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Abstract

In [4], we introduced determinacy schemata motivated by Wadge
classes in descriptive set theory. In this paper, we prove that a simple
iteration of $\Sigma_{1}^{1}$ inductive definition implies Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})$ determinacy
in the Baire space over RCA$0$ .

1 Introduction

We consider the following type of game: Two players, say player I and player
II, alternately choose an element of $X$ to form an infinite sequence $f$ of
elements of $X$ . Both players can refer the history of their plays. Player I
wins iff a given formula $\varphi(f)$ of $f$ holds. Player II wins iff I does not win.

In [4], we introduced various determinacy schemata motivated by Wadge
classes in descriptive set theory and we investigated the strength of them in
the Cantor space, i. e., the case of $X=\{0,1\}$ in the framework of reverse
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$m$athematics (cf. [6]). Actually, it is proved that there is a hierarchy of deter-
minacy between $\Sigma_{2}^{0}$ determinacy and $\Sigma_{2}^{0}\wedge\Pi_{2}^{0}$ determinacy, the determinacy
of games defined by conjunctions of $\Sigma_{2}^{0}$ formulae and $\Pi_{2}^{0}$ formulae.

It is natural to ask whether we have a proper hierarchy between $\Sigma_{2}^{0}$ and
$\Sigma_{2}^{0}\wedge\Pi_{2}^{0}$ determinacies also in the Baire space, i. e., the case of $X=\mathbb{N}$ .

In this paper, we will have a partial answer to it. We will give a rough
sketch of the proof that a simple iteration of inductive definition implies
Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})$ determinacy in the Baire space.

At the end of this paper, we will conjecture that the simple iteration
of inductive definition have actually the same strength as a single inductive
definition.

2 Preliminaries

2.1 The base theory $RCA_{0}$

The language $L_{2}$ of second order arithmetic consists of $+,$ $\cdot,$ $0,1,$ $=,$ $<$ , num-
ber variables $x,$ $y,$ $\ldots$ , propositional connectives and number quantifiers, set
variables $X,$ $Y,$

$\ldots$ , set quantifiers and $\in$ . Terms and formulae are defined in
the usual way. A formula is $\Pi_{0}^{0},$ $\Sigma_{0}^{0}$ or $\triangle_{0}^{0}$ if it is built up from atomic formu-
lae by propositional connectives and bounded number quantifiers $\forall x<t$ and
$\exists x<t$ . A $\Sigma_{n}^{0}$ (resp. $\Pi_{n}^{0}$ ) formula is one consisting of $n$ number quantifiers
beginning with an existential (resp. universal) one followed by a $\Pi_{0}^{0}$ formula.
A formula is $\Sigma_{0}^{1},$ $\Pi_{0}^{1}$ or arithmetical if it does not contain set quantifiers. A
$\Sigma_{n}^{1}$ (resp. $\Pi_{n}^{1}$ ) formula is one consisting of $n$ set quantifier beginning with an
existential (resp. universal) one followed by a $\Pi_{0}^{1}$ formula.

Note that formulae in these classes may have set parameters. In this
paper, we consider only boldface classes, i. e., they allow formulae to have set
parameters.

We use t,he following base theory.

Definition 2.1 $(RCA_{0})$ . $RCA_{0}$ is the formal system in the language $L_{2}$ which
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consists of the axioms of discrete ordered semi-ring for $(\mathbb{N}, +, \cdot, 0,1, <)$ plus
the schemata of $\Sigma_{1}^{0}$ induction and of $\triangle_{1}^{0}$ comprehension:

$\forall n(\varphi(n)rightarrow\psi(n))arrow\exists Y\forall n(\varphi(n)rightarrow n\in Y)$ ,

where $\varphi(x)$ is a $\Sigma_{1}^{0}$ formula without free occurrences of $Y$ , and where $\psi(x)$ is
a $\Pi_{1}^{0}$ formula.

In [4], we use a weaker base theory $RCA_{0}^{*}$ , which consists of the axioms
of discrete ordered semi-ring with exponentiation, $\triangle_{1}^{0}$ comprehension and $\Sigma_{0}^{0}$

induction. Roughly speaking, $RCA_{0}^{*}$ can be regarded as the theory $RCA_{0}$

minus $\Sigma_{1}^{0}$ induction. In [4], it is shown that, over $RCA_{0},$ $\Sigma_{1}^{0}$ comprehension is
equivalent to $(\Sigma_{1}^{0} A \Pi_{1}^{0})- Det^{*}$ , which asserts the determinacy of games defined
by conjunctions of $\Sigma_{1}^{0}$ formulae $\Pi_{1}^{0}$ formulae. Because $RCA_{0}^{*}$ proves that $\Sigma_{1}^{0}$

comprehension implies $\Sigma_{1}^{0}$ induction, when we consider equivalences between
determinacy schemata stronger than $(\Sigma_{1}^{0}\wedge\Pi_{1}^{0})- Det^{*}$ and set existence axiom
stronger than $\Sigma_{1}^{0}$ comprehension, we need not to care about the difference
between base theories $RCA_{0}$ and RCA$0*$ .

