Determinacy of Wadge classes in the Baire space and simple iteration of inductive definition

Takako Nemoto*(根元 多佳子) Mathematical Institute, Tohoku University

Abstract

In [4], we introduced determinacy schemata motivated by Wadge classes in descriptive set theory. In this paper, we prove that a simple iteration of Σ_1^1 inductive definition implies $\text{Sep}(\Delta_2^0, \Sigma_2^0)$ determinacy in the Baire space over RCA₀.

1 Introduction

We consider the following type of game: Two players, say player I and player II, alternately choose an element of X to form an infinite sequence f of elements of X. Both players can refer the history of their plays. Player I wins iff a given formula $\varphi(f)$ of f holds. Player II wins iff I does not win.

In [4], we introduced various determinacy schemata motivated by Wadge classes in descriptive set theory and we investigated the strength of them in the Cantor space, i.e., the case of $X = \{0, 1\}$ in the framework of *reverse*

^{*}partially supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Culture, Sports, Science and Technology, Japan

mathematics (cf. [6]). Actually, it is proved that there is a hierarchy of determinacy between Σ_2^0 determinacy and $\Sigma_2^0 \wedge \Pi_2^0$ determinacy, the determinacy of games defined by conjunctions of Σ_2^0 formulae and Π_2^0 formulae.

It is natural to ask whether we have a proper hierarchy between Σ_2^0 and $\Sigma_2^0 \wedge \Pi_2^0$ determinacies also in the Baire space, i.e., the case of $X = \mathbb{N}$.

In this paper, we will have a partial answer to it. We will give a rough sketch of the proof that a simple iteration of inductive definition implies $\text{Sep}(\Delta_2^0, \Sigma_2^0)$ determinacy in the Baire space.

At the end of this paper, we will conjecture that the simple iteration of inductive definition have actually the same strength as a single inductive definition.

2 Preliminaries

2.1 The base theory RCA_0

The language L₂ of second order arithmetic consists of $+, \cdot, 0, 1, =, <$, number variables x, y, ..., propositional connectives and number quantifiers, set variables X, Y, ..., set quantifiers and \in . Terms and formulae are defined in the usual way. A formula is Π_0^0 , Σ_0^0 or Δ_0^0 if it is built up from atomic formulae by propositional connectives and bounded number quantifiers $\forall x < t$ and $\exists x < t$. A Σ_n^0 (resp. Π_n^0) formula is one consisting of n number quantifiers beginning with an existential (resp. universal) one followed by a Π_0^0 formula. A formula is Σ_0^1 , Π_0^1 or arithmetical if it does not contain set quantifiers. A Σ_n^1 (resp. Π_n^1) formula is one consisting of n set quantifier beginning with an existential (resp. Π_n^1) formula is one consisting of n set quantifier beginning with an existential (resp. Π_n^1) formula is one consisting of n set quantifier beginning with an existential (resp. Π_n^1) formula is one consisting of n set quantifier beginning with an existential (resp. Π_n^1) formula is one consisting of n set quantifier beginning with an existential (resp. Π_n^1) formula is one followed by a Π_0^1 formula.

Note that formulae in these classes may have set parameters. In this paper, we consider only boldface classes, i. e., they allow formulae to have set parameters.

We use the following base theory.

Definition 2.1 (RCA_0). RCA_0 is the formal system in the language L_2 which

consists of the axioms of discrete ordered semi-ring for $(\mathbb{N}, +, \cdot, 0, 1, <)$ plus the schemata of Σ_1^0 induction and of Δ_1^0 comprehension:

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists Y \forall n(\varphi(n) \leftrightarrow n \in Y),$$

where $\varphi(x)$ is a Σ_1^0 formula without free occurrences of Y, and where $\psi(x)$ is a Π_1^0 formula.

In [4], we use a weaker base theory RCA_0^* , which consists of the axioms of discrete ordered semi-ring with exponentiation, Δ_1^0 comprehension and Σ_0^0 induction. Roughly speaking, RCA_0^* can be regarded as the theory RCA_0 minus Σ_1^0 induction. In [4], it is shown that, over RCA_0 , Σ_1^0 comprehension is equivalent to $(\Sigma_1^0 \wedge \Pi_1^0)$ -Det^{*}, which asserts the determinacy of games defined by conjunctions of Σ_1^0 formulae Π_1^0 formulae. Because RCA_0^* proves that Σ_1^0 comprehension implies Σ_1^0 induction, when we consider equivalences between determinacy schemata stronger than $(\Sigma_1^0 \wedge \Pi_1^0)$ -Det^{*} and set existence axiom stronger than Σ_1^0 comprehension, we need not to care about the difference between base theories RCA_0 and RCA_0^* .

