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Let $f$ be a real-valued function defined on a non-empty set $S$ . If $f$ satisfies the following
conditions, then we call that $f$ is a discrete distribution on $S$ :

(1) $0\leq f(s)\leq 1$ for any $s\in S$ .
(2) $\Sigma\{f(s) : s\in S\}\leq 1$ .
In case $\Sigma\{f(s) : s\in S\}=1$ is satisfied in (2), $f$ is called to be a discrete probability

distribution on $S$ . Let the support $spt(f)$ of $f$ be the set $\{s\in S:f(s)>0\}$ . Obviously,
$spt(f)$ is a countable subset of $S$ for any discrete distribution $f$ .

Let $DD(S)$ and $DPD(S)$ be the set of all discrete distributions and the set of all
discrete probability distributions on a set $S$ respectively. $DPD(S)$ is sometimes denoted
by $\Sigma_{S}$ . We consider the topology of pointwise convergence on $DD(S)$ . This topology on
$DD(S)$ is the relative topology induced by naturally embedding $DD(S)$ into the power
space $I^{|S|}$ of the unit interval $I=[0,1]$ .

It is obvious that $DD(S)$ is a closed subset of $I^{|S|}$ , and hence $DD(S)$ is compact. $DD(S)$

is Fr\’echet as a subspace of a $\Sigma$-product of the unit intervals. A cardinal $\kappa$ is considered
as the topological space with the usual interval topology.

Let us call a non-decreasing continuous function $f$ : $\kappaarrow[0,1]$ with $f(O)=0$ to
be a cumulative, discrete distribution on $\kappa$ . Let $CDD(\kappa)$ be the set of all cumulative,
discrete distributions on $\kappa$ . On $CDD(\kappa)$ , we consider also the topology of pointwise
convergence. The space CDPD $(\kappa)$ is the subspace of $CDD(\kappa)$ consisting of functions
satisfing $hm_{\alphaarrow\kappa}f(\alpha)=1$

Fact 1 (Dydak). A topological space $X$ is metrizable if and only if $X$ is embedded in
$DPD(S)$ for some set S. In other words, for a cardind $\kappa_{l}DPD(\kappa)$ is universd for

$t$

metrizable spaces of weight $\leq\kappa$ .

Theorem 1 The spaces $DPD(\kappa)$ and CDPD $(\kappa)$ are homeomorphic.
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Proof. For $f\in DPD(\kappa)$ , let $F:\kappaarrow[0,1]$ be the function defined by

$F( O)=0,F(\alpha)=\sum\{f(\beta):\beta<\alpha\}$ for $0<\alpha<\kappa$ .
Then the map $\Psi$ : $DPD(\kappa)arrow CDPD(\kappa)$ defined by $\Psi(f)=F$ is obviously one-to-one
and onto.

Claim 1. $\Psi$ is continuous.

$finitesubsetAofspt(f)suchthat\sum_{\circ\epsilon A}f(a)>l-\frac{\Psi\epsilon}{4}.AssumethatAiscomposedofnLetfbeanarbitrarypointinDPD(\kappa)andlet(f)=FForany\epsilon>0,th\alpha eisa$

elements. Let $\delta=\frac{e}{4n}$ and $g\in DPD(\kappa)$ be an arbitrary point such that $|g(a)-f(a)|<\delta$

for every $a\in A$ . Then
$1- \frac{\epsilon}{2}<\sum_{a\in A}g(a)\leq 1$

,

and hence $\sum_{a\not\in A}g(a)<\frac{\epsilon}{2}$
. Further, for any $B\subset A$

$| \sum_{b\in B}g(b)-\sum_{b\in B}f(b)|\leq\sum_{b\in B}|g(b)-f(b)|\leq|B|\frac{\epsilon}{4n}<\frac{\epsilon}{4}$ .

Then for any $\alpha<\kappa$ ,

$| \sum_{\beta<\alpha}g(\beta)-\sum_{\beta<\alpha}f(\beta)|\leq|\sum_{\beta<\alpha,\beta\not\in A}g(\beta)|+|\sum_{\beta<a,\beta\not\in A}f(\beta)|+|\sum_{\beta<\alpha,\beta\epsilon A}g(\beta)-\sum_{\beta<\alpha,\beta\in A}f(\beta)|$

$< \frac{\epsilon}{2}+\frac{\epsilon}{4}+\frac{\epsilon}{4}=\epsilon$ .
This means that for $G=\Psi(g),$ $|G(\alpha)-F(\alpha)|<\epsilon$ for every $\alpha<\kappa$ , and hence $\Psi$ is
continuous.