Notation 2.2 (sequences). The set of all infinite sequences from $X(i.e.$ ,
fumctions from $\mathbb{N}$ to $X$ ) is denoted by $X^{\mathbb{N}}$ . We call $2^{N}=\{0_{\tau}1\}^{N}$ the Cantor
space and $\mathbb{N}^{N}$ the Baire space. The set of all finite sequences from $X$ is
denoted by $x<N$ . Note that the $er\gamma’,ptyse,q\prime uer|,ce$ , denoted by $\langle\}$ , belongs to
$x<\mathbb{N}$ .

Fix any sequences $s$ and $t$ in $X^{N}$ . $|s|$ denotes the length of $s$ and $s(i)$

denotes the $(i+1)$-th element of $s$ for $i<|s|$ . The concatenation of $s$ and $t$ ,

denoted by $s*t$ , is $\{s(O), s(1)_{\}\ldots, s(|s|-1), t(0)tt(1), \ldots, t(|t|-1)\}$ . If $f\in X^{N}$ ,

$s*f$ denotes $\{s(O), s(1), \ldots ts(|s|-1), f(O), f(1), \ldots, f(n), \ldots\}$ . For $s\in x<N$

and $n\leq|s|,$ $s[n]$ is the n-th initial segment of $s$ , i. e., $\langle s(O),$
$\ldots,$ $s(n-1))$ .

If $f$ is an infinite sequence, $f[n]$ denotes $\{f(O), \ldots, f(n-1)\}$ . If $s=t[k]$
for some $k\leq|t|,$ $s$ is called an initial segment of $t,$ $s\subseteq t$ for notation. If
$n\leq|s|,$ $s\ominus n$ is the sequence with the first $n$ elements removed from $s$ , i. e.,
$\langle s(n),$ $s(n+1),$ $\ldots,$

$s(|s|-1)\rangle$ . If $f$ is in $X^{\mathbb{N}},$ $f\ominus n$ is $g$ defined by $g(k)=f(n+k)$

for $k\in \mathbb{N}$ . For $s\in X<\mathbb{N},$ $(s)_{X}$ denotes the set $\{t\in x<N_{:S}\subseteq t\}$ .

123



2.2 Determinacy in second order arithmetic

In this paper, a game is a formula $\varphi(f)$ with a distinguished function variable
$f$ . Since $L_{2}$ does not formally have function variables, $\varphi(f)$ is an abbreviation
of $\varphi(X)\wedge\forall n\exists m((n, m)\in X\wedge(\forall l(n, l)\in Xarrow m=l))$ . Therefore, the
complexity of the formula $\varphi(f)$ is not always the same as $\varphi(X)$ . However,
we do not need to care about this point when we work in a system stronger
than $ACA_{0}$ , the system $RCA_{0}$ plus arithmetical comprehension

$\exists X\forall n(n\in Xrightarrow\psi(n))$ ,

where $\psi(n)$ is an arithmetical formula in which $X$ does not occur freely.
For a given formula $\varphi(f)$ with a distinguished function variable $f\in X^{N}$ ,

a $go_{l}me\varphi(f)l,77X^{\mathbb{N}}$ is defined as follows: Two players, say player I and player
II, alternately choose an element $x$ in $X$ to form $f\in X^{N}$ which is called the
resulting play. Player I wins if and only if $\varphi(f)$ holds. Player II wins if and
only if player I does not win. In this paper, we assume that player I is male
and that player II is female.

We regard a class $\Gamma$ of formulae with a distinguished function variable as
a class of games.

Notation 2.3 (strategy). For a game in $X^{N}$ , a strategy $\sigma$ for player I (or II) is
a function assigning an element of $X$ to each even-length (resp. odd-length)
$t\in x<N$ . $S_{I}^{X}$ (resp. $S_{II}^{X}$ ) is the set of all the strategies for player I (resp. II)
in a game in $X^{N}$ . Note that $S_{I}^{X}$ and $S_{II}^{X}$ can be regarded as $\mathbb{N}^{N}$ if $X=\mathbb{N}$ and
$2^{N}$ if $X=\{0,1\}$ in $RCA_{0}$ , by a suitable coding of finite sequences. If players
I and II follow strategies $\sigma$ and $\tau$ respectively, the resulting play is uniquely
determined and denoted by $\sigma\otimes\tau$ .

