James' in [4] as an idea).

In connection with the Pervin quasi-uniformity [2], the following proposition was obtained in [2].

Proposition 2.17 ([2]). For every continuous map $f : (X, \tau_X) \to (B, \tau_B)$, let \mathcal{U} and \mathcal{V} be the Pervin quasi-uniformities on X and B respectively, then $f : (X, \mathcal{U}) \to (B, \mathcal{V})$ is quasi-uniformly continuous.

If we consider this proposition, we can say that every fibrewise space X over B can be considered as "quasi-uniform space X over B" (in [7]) if we introduce the Pervin quasi-uniformities to X and B.

References

- [1] R. Engelking: General Topology, Heldermann, Berlin, rev. ed., 1989.
- [2] P. Fletcher and W.F. Lindgren: Quasi-Uniform Spaces, Lecture Notes in Pure and Applied Mathmatics, Vol.77, 1982.
- [3] M. Iwamoto, Y. Konami and T. Miwa: Fibrewise compactness and quasi-uniformities, forthcoming in journal.
- [4] I.M. James: Fibrewise Topology, Cambridge Univ. Press, Cambridge, 1989.
- [5] I.M. James: Introduction to Uniform Spaces, Cambridge Univ. Press, Cambridge, 1990.
- [6] Y.Konami and T.Miwa: Fibrewise extensions, Shanin compactification and extensions of fibrewise maps, to appear in Acta Math. Hungar.
- [7] J.W.Park and B.S.Lee: Fibrewise complete quasi-uniform spaces, JP Jour. Geometry and Topology 4(2004), 157-166.