Notation 2.2 (sequences). The set of all infinite sequences from X (i.e., functions from N to X) is denoted by $X^{\mathbb{N}}$. We call $2^{\mathbb{N}} = \{0,1\}^{\mathbb{N}}$ the *Cantor space* and $\mathbb{N}^{\mathbb{N}}$ the *Baire space*. The set of all finite sequences from X is denoted by $X^{<\mathbb{N}}$. Note that the *empty sequence*, denoted by $\langle \rangle$, belongs to $X^{<\mathbb{N}}$.

Fix any sequences s and t in $X^{\mathbb{N}}$. |s| denotes the length of s and s(i) denotes the (i + 1)-th element of s for i < |s|. The concatenation of s and t, denoted by s * t, is $\langle s(0), s(1), ..., s(|s|-1), t(0), t(1), ..., t(|t|-1) \rangle$. If $f \in X^{\mathbb{N}}$, s * f denotes $\langle s(0), s(1), ..., s(|s|-1), f(0), f(1), ..., f(n), ... \rangle$. For $s \in X^{<\mathbb{N}}$ and $n \leq |s|, s[n]$ is the *n*-th initial segment of s, i. e., $\langle s(0), ..., s(n-1) \rangle$. If f is an infinite sequence, f[n] denotes $\langle f(0), ..., f(n-1) \rangle$. If s = t[k] for some $k \leq |t|$, s is called an initial segment of $t, s \subseteq t$ for notation. If $n \leq |s|, s \ominus n$ is the sequence with the first n elements removed from s, i. e., $\langle s(n), s(n+1), ..., s(|s|-1) \rangle$. If f is in $X^{\mathbb{N}}$, $f \ominus n$ is g defined by g(k) = f(n+k) for $k \in \mathbb{N}$. For $s \in X^{<\mathbb{N}}$, $(s)_X$ denotes the set $\{t \in X^{<\mathbb{N}} : s \subseteq t\}$.

2.2 Determinacy in second order arithmetic

In this paper, a game is a formula $\varphi(f)$ with a distinguished function variable f. Since L₂ does not formally have function variables, $\varphi(f)$ is an abbreviation of $\varphi(X) \wedge \forall n \exists m((n,m) \in X \land (\forall l(n,l) \in X \rightarrow m = l))$. Therefore, the complexity of the formula $\varphi(f)$ is not always the same as $\varphi(X)$. However, we do not need to care about this point when we work in a system stronger than ACA₀, the system RCA₀ plus arithmetical comprehension

$$\exists X \forall n (n \in X \leftrightarrow \psi(n)),$$

where $\psi(n)$ is an arithmetical formula in which X does not occur freely.

For a given formula $\varphi(f)$ with a distinguished function variable $f \in X^{\mathbb{N}}$, a game $\varphi(f)$ in $X^{\mathbb{N}}$ is defined as follows: Two players, say player I and player II, alternately choose an element x in X to form $f \in X^{\mathbb{N}}$ which is called the resulting play. Player I wins if and only if $\varphi(f)$ holds. Player II wins if and only if player I does not win. In this paper, we assume that player I is male and that player II is female.

We regard a class Γ of formulae with a distinguished function variable as a class of games.

Notation 2.3 (strategy). For a game in $X^{\mathbb{N}}$, a strategy σ for player I (or II) is a function assigning an element of X to each even-length (resp. odd-length) $t \in X^{<\mathbb{N}}$. S_{I}^{X} (resp. S_{II}^{X}) is the set of all the strategies for player I (resp. II) in a game in $X^{\mathbb{N}}$. Note that S_{I}^{X} and S_{II}^{X} can be regarded as $\mathbb{N}^{\mathbb{N}}$ if $X = \mathbb{N}$ and $2^{\mathbb{N}}$ if $X = \{0, 1\}$ in RCA₀, by a suitable coding of finite sequences. If players I and II follow strategies σ and τ respectively, the resulting play is uniquely determined and denoted by $\sigma \otimes \tau$.