For any strategy $\tau$ for player II, $k^{\tau}$ is the finite play of length $2k$ in which
player I plays $0$ at all his turns and in which player II plays following $\tau$ . For
example, $2^{\tau}$ is the sequence $\{0,$ $\tau(\langle 0\}),$ $0,$ $\tau(\{0,$ $\tau(\{0\rangle), 0\rangle)\rangle$ .

A strategy $\sigma$ for a player is a Mnning strategy if the player wins $\varphi(f)$ as
long as he or she plays following it. The assertion that $\sigma$ is a winning strategy
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for player I (resp. II) in game $\varphi(f)$ in $X^{\mathbb{N}}$ can be written $\forall\tau\in S_{II}^{X}\varphi(\sigma\otimes\tau)$

$($ resp. $\forall\tau\in S_{I}^{X}\neg\varphi(\tau\otimes\sigma))$ . A game $\varphi(f)$ is determinate if one of the
players has a winning strategy. For a game $\varphi(f)$ in $X^{N}$ , we use the following
abbreviation:

$Det^{X}[\varphi]\equiv\exists\sigma\in S_{I}^{X}\forall\tau\in S_{II}^{X}\varphi(\sigma\otimes\tau)\vee\exists\tau\in S_{II}^{X}\forall\sigma\in S_{I}^{x_{\neg}}\varphi(\sigma\otimes\tau)$,

which asserts that $\varphi(f)$ is determinate. The following schema of $\Gamma$ determi-
nacy asserts that all the $\Gamma$ games are determinate.

$\Gamma$ determinacy in $X^{N}:Det^{X}[\varphi]$ for any $\Gamma$ game $\varphi(f)$ in $X^{\mathbb{N}}$ .

$Det^{*}$ and $Det$ abbreviate determinacy in the Cantor space and that in the

Baire space, respectively.
An s-strategy for player $I$ (or II) is a function $\sigma$ which assigns an element

of $X$ to each even-length (resp. odd-length) $t\in(s)_{X}$ .

For s-strategies $\sigma$ for player I and $\tau$ for player II, $\sigma\otimes\tau$ denotes the

sequence $f$ such that $f(i)=s(i)$ for all $i<|s|,$ $f(2i)=\sigma(f[2i])$ for all
$2i\geq|s|,$ $f(2i+1)=\tau(f[2i+1])$ for all $2i+1\geq|s|$ , in other words, the play,
starting from $s$ , in which player I follows $\sigma$ and player II follows $\tau$ . Note
that if $s=\langle\rangle$ , the definition of $\sigma\otimes\tau$ coincides with the previous definition.
For a game $\varphi(f)$ in $X^{N}$ , a s-strategy $\sigma$ for player I (or II) is winning if, for
every s-strategy $\tau$ for player II (resp. I), $\varphi(\sigma\otimes\tau)$ $($ resp. $\neg\varphi(\tau\otimes\sigma))$ . Player
$I$ (or II) wins at $s$ in $\varphi(f)$ if (1) there is a winning s-strategy for player I
(resp. II), or equivalently, (2) either (i) $|s|$ is even and player I (resp. II) has
a winning strategy in $\varphi(s*f)$ or (ii) $|s|$ is odd and player II (resp. I) has a
winning strategy in $\neg\varphi(s*f)$ . Note that in (ii) of (2), the role of two players

are exchanged.

3 Inductive definition and determinacy

First, we see the notion of $i_{7l(}l\prime u(:t/i,\iota)e,$ $defi,?|^{\prime i}$tion in set theory. An operator
$\Gamma$ : $\mathcal{P}(\mathbb{N})arrow \mathcal{P}(\mathbb{N})$ is in a class $C$ of formulae if $\Gamma(X)$ is equivalent to a formula
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in $C$ . For a operator $\Gamma$ : $\mathcal{P}(\mathbb{N})arrow \mathcal{P}(\mathbb{N})$ and a set $V$ , consider the following
sequence $\langle V_{0}$ : $\alpha\in$ On $\rangle$ of sets:

$\bullet V_{0}=V$

$\bullet V_{\alpha}=\Gamma(\bigcup_{\beta<\alpha}V_{\beta})\cup\bigcup_{\beta<\alpha}V_{\beta}$

Since {V : $\alpha\in$ On} is an increasing sequence, there exists, in ZFC, $\alpha<\omega_{1}$

such that $V_{\alpha}=V_{\beta}$ for all $\beta>\alpha$ and such $V_{\alpha}$ is called the fixed point of $\Gamma$

starting from $V$ .
However, in a weak set theory, such as KP (cf. [1]), the existence of the

fixed point is not always guaranteed. $C$ inductive definition asserts that, for
any operator $\Gamma$ in $C$ , there exists a fixed point of $\Gamma$ .