Claim 2. $\Psi^{-1}$ is continuous.
Let $F\in CDPD(\kappa)$ and $f=\Psi^{-1}(F)$ . Notice that $f(\alpha)=F(\alpha+1)-F(\alpha)$ . For

any $\epsilon>0$ , there is a subset $A$ of $spt(f)$ such that $\sum_{a\in A}f(a)>1-\frac{\epsilon}{4}$ . We can assume

that $A$ consists of $n$ elements. Let $\delta=\frac{\epsilon}{4n}$ . Suppose that $G\in CDPD(\kappa)$ satisfies that
$|G(a)-F(a)|<\delta$ for any $a\in A\cup A+1$ , where $A+1=\{a+1 : a\in A\}$ . Then $g=\Psi^{-1}(G)$

satisfies
$|g(a)-f(a)|=|(G(a+1)-G(a))-(F(a+1)-F(a))|$

$\leq|G(a+1)-F(a+1)|+|G(a)-F(a)|<2\delta=\frac{2\epsilon}{4n}\leq\epsilon$

for any $a\in A$ . Since
$\sum_{a\in A}g(a)\geq\sum_{a\in A}f(a)-n\frac{2\epsilon}{4n}>1-\frac{3\epsilon}{4}$ ,

$|g(b)-f(b)|<|g(b)|+|f(b)|< \frac{u}{4}+\frac{e}{4}=\epsilon$ for any $b\not\in A$ . This shows that $\Psi^{-1}$ is
continuous.
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We assum$e$ that all topological spaces considered here are Tychonoff. What is the class
of topological spaces embedded in $DD(S)$ for some set $S$ ? This is the theme of this
note. If $S$ is an uncountable set, then the constant zero function $0$ is in $DD(S)$ and the
pseudo-character at $0$ in $DD(S)$ is uncountable. That is, $DD(S)$ is not metrizable. It
is obvious that $DPD(S)$ is a dense metrizable subspace of $DD(S)$ . A space embedded
in $DD(S)$ for some set $S$ is called a DD-space here. That is, $X$ is a DD-space if $and_{r}$

only if there exists a family $\{f_{\alpha} : \alpha\in\kappa\}$ of continuous functions $homX$ to $I$ such that
$\Sigma\{f_{\alpha}(x) : \alpha\in\kappa\}\leq 1$ for each $x\in X$ and the topology of $X$ coincides with the topology
induced by $\{f_{\alpha} : \alpha\in\kappa\}$ .

Theorem 2 (0) Every metrizable space is a DD-space.
(1) If $Y$ is a subspce of a DD-space $X$ , then $Y$ is a DD-space.
(2) If $\{X_{\alpha} : \alpha\in A\}$ is a family of DD-spaces, then the topological $sum\oplus\{X_{a} : \alpha\in A\}$

is a DD-space.
$(S)$ If $\{X_{n} : n\in\omega\}$ is a countable family of DD-spaces, then the product space $\prod\{X_{n}$ :

$n\in\omega\}$ is a DD-space.
(4) Every DD-space has a compactification which is also a DD-space.

Theorem 3 Let $X$ be a DD-space. Then there is a reabvalued jfUnction $\phi:Xarrow I$ such
that the topology induced by the topology of $X$ and $\{\phi^{-1}((u,v))$ : $(u,v)$ is an open intervd
in $[0,1]\}$ is metrizable. Especially, let $\phi:DD(S)arrow I$ be the fi’nction defined by $\phi(f)=$

$1-\Sigma\{f(s) : s\in S\}$ . Then the space with the topology induced by the topology of $DD(S)$

and inverse images of open intervals by $\phi$ is homeomorphic to $DPD(S)$ .

Let us recall that a compact space $K$ is called uniformly Eberlein compact if it is homeo-
morphic to a weakly compact subsets of a ffilbert space. The space $c_{0}(\Gamma)$ , for a set $\Gamma\neq\emptyset$ ,
is defined by

$c_{0}(\Gamma)=\{x\in R^{\Gamma}:|\{\gamma\in\Gamma:|x(\gamma)|>\epsilon\}|<\omega,\forall\epsilon>0\}$ .
The norm on $c_{0}(\Gamma)$ is the $\sup$ norm. The weak topology on a weakly compact subset of
$c_{0}(\Gamma)$ is exactly the topology of pointwise convergence.