For any strategy τ for player II, k^{τ} is the finite play of length 2k in which player I plays 0 at all his turns and in which player II plays following τ . For example, 2^{τ} is the sequence $\langle 0, \tau(\langle 0 \rangle), 0, \tau(\langle 0, \tau(\langle 0 \rangle), 0 \rangle) \rangle$.

A strategy σ for a player is a *winning strategy* if the player wins $\varphi(f)$ as long as he or she plays following it. The assertion that σ is a winning strategy for player I (resp. II) in game $\varphi(f)$ in $X^{\mathbb{N}}$ can be written $\forall \tau \in \mathcal{S}_{\mathrm{II}}^X \varphi(\sigma \otimes \tau)$ (resp. $\forall \tau \in \mathcal{S}_{\mathrm{I}}^X \neg \varphi(\tau \otimes \sigma)$). A game $\varphi(f)$ is *determinate* if one of the players has a winning strategy. For a game $\varphi(f)$ in $X^{\mathbb{N}}$, we use the following abbreviation:

$$\mathsf{Det}^{X}[\varphi] \equiv \exists \sigma \in \mathcal{S}_{\mathrm{I}}^{X} \forall \tau \in \mathcal{S}_{\mathrm{II}}^{X} \varphi(\sigma \otimes \tau) \lor \exists \tau \in \mathcal{S}_{\mathrm{II}}^{X} \forall \sigma \in \mathcal{S}_{\mathrm{I}}^{X} \neg \varphi(\sigma \otimes \tau),$$

which asserts that $\varphi(f)$ is determinate. The following schema of Γ determinacy asserts that all the Γ games are determinate.

 Γ determinacy in $X^{\mathbb{N}}$: $\mathsf{Det}^{X}[\varphi]$ for any Γ game $\varphi(f)$ in $X^{\mathbb{N}}$.

Det^{*} and Det abbreviate determinacy in the Cantor space and that in the Baire space, respectively.

An s-strategy for player I (or II) is a function σ which assigns an element of X to each even-length (resp. odd-length) $t \in (s)_X$.

For s-strategies σ for player I and τ for player II, $\sigma \otimes \tau$ denotes the sequence f such that f(i) = s(i) for all i < |s|, $f(2i) = \sigma(f[2i])$ for all $2i \ge |s|$, $f(2i+1) = \tau(f[2i+1])$ for all $2i+1 \ge |s|$, in other words, the play, starting from s, in which player I follows σ and player II follows τ . Note that if $s = \langle \rangle$, the definition of $\sigma \otimes \tau$ coincides with the previous definition. For a game $\varphi(f)$ in $X^{\mathbb{N}}$, a s-strategy σ for player I (or II) is winning if, for every s-strategy τ for player II (resp. I), $\varphi(\sigma \otimes \tau)$ (resp. $\neg \varphi(\tau \otimes \sigma)$). Player I (or II) wins at s in $\varphi(f)$ if (1) there is a winning s-strategy for player I (resp. II), or equivalently, (2) either (i) |s| is even and player I (resp. II) has a winning strategy in $\varphi(s * f)$ or (ii) |s| is odd and player II (resp. I) has a winning strategy in $\neg \varphi(s * f)$. Note that in (ii) of (2), the role of two players are exchanged.

3 Inductive definition and determinacy

First, we see the notion of *inductive definition* in set theory. An operator $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is in a class \mathcal{C} of formulae if $\Gamma(X)$ is equivalent to a formula

in \mathcal{C} . For a operator $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ and a set V, consider the following sequence $\langle V_0 : \alpha \in \mathrm{On} \rangle$ of sets:

- $V_0 = V$
- $V_{\alpha} = \Gamma(\bigcup_{\beta < \alpha} V_{\beta}) \cup \bigcup_{\beta < \alpha} V_{\beta}$

Since $\langle V_{\alpha} : \alpha \in \text{On} \rangle$ is an increasing sequence, there exists, in ZFC, $\alpha < \omega_1$ such that $V_{\alpha} = V_{\beta}$ for all $\beta > \alpha$ and such V_{α} is called the *fixed point of* Γ starting from V.

However, in a weak set theory, such as KP (cf. [1]), the existence of the fixed point is not always guaranteed. C inductive definition asserts that, for any operator Γ in C, there exists a fixed point of Γ .