The following formalization of inductive definition in second order arith-
metic was introduced by [7].

We need the notion of pre-wellordering.

Definition 3.1 (pre-wellordering). A binary relation $(W, <IV)$ is pre-ordering
on its field field $(l,\ddagger 1^{7})=\{x : \exists y(x<Wy\vee y<Wx)\}$ if it satisfies the following
properties:

Reflexivity $\forall a\in$ field$(iV)(a<_{W}a)$

Connectivity $\forall a\in field(\nu V)\forall b\in field(IV)((a<w^{r}b)\vee(b<w\cdot a)\in lV)$

Transitivity
$\forall a\in$ field $(\dagger L^{r})\forall b\in$ field $(W)\forall c\in$ field $(LV)((a<Wb)\wedge(b<w\cdot c)arrow$

$(a<Wc))$

For a binary relation $(tV, <w^{r}),$ $TV_{x}=\{y : y<t\dagger’ x\}$ and $\nu V<14^{\cdot}x=\{y$ :
$y<Wx\wedge xt_{W}y\}$ . A pre-ordering $(\nu V, <lf^{v})$ is a pre-wellordering if it
is well-founded, i.e., there is no $f$ : $\mathbb{N}arrow field(W)$ such that, for all $n$ ,
$f(n+1)<\iota\iota\cdot f(n)$ and $f(n)\neq_{W}f(n+1)$ .

In second order arithmetic, an operator is a formula $\eta(x, X)$ with a distin-
guished number variable $x$ and a distinguished set variable $X$ and sequence
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$\{V_{\beta}$ : $\beta\leq\alpha\rangle$ toward the least fixed point $V_{\alpha}$ of $\eta(x, X)$ is given as a pre-
wellordering $(W, <W)$ intuitively defined as follows: $x_{0}<x$ if and only if
$\alpha_{0}<\alpha_{1}$ , where $\alpha_{i}$ is the least ordinal $\beta$ with $x_{i}\in V_{\beta}$ .

Definition 3.2 ($C$ inductive definition). Let $C$ be a class of $L_{2}$ formulae with
$a$ . $C$ inductive definition (C-ID) asserts that for any $\eta(x, X)$ in $C$ , called a $C$

opemtor, there exists a set $(PV, <W)$ such that

1. $(W, <W)$ is a pre-wellordering on field$(W)$ ,

2. $\forall x(x\in field(W)rightarrow\eta(x, f\eta_{/}^{\gamma}<1\uparrow\tau x))$ ,

3. $\forall x(\eta(x, field(W))arrow x\in field(W))$ .

For an operator $\eta$ , field $(TV)$ of the set $W$ with the above three properties is
called the fixed point of $\eta$ .

An operator $\eta$ is monotone if, for all $X$ and $Y$ and for all $x,$ $X\subseteq Y$

implies $\forall x(\eta(x, X)arrow\eta(x, Y))$ . $C$ monotone inductive definition (C-Ml) is
the following schema:

$\forall X\forall Y\forall x(X\subseteq Y\wedge\eta(x, X)arrow\eta(x, X))arrow\exists W$ ( $W$ is the fixed point of $\eta$),

where $\eta$ is a $C$ operator.

Recall that we only consider boldface formulae classes. In particular, $C$

inductive definition is the boldface version, which allows any operator to have
set parameters.

Lemma 3.3. $\Pi_{2}^{0_{-}}Det$ and $\Sigma_{1^{-}}^{1}M1$ and $\Sigma_{1}^{1_{-}}1D$ are pairwise equivalent over
$RCA_{0}$ .

Proof. See [3]. Although the original assertion in [3] might be a lightface

version and it is over ATR$0$ , we can easily modify the proof for this lemma,

the boldface version, and then the base theory can be replaced with RCA$0$ . [I]

We consider the iteration of inductive definition in the following sense:
For a given wellordering $(Y, \prec)$ , a sequence $\langle\eta(y, x, X)$ : $y\in Y\}$ of operations
along $(Y, \prec),$ $W^{y}$ is a fixed point of $\eta(y, x, X)$ starting from $\bigcup_{z\prec y}W^{z}$ .