Fact 2 (Benyamini-Starbird). A compact space $K$ is uniformly Eberlein compact if and
only if $K$ is homeomorphic to a subset $K$“ of $c_{0}(\Gamma)$ for some $\Gamma$ with the property that for
every $\epsilon>0$ there exists $N(\epsilon)\in\omega$ such that for every $x\in K’’$ ,

$|\{\gamma\in\Gamma:|x(\gamma)|>\epsilon\}<N(\epsilon)$ .
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We say that a family $A$ of subsets of a set $X$ is boundedly point finite if there exists some
$n\in\omega$ such that for every $x\in X$ ord$(x, A)\leq n$ . A. family $A$ of subsets of $X$ is said to
be $\sigma$-boundedly point finite if $A= \bigcup_{k\in\omega}\mathcal{A}_{k}$ such that each family $\mathcal{A}_{k}$ is boundedly point
finite. A family $A$ of subsets of a set $X$ is called $T_{0}$-separating if whenever $x,y\in X$ are
distinct, then some $A\in A$ contains exactly one of $x$ and $y$ .

Fact 3 (Benyamini-Rudin- Wage). A compact space $K$ is uniformly Eberlein compact if
and only if $K$ has a $\sigma$-boundedly point finite $T_{0}$ -separating family by cozero-sets.

Theorem 4 The space $DD(S)$ is uniformly Eberlein compact for any set $S$ .
In fact, let $Q’$ be the set of all rational numbers in $[0,1]$ . For each $q\in Q’$ and $s\in S$ ,

let
$U.(q)=\{f\in DD(S):f(s)>q\}$ .

Then
$A=\{U.(q):s\in S\}$

is a boundedly point finite famly by cozero-sets in $DD(S)$ . Further, let

$A= \bigcup_{\sigma\epsilon Q’}\mathcal{A}_{q}$
.

Then $A$ is a $\sigma$-boundedly point finite $T_{0}$-separating family by cozero-sets.

Theorem 5 Every uniformly Eberlein compact space is a DD-space.

Let $A= \bigcup_{n\in\omega}\mathcal{A}_{n}$ be a $\sigma$-boundedly point finite $T_{0}$-separating family by cozero-sets in
a uniformly Eberlein compact space $X$ . For each $n\in\omega$ , let $k_{\iota}$ be a positive integer such
that ord $(x,A_{n})\leq k_{r\iota}$ for any $x\in X$ . For each $U\in \mathcal{A}$ , we take a $[0,1]$-valued continuous
function $f_{U}$ on $X$ with $f_{U}^{-1}((0,1])=U$ . Further, the function $g_{U}$ is defined by

$g_{U}= \frac{1}{2^{n}k_{\mathfrak{n}}}f_{U}$ .

Let $\mathcal{F}_{n}=\{g_{U}:U\in A_{n}\}$ and $\mathcal{F}=\bigcup_{n\epsilon\omega}\mathcal{F}_{n}$ . Then the map $\Phi$ : $Xarrow[0,1]^{A}$ defined by

$\Phi(x)=\{g_{U}(x):U\in A\}$

is a topological embedding of $X$ into $DD(\mathcal{A})$ . Note that

$\sum_{U\in A}g_{U}(x)=\sum_{n=1}^{\infty}\frac{1}{2^{n}k_{n}}\sum_{U\epsilon\wedge}f_{U}(x)\leq 1$ .
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Corollary 1 $DD(\kappa)$ is universd for uniformly Eberlein compact spaces of weight $\leq\kappa$ .

The following two theorems may be proved under more general conditions. But, we give
direct proofs here.

Theorem 6 Let $X$ be a DD-space. If $X$ is countably compact, then $X$ is compact.

Proof. For each $r\leq 1$ , let $D_{\leq f}$ (resp. $D_{<r}$ ) be the subset of of $DD(S)$ consisting of
all $f$ with $\Sigma\{f(s) : s\in S\}\leq r$ (resp. $\Sigma\{f(s)$ : $s\in S\}<r$ ). It suffices to show that
$X$ is Lindelof. Assume that $X$ is not Lindelof. Then there is an open cover $\mathcal{U}$ with no
countable subcover. Let $X_{\leq}$. $=X\cap D_{\leq}$ . and $X_{<r}=X\cap D_{<r}$ for $0\leq r\leq 1$ . Then there
exists

$r_{0}= \sup${$r:X_{\leq t}$ is covered by a countable subfamily of $\mathcal{U}$ }.
It foUows that there exists a countable subfamily $\mathcal{U}_{0}$ of $\mathcal{U}$ which covers $X_{<ro}$ It is also true
that $X_{\leq f}0$ is covered by $\mathcal{U}_{0}$ , since $X_{=\prime 0}=X_{\leq\prime}0-X_{<r0}$ is metrizable. Further, let

$r_{1}= \inf\{r:(X-\cup \mathcal{U}_{0})\cap X_{\leq r}\neq\emptyset\}$.
Then $r_{0}=r_{1}$ must be satisfied. Let $F_{n}=X_{\leq(ro+1/n)}-\cup \mathcal{U}_{0}$ for $n=1,2,$ $\cdots$ . Then this
is a decreasing sequence of closed subsets of $X$ such that $\cap\{F_{n} : n=1,2, \cdots\}=\emptyset$ . This
contradicts the countable compactness of $X$ .