The following formalization of inductive definition in second order arithmetic was introduced by [7].

We need the notion of pre-wellordering.

Definition 3.1 (pre-wellordering). A binary relation $(W, <_W)$ is *pre-ordering* on its *field* field $(W) = \{x : \exists y (x <_W y \lor y <_W x)\}$ if it satisfies the following properties:

Reflexivity $\forall a \in \text{field}(W) (a <_W a)$

Connectivity $\forall a \in \text{field}(W) \forall b \in \text{field}(W) ((a <_W b) \lor (b <_W a) \in W)$

Transitivity

 $\forall a \in \operatorname{field}(W) \forall b \in \operatorname{field}(W) \forall c \in \operatorname{field}(W) ((a <_W b) \land (b <_W c) \rightarrow (a <_W c))$

For a binary relation $(W, <_W)$, $W_x = \{y : y <_W x\}$ and $W_{<_W x} = \{y : y <_W x \land x \not<_W y\}$. A pre-ordering $(W, <_W)$ is a *pre-wellordering* if it is well-founded, i.e., there is no $f : \mathbb{N} \to \text{field}(W)$ such that, for all n, $f(n+1) <_W f(n)$ and $f(n) \not<_W f(n+1)$.

In second order arithmetic, an *operator* is a formula $\eta(x, X)$ with a distinguished number variable x and a distinguished set variable X and sequence

 $\langle V_{\beta} : \beta \leq \alpha \rangle$ toward the least fixed point V_{α} of $\eta(x, X)$ is given as a prewellordering $(W, <_W)$ intuitively defined as follows: $x_0 <_W x_1$ if and only if $\alpha_0 < \alpha_1$, where α_i is the least ordinal β with $x_i \in V_{\beta}$.

Definition 3.2 (C inductive definition). Let C be a class of L₂ formulae with a. C inductive definition (C-ID) asserts that for any $\eta(x, X)$ in C, called a Coperator, there exists a set $(W, <_W)$ such that

- 1. $(W, <_W)$ is a pre-wellordering on field (W),
- 2. $\forall x (x \in \text{field}(W) \leftrightarrow \eta(x, W_{\leq_W x})),$
- 3. $\forall x(\eta(x, \text{field}(W)) \rightarrow x \in \text{field}(W)).$

For an operator η , field(W) of the set W with the above three properties is called the *fixed point of* η .

An operator η is monotone if, for all X and Y and for all $x, X \subseteq Y$ implies $\forall x(\eta(x, X) \rightarrow \eta(x, Y))$. C monotone inductive definition (C-MI) is the following schema:

 $\forall X \forall Y \forall x (X \subseteq Y \land \eta(x, X) \to \eta(x, X)) \to \exists W(W \text{ is the fixed point of } \eta),$

where η is a C operator.

Recall that we only consider boldface formulae classes. In particular, C inductive definition is the boldface version, which allows any operator to have set parameters.

Lemma 3.3. Π_2^0 -Det and Σ_1^1 -MI and Σ_1^1 -ID are pairwise equivalent over RCA₀.

Proof. See [3]. Although the original assertion in [3] might be a lightface version and it is over ATR_0 , we can easily modify the proof for this lemma, the boldface version, and then the base theory can be replaced with RCA_0 . \Box

We consider the iteration of inductive definition in the following sense: For a given wellordering (Y, \prec) , a sequence $\langle \eta(y, x, X) : y \in Y \rangle$ of operations along (Y, \prec) , W^y is a fixed point of $\eta(y, x, X)$ starting from $\bigcup_{z \prec y} W^z$. **Definition 3.4** (\mathcal{C} transfinite inductive definition). Let \mathcal{C} be a class of L₂ formulae. \mathcal{C} transfinite inductive definition (\mathcal{C} -TID) asserts that for any wellordering (Y, \prec) and any operator $\eta(y, x, X)$ in \mathcal{C} with another distinguished number variable y, there exists a sequence $\langle W^y : y \in Y \rangle$ such that

1. $(W^y, <_y)$ is a pre-wellordering for each $y \in Y$.

