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This is a joint study with Takashi Kimura.

We assume that all spaces are normal and all rings are commutative unless otherwise

stated. We refer the readers to [3] for dimension theory.

Let $aR$ denote the principal right ideal generated in a ring $R$ by an element $a$ .

Canfell defined the dimension of a ring as follows.

Definition 1([2]). A set of principal ideals $a_{i}R,$ $i=1,$ $\ldots,$
$n$ , is uniquely generated

if whenever $a_{i}R=b_{i}R,$ $i=1,$ $\ldots,$
$n$ , there exist elements $u_{i}$ of $R$ such that $a_{i}=b_{i}u_{i}$

$i=1,$ $\ldots,$
$n$ , and $\sum_{i=1}^{n}u_{i}R=R$ . The dimension of $R$ –denoted by $\dim R$ –is the

least integar $n$ such that every set of $n+1$ principal ideals is uniquely generated.

Let $C(X)$ be the ring of real-valued continuous functions defined on a space $X$ . For

$f\in C(X)$ , the zero set $Z(f)$ of $f$ , is defined by $Z(f)=\{x\in X : f(x)=0\}$ . Clearly

$\sum_{i=1}^{n}f_{i}C(X)=C(X)$ if and only if $\bigcap_{i=1}^{n}Z(f_{1})=\emptyset$ .
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Canfell [2] proved the following theorem.

Theorem 1 (Canfell [2]). For every space $X$ we have $\dim X=\dim C(X)$ .

We consider transfinite extensions of the dimension of a ring R.

Borst defined the transfinite dimension of a space $X$ as follows.

Definition 2(cf. [3]). For every set $L$ we denote by Fin$L$ the collection of all non-empty

finite subsets of $L$ and for every $\sigma\in$ Fin$L$ and $M\subset$ Fin$L$ let

$M^{\sigma}=\{\tau\in$ Fin$L:\sigma\cup\tau\in M$ and $\sigma\cap\tau=\emptyset\}$ .

If $\sigma=\{a\}$ , we write $M^{a}$ instead of $M^{\{a\}}$ .

For every subcollection $M$ of Fin$L$ the large order Ord$M$ of $M$ , which is an ordinal

number or the “infinite number” $\infty$ , is defined by the following conditions:

(Ol) Ord$M=0$ if and only if $M=\emptyset$ ;

(O2) Ord$M\leq\alpha$ , where $\alpha$ is an ordinal number $>0$ , if Ord$M^{a}<\alpha$ for every $a\in L$ ;

(O3) Ord$M=\alpha$ if $OrdM\leq\alpha$ and the inequality Ord$M\leq\beta$ holds for no $\beta<\alpha$ ;

(O4) Ord$M=\infty$ if Ord$M\leq\alpha$ holds for no ordinal number $\alpha$ .

Let $\Gamma$ be an index set. A collection $\tau=\{(A_{i}, B_{i}) : i\in\Gamma\}$ of pairs of disjoint closed

subsets of $X$ is called essential if for every $\{L_{i} : i\in\Gamma\}$ , where $L_{i}$ is a partition in $X$

between $A_{i}$ and $B_{i}$ for every $i\in\Gamma$ , we have
$\bigcap_{i\in\Gamma}L_{i}\neq\emptyset$

; if $\tau$ is not essential then it is

called inessential.

Definition 3(cf. [3]). For a space $X$ we denote by $L$ the set of all pairs $(A, B)$ of

disjoint closed subsets of $X$ . Let us set $M=$ { $\sigma\in$ Fin$L:\sigma$ is essential}.
The number Ord$M$ is denoted by trdimX and called the transfinite covering di-

mension of a space $X$ .

Arenas defined transfinite extensions of the dimension of a ring R.

Deflnition 4([1]). For a ring $R$ we denote by $L$ the set of principal ideal $aR$. Let us

set $M=$ { $\sigma\in$ Fin$L:\sigma$ is not uniquely generated}.
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The number Ord$M$ is denoted by trdimR and called the transfinite dimension of a
ring $R$ .

Arenas [1] proved the following theorem, which is a partial transfinite generalization

of Canfell’s theorm.

Theorem 2 (Arenas [1]). For every space $X$ we have trdimX $\leq tr\dim C(X)$ .

Arenas asked whether the equality in theorem 2 is true.

We gave a negative answer.

Theorem 3. For every metric space $X$ with trdimX $\geq\omega$ we have trdimC(X) $=\infty$ .

We redefine Arenas’ definition as follows and prove the transfinite dimensions of

the space $X$ to be equal to the transfinite dimensions of the ring $C(X)$ .

Definition 5. Let $\Gamma$ be an index set. A collection $\sigma=\{(a_{i}, b_{i}) : i\in\Gamma\}$ of pairs of

principal ideals of $R$ is called essential if for every $\{u_{i} : i\in\Gamma\}$ , where $u_{i}\in R$ and

$a_{i}=b_{i}u_{i}$ for every $i\in\Gamma$ , we have
$\sum_{i\in\Gamma}u_{i}R\neq R$

; if $\sigma$ is not essential then it is called

inessential.

For a ring $R$ we denote by $L$ the set of all pairs $(a, b)$ of principal ideals of $R$ with

$aR=bR$. Let us set $M=$ { $\sigma\in FinL:\sigma$ is essential}.
The number Ord$M$ is denoted by trdimR and called the transfinite dimension of a

ring $R$ .

Theorem 4. For every space $X$ we have trdimX $=tr\dim C(X)$ .
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