Theorem 7 For a DD-space $X$ , the cardindities $c(X),d(X)$ and $w(X)$ are all the same.

Proof. Let $d(X)=\lambda$ and $D$ be a dense subset of $X$ such that $|D|=\lambda$ . Then the
cardinality of $A=\cup\{spt(x):x\in D\}$ is $\lambda$ . Since $D$ is a subset of the compact set

$(DD(S)\cap I^{A})x\{0\}^{S-A}$

in $DD(S),$ $X$ must be a subspace of $I^{A}x\{0\}^{S-A}$ whose weight is $\lambda$ . It follows that
$d(X)=w(X)$ .

Next, we will show that $d(X)\leq c(X)$ . Of course, we can assume that $d(X)$ is uncount-
able. Let $\kappa\leq d(X)$ be an arbitrary uncountable regular cardinal. then there exists a trans-
finite sequence $\{x_{\alpha} : \alpha<\kappa\}$ of points in $X$ such that $spt(x_{\alpha})-\cup\{spt(x_{\beta}) : \beta<\alpha\}\neq\emptyset$ .
Further, we can fix a positive integer $k$ such that there exists $u_{\alpha}\in spt(x_{\alpha})-\cup\{spt(x_{\beta})$ :
$\beta<\alpha\}$ with $x_{\alpha}(u_{\alpha})>1/k$ for any $\alpha<\kappa$ . Let $U_{\alpha}=\{x\in X : x(u_{\alpha})>1/k\}$ . Then
the family $\mathcal{U}=\{U_{\alpha} : \alpha<\kappa\}$ satisfies that each intersection of $k$ members of $\mathcal{U}$ is empty.
Hence there must be a disjoint family consisting of $\kappa$ non-empty open subsets.

As mentioned previously, the spaces $DPD(\kappa),CDPD(\kappa)$ are homeomorphic for any
cardinal number $\kappa$ . However $DD(\kappa)$ and $CDD(\kappa)$ are not homeomorphic for an uncon-
table cardinal $\kappa$ . In fact, $DD(\kappa)$ is compact. On the other hand, $CDD(\kappa)$ is not compact.
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Moreover, let $IDD_{0}(\kappa)$ be the space of all non-decreasing $[0,1]$-valued functions $f$ (which
need not be continuous) such that $f(O)=0$ , with the topology of pointwise convergence.
Then $IDD_{0}(\kappa)$ is a compactification of $CDD(\kappa)$ . Further,

Theorem 8 $CDD(\kappa)$ is not a DD-space for any uncountable cardind $\kappa$ .

For each $\alpha<\kappa$ , let $f_{\alpha}\in CDD(\kappa)$ be the function defined by

$f_{\alpha}(\beta)=0$ for $\beta\leq\alpha$ , $f_{\alpha}(\beta)=1$ for $\beta>\alpha$ .

Then $A=\{f_{\alpha} ; \alpha\in\kappa\}$ is a discrete subset of $CDD(\kappa)$ and the constant zero function $0$

is in the closure of this set. But there is no sequence in $A$ converging to $0$ , which means
that $CDD(\kappa)$ is not Fr\’echet. Hence $CDD(\kappa)$ is not a DD-space.

Theorem 9 There is $a$ one-to-one continuous map flvm $CDD(\kappa)$ onto $DD(\kappa)$ .

In fact, the map $\Psi$ : $CDD(\kappa)arrow DD(\kappa)$ defined by $\Psi(F)(\alpha)=F(\alpha+1)-F(\alpha)$ is
one-to-one, onto and continuous.

Let us call a topological space $X$ to be a CDD-space if $X$ is homeomorphic to a subspace
of $CDD(\kappa)$ for some cardinal $\kappa$ .

Theorem 10 (1) Every metrizable space is a CDD-space.
(1) If a CDD-space $X$ is compact, then $X$ is a DD-space.
(2) If $X$ is a CDD-space, then there is a $\sigmaarrow boundedly$ point-finite, $T_{0}$ -separating cozero-

family.

Hence, it follows that there is a CDD-space $X$ such that every compactification of $X$ is
not a CDD-space.
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