2.
$$\forall y \in Y \forall z \in Y \forall v \in \text{field}(W^y) \forall w \in \text{field}(W^z) (z \prec y \to w \leq_y v).$$

3.
$$\forall v \forall y \in Y (v \in W^y \leftrightarrow \eta(y, v, W^y_{\leq_y v}))$$

4. $\forall v \forall y \in Y(\eta(y, v, \text{field}(W^y)) \rightarrow v \in \text{field}(W^y)).$

For an operator $\eta(y, x, X)$ and a wellordering (Y, \prec) , the sequence $\langle W^y : y \in Y \rangle$ satisfying the above four conditions is the sequence of fixed points along (Y, \prec) .

In this paper, we consider the following determinacy schema.

Definition 3.5. Sep (Δ_n^0, Σ_m^0) determinacy in $X^{\mathbb{N}}$ is the following schema:

$$\forall f \in X^{\mathbb{N}}(\psi(f) \leftrightarrow \xi(f)) \to \mathsf{Det}^{X}[(\psi \land \eta_{0}) \lor (\neg \psi \land \eta_{1})],$$

where $\psi(f)$ is Σ_n^0 , where $\xi(f)$ is Π_n^0 , where $\eta_0(f)$ is Π_m^0 and where $\eta_1(f)$ is Σ_m^0 .

For the motivation behind the above determinacy schemata, see [4]. In [4] and [5], the strength of $Sep(\Delta_2^0, \Sigma_2^0)$ -Det^{*} is considered.

Now we consider the determinacy strength of $\mathsf{Sep}(\Delta_2^0, \Sigma_2^0)$ -Det. We need several lemmata.

Lemma 3.6. For any Σ_1^0 formula $\varphi(X)$, we can find a Π_0^0 formula $\theta(x)$ such that RCA_0 proves $\forall X(\varphi(X) \leftrightarrow \exists n \theta(X[n]))$

Proof. See [6, Theorem II. 2.7].

In descriptive set theory, Hausdorff proved (cf. [2, §37. III. Theorem]) that a Δ_{n+1}^0 set can be represented as a boolean combination of transfinitely many Π_n^0 sets, i.e., for any Δ_{n+1}^0 set A of Polish space \mathcal{X} , there exists an ordinal $\gamma < \omega_1$ and a decreasing sequence $\langle A_{\alpha} : \alpha < \gamma \rangle$ of Π_n^0 sets such that

$$A = \{ x \in A_0 : \min\{ \alpha : x \notin A_\alpha \} \text{ is odd} \}.$$

The following lemma is a formalization of the case n = 2 in second order arithmetic.

Lemma 3.7. For any pair of a Σ_2^0 formula $\psi_0(f)$ and a Π_2^0 formula $\psi_1(f)$, we can find a Π_0^0 formula $\theta(x, i, y)$ such that ACA₀ proves the following.

$$\begin{aligned} \forall f \in 2^{\mathbb{N}}(\psi_{0}(f) \leftrightarrow \psi_{1}(f)) \rightarrow \\ & \left[\begin{array}{l} \exists Y((Y, \prec) \text{ is a wellordering}) \land \\ (\forall f \in 2^{\mathbb{N}})(((y, j) \prec^{*} (x, i) \land \forall n\theta(x, i, f[n])) \rightarrow \forall n\theta(y, j, f[n])) \land \\ (\forall f \in 2^{\mathbb{N}})(\psi_{0}(f) \leftrightarrow \exists x \in Y(\forall n\theta(x, 0, f[n]) \land \neg \forall n\theta(x, 1, f[n]))) \land \\ (\forall f \in 2^{\mathbb{N}})(\neg \psi_{0}(f) \leftrightarrow \exists x \in Y(\forall n\theta(x, 1, f[n]) \land \neg \forall n\theta(x', 0, f[n]))) \end{array} \right] \tag{*} \end{aligned}$$

where x' is the \prec -successor of x, and where $(Y \times 2, \prec Y^*)$ is a wellordering defined by

$$(x,i) \prec^* (y,j) \leftrightarrow x \prec y \lor (x = y \land i < j).$$

Proof. See Theorem 3.5 of [3].

Remark 3.8. For any Π_1^0 (or Σ_1^0) game $\varphi(f)$ in the Baire space, the assertion that player I (resp. II) has a winning strategy in $\varphi(f)$ is equivalent to a Σ_1^1 formula RCA₀, since the assertion can be written as $\exists \sigma \in \mathcal{S}_I^{\mathbb{N}} \forall \tau \in \mathcal{S}_{II}^{\mathbb{N}} \varphi(\sigma \otimes \tau)$ (resp. $\exists \sigma \in \mathcal{S}_{II}^{\mathbb{N}} \forall \tau \in \mathcal{S}_I^{\mathbb{N}} \neg \varphi(\tau \otimes \sigma)$) and since the underlined part are equivalent to some Π_1^0 formula. Similarly, for any Π_1^0 (or Σ_1^0) game $\varphi(f)$ in the Baire space, the assertion that player I (resp. II) has a winning *s*-strategy in $\varphi(f)$ is equivalent to a Σ_1^1 formula over RCA₀.

For a given arithmetical game $\varphi(f)$, even if we know that player I wins at each $s \in W$, it seems that we need Π_1^1 axiom of choice to take a sequence

129

 $\langle \sigma_s : s \in W \rangle$ of winning s-strategies for player I because, in general, the assertion " σ is a winning s-strategy for player I in $\varphi(f)$ " is Π_1^1 . The following lemma proves that actually we do not need it.

Lemma 3.9. Let $1 \leq n < \omega$. Let $A \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}$. Let $\varphi(f)$ be a game in the Baire space. In RCA_0^* , the following is provable: If, for each $(s, x) \in A$, player I (or II) wins Σ_n^0 game $\varphi(x, f)$ at s, then Σ_n^0 -Det yields a sequence $\langle \sigma_{s,x} : (s, x) \in A \rangle$ of winning s-strategies for player I (resp. II) in $\varphi(x, f)$.

Proof. We work in RCA_0^* . Let $\varphi(f)$ be a Σ_n^0 game in $\mathbb{N}^{\mathbb{N}}$. Assume that, for each $(s, x) \in A$, player I wins $\varphi(x, f)$ at s. Let $e : \mathbb{N} \to \mathbb{N}^{<\mathbb{N}} \times \mathbb{N}$ be a fixed enumeration of $\mathbb{N}^{<\mathbb{N}} \times \mathbb{N}$. Let $e(m) = (m_0, m_1) \in \mathbb{N}^{<\mathbb{N}} \times \mathbb{N}$.

Consider the following Σ_n^0 game $\varphi'(f)$:

- Player II chooses $m \in \mathbb{N}$ at her first turn. If $e(m) \notin A$, player I wins.
- If $e(m) \in A$ and |e(m)| is even, then player I wins if $\varphi(m_1, m_0 * (f \ominus 2))$.
- If $e(m) \in A$ and |e(m)| is odd, then player I wins if $\varphi(m_1, m_0 * (f \ominus 3))$.

 Σ_n^0 -Det implies that one of the player has a winning strategy in $\varphi'(f)$. We can check that player II has no winning strategy in $\varphi'(f)$. For contradiction, suppose that player II has a winning strategy τ . Consider such a play f:

- Player I first play 0, i.e., f(0) = 0.
- Player II play m, following τ .

Note that $e(m) \in A$, otherwise player II loses. Then τ yields a winning m_0 -strategy for player II in $\varphi(m_1, f)$, which contradicts the assumption that player I wins $\varphi(f)$ at e(m). Hence player I has a winning strategy σ in $\varphi'(f)$.

For $(s, x) \in \mathbb{N}^{<\mathbb{N}} \times \mathbb{N}$, let $\overline{e}(s, x)$ be the least k with e(k) = (s, x). Let s_x be the sequence $\langle \sigma(\langle \rangle), \overline{e}(s, x) \rangle$ if |s| is even and $\langle \sigma(\langle \rangle), \overline{e}(s, x), \sigma(\langle \sigma(\langle \rangle), \overline{e}(s, x) \rangle) \rangle$ if |s| is odd. Then define $\sigma_{s,x}$ by $\sigma_{s,x}(t) = \sigma(s_x * (t \ominus |s|))$ for each $(s, x) \in A$. Clearly $\sigma_{s,x}$ is a winning s-strategy for player I in $\varphi(x, f)$ for each $(s, x) \in A$.

The statement for player II can be proved similarly.

 \Box

Proof. Here we give only a rough sketch of the proof.

Suppose Σ_1^1 -TID. Since Σ_1^1 -TID implies Π_1^1 comprehension over RCA_0^* , we work in Π_1^1 -CA₀, the system RCA_0 plus Π_1^1 comprehension:

 $\exists X \forall n (n \in X \leftrightarrow \phi(n)),$

where $\phi(n)$ is any Π_1^1 formula in which X does not occur freely.

Let $\varphi(f)$ be a game of the form $(\psi(f) \land \zeta_0(f)) \land (\neg \psi(f) \land \zeta_1(f))$, where $\psi(f)$ and $\zeta_1(f)$ are Σ_2^0 and $\zeta_0(f)$ is Π_2^0 . Assume that there is a Π_2^0 formula such that $\forall f \in \mathbb{N}^{\mathbb{N}}(\psi(f) \leftrightarrow \psi'(f))$. By applying Lemma 3.7, letting $\psi(f)$ and $\psi'(f)$ be $\psi_0(f)$ and $\psi_1(f)$ respectively, we can find a Π_1^0 formula $\forall n\theta(x, i, f[n])$ and a wellordering (Y, \prec) such that Π_1^1 -CA₀ proves (\star) .

Define new games $\zeta'_i(y, f, X)$ by

$$\begin{split} \zeta_0'(y, f, X) \equiv & (\forall n \theta(y, 0, f[n]) \land \zeta_0(f)) \lor \\ & (\exists m \exists (z, j) \preceq_Y^* (y, i) (\neg \theta(z', 0, f[m]) \land f[m] \in X)) \lor \\ & (\exists m \exists (z, j) \preceq_Y^* (y, i) (\neg \theta(z, 1, f[m]) \land f[m] \notin X)), \\ \zeta_1'(y, f, X) \equiv & (\forall n \theta(y, 1, f[n]) \land \zeta_1(f)) \lor \\ & (\exists m \exists (z, j) \preceq_Y^* (y, i) (\neg \theta(z', 0, f[m]) \land f[m] \in X)) \lor \\ & (\exists m \exists (z, j) \preceq_Y^* (y, i) (\neg \theta(z, 1, f[m]) \land f[m] \notin X)). \end{split}$$

By Lemma 3.6, we can find Π_0^0 formulae $\theta_0(x, y)$ and $\theta_1(x, y)$ such that RCA_0 proves that, for all $f \in \mathbb{N}^{\mathbb{N}}$,

$$\begin{split} \zeta_0'(y, f, \dot{X}) &\leftrightarrow \forall n \exists m \theta_0(n, y, f[m], X[m]), \\ \zeta_1'(y, f, X) &\leftrightarrow \exists n \forall m \theta_1(n, y, f[m], X[m]). \end{split}$$

Define an operator $\eta(\langle y, i \rangle, x, X)$ by

$$\begin{aligned} \eta(\langle y, i \rangle, x, X) \equiv &(i = 0 \land \theta(y, 1, x) \land \exists n (\text{player II wins } \theta'_0(n, y, f, X))) \lor \\ &(i = 1 \land \theta(y', 0, x) \land \exists n (\text{player I wins } \theta'_1(n, y, f, X))) \end{aligned}$$

By Lemma 3.8, $\eta_i(y, x, X)$ is a Σ_1^1 operator. Σ_1^1 -TID yields the sequence $\langle W^{\langle y,i\rangle} : y \in Y, i < 2 \rangle$ of fixed points of $\eta(y, x, Y)$ along (Y, \prec_Y) . Define $\widetilde{W}^{\langle y,i\rangle}$ and $\widetilde{V}^{\langle y,i\rangle}$ by

$$\begin{split} \widetilde{W}^{\langle y,0\rangle} &= \{s: \neg \theta(y,1,s) \land s \notin W^{\langle y,0\rangle}\} \quad \widetilde{W}^{\langle y,1\rangle} = W^{\langle y,1\rangle} \\ \widetilde{V}^{\langle y,0\rangle} &= W^{\langle y,0\rangle} \quad \qquad \qquad \widetilde{V}^{\langle y,1\rangle} = \{s: \neg \theta(y',0,s) \land s \notin W^{\langle y,1\rangle}\} \end{split}$$

In a similar way as in the proof of Theorem 3.1 of [7], we can prove that player I wins $\zeta_i''(y, f)$ at each $s \in \widetilde{W}^{\langle y, i \rangle}$ and that player II wins $\zeta_i''(y, f)$ at each $s \in \widetilde{V}^{\langle y, i \rangle}$, where $\zeta_i''(y, f)$ is defined by

$$\exists n \neg \theta(\bar{y}, 1-i, f[n]) \land ((\forall n \theta(y, i, f[n]) \land \zeta_i(f)) \lor \exists n f[n] \in \bigcup_{\langle z, j \rangle <_Y^* \langle y, i \rangle} \widetilde{W}^{\langle z, j \rangle})$$

where \bar{y} is y if i = 0 and y' if i = 1.

Claim 1.

1. If $s \in \bigcup_{y \in Y, i < 2} \widetilde{W}^{\langle y, i \rangle}$, player I wins $\varphi(f)$. 2. If $s \in \bigcup_{y \in Y, i < 2} \widetilde{V}^{\langle y, i \rangle}$, player II wins $\varphi(f)$.

Proof of the claim. We only prove 1, because 2 can be proved in a similar way.

By Lemma 3.9, we have a sequence $\langle \sigma_s^* : s \in \bigcup_{y \in Y} W^y \rangle$ of winning *s*-strategies for player I in $\zeta_{i_s}''(y_s, f)$, where $\langle y_s, i_s \rangle$ is the $\langle Y^*$ -least $\langle y, i \rangle$ with $s \in \widetilde{W}^{\langle y, i \rangle}$.

By arithmetical transfinite recursion (cf. [6, Chapter V]), which is proved in Π_1^1 -CA₀, we can define a sequence σ_s defined by

$$\sigma_s(t) = \begin{cases} \sigma_u(t) & \text{if } u \text{ is the } \subseteq \text{-least initial segment of } t \\ \text{with } t \in \bigcup_{\langle z,j \rangle < \langle y_s, i_s \rangle} \widetilde{W}^{\langle z,j \rangle} \\ \sigma_s^*(t) & \text{if there is no such } u \subseteq t \end{cases}$$

It is easy to prove σ_s is a winning s-strategy for player I in $\varphi(f)$.

Then define a new game $\varphi^*(f)$ by $\exists n (\forall m < n(f[m] \notin \bigcup_{y \in Y, i < 2} \widetilde{V}^{\langle y, i \rangle}) \land f[n] \in \bigcup_{y \in Y, i < 2} \widetilde{W}^{\langle y, i \rangle})$. Σ_1^1 -TID implies that $\varphi^*(f)$ is determinate. Then we can prove that the player who wins $\varphi^*(f)$ also wins $\varphi(f)$.

We close this paper by making a conjecture. If it is true, then it turns out that actually there is no proper hierarchy of determinacy of Wadge classes between Σ_2^0 -Det and $\Sigma_2^0 \wedge \Pi_2^0$ -Det, since $\text{Sep}(\Delta_2^0, \Sigma_2^0)$ -Det implies all determinacy schemata corresponding to Wadge classes below $\Sigma_2^0 \wedge \Pi_2^0$. A predictablyeffective approach is to modify the proof of Theorem 2.2 of [3], which shows that Σ_2^0 determinacy implies Σ_1^1 -ID over RCA₀.

Conjecture 3.11. RCA₀ proves that Σ_2^0 -Det implies Σ_1^1 -TID.

References

- [1] K. J. Barwise, Admissible Sets and Structures, Springer, 1976.
- [2] C. Kuratowski, Topology, vol. 1, Academic Press (1966).
- [3] MedYahya Ould MedSalem and Kazuyuki Tanaka, Δ⁰₃ determinacy, comprehension and induction, Journal of Symbolic Logic, 72 (2007) pp. 452-462.
- [4] Takako Nemoto, Determinacy of Wadge classes and subsystems of second order arithmetic, Mathematical Logic Quarterly, 55 (2009) pp. 154– 176.
- [5] Takako Nemoto, Corrigendum to "Determinacy of Wadge classes and subsystems of second order arithmetic," preprint, available at http://www.math.tohoku.ac.jp/~sa4m20/corrigendum.pdf
- [6] S.G. Simpson, Subsystems of Second Order Arithmetic, Springer (1999).
- [7] K. Tanaka, Weak axioms of determinacy and subsystems of analysis I: Δ_2^0 -games, Z. Math. Logik Grundlag. 36 (1990), pp. 481-491.