127



Definition 3.4 ($C$ transfinite inductive definition). Let $C$ be a class of $L_{2}$

formulae. $C$ transfimte mductive definition (C-TID) asserts $t_{|}hat$ for any
wellordering $(Y)\prec)$ and any operator $\eta(y, x, X)$ in $C$ with another distin-
guished number variable $y$ , there exists a sequence $\{W^{y}:y\in Y\}$ such that

1. $(I/V^{y}, <_{y})$ is a pre-wellordering for each $y\in Y$ .

2. $\forall y\in Y\forall z\in Y\forall v\in$ field $(\nu V^{y})\forall w\in fi$eld $(W^{z})(z\prec yarrow w\leq_{y}v)$ .

3. $\forall v\forall y\in Y(v\in W^{y}rightarrow\eta(y, v, bV_{<yv}^{y}))$

4. $\forall v\forall y\in Y(\eta$ ( $y,$ $v$ , field $(\dagger V^{y}))arrow v\in field(W^{y}))$ .

For an operator $\eta(y, x, X)$ and a wellordering $(Y, \prec)_{\}$ the sequence $\langle W^{y}$ : $y\in$

$Y\rangle$ satisfying the above four conditions is the $s \epsilon,q?4C^{J},7l,ceo.f.\int\grave{t}xedpoin,ts$ along
$(Y, \prec)$ .

In this paper, we consider the following determinacy schema.

Definition 3.5. Sep $(\triangle_{n}^{0}, \Sigma_{m}^{0})$ determinacy in $X^{N}$ is the following schema,:

$\forall f\in X^{N}(\psi 1(f)rightarrow\xi(f))arrow Det^{X}[(\psi\wedge\eta_{0})\vee(\neg\psi\wedge\eta_{1})]$ ,

where $’\psi(f)$ is $\Sigma_{n}^{0}$ , where $\xi(f)$ is $\Pi_{n}^{0}$ , where $\eta_{0}(f)$ is $\Pi_{m}^{0}$ and where $\eta_{1}(f)$ is
$\Sigma_{?n}^{0}$ .

For the motivation behind the above determinacy schemata, see [4]. In
[4] and [5], the strength of Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})- Det^{*}$ is considered.

Now we consider the determinacy strength of Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})-$ Det.

We need several lemmata.

Lemma 3.6. For any $\Sigma_{1}^{0}$ formula $\varphi(X)$ , we can find a $\Pi_{0}^{0}$ formula $\theta(x)$ such

that $RCA_{0}$ proves $\forall X(\varphi(X)rightarrow\exists n\theta(X[n]))$

Proof. See [6, Theorem II. 2.7]. $\square$
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In descriptive set theory, Hausdorff proved (cf. [2, \S 37. III. Theorem])
that a $\Delta_{n+1}^{0}$ set can be represented as a boolean combination of transfinitely
many $\Pi_{n}^{0}$ sets, i. e., for any $\triangle_{n+1}^{0}$ set $A$ of Polish space $\mathcal{X}$ , there exists an
ordinal $\gamma<\omega_{1}$ and a decreasing sequence $\langle A_{\alpha}$ : $\alpha<\gamma\rangle$ of $\Pi_{n}^{0}$ sets such that

$A= \{x\in A_{0}:\min\{\alpha$ : $x\not\in A_{\alpha}\}$ is odd $\}$ .

The following lemma is a formalization of the case $n=2$ in second order
arithmetic.

Lemma 3.7. For any pair of a $\Sigma_{2}^{0}$ formula $\psi_{0}(f)$ and a $\Pi_{2}^{0}$ formula $\psi_{1}(f)J$

we can find a $\Pi_{0}^{0}$ formula $\theta(x, i, y)$ such that $ACA_{0}$ proves the following.

$\forall f\in 2^{N}(\psi_{0}(f)rightarrow\psi_{1}(f))arrow$

$\{\begin{array}{lll}\exists Y((Y,\prec)is a wellordering)\wedge\in 2^{N})(((y,j)\prec*(x,\iota’)\wedge\forall n\theta(x,i,f[n]))arrow\forall(\forall fn\theta(y,j,f[n]))\wedge \in 2^{N})(\psi_{0}(f)rightarrow(\forall f \exists x\in Y(\forall n\theta(x,0,f[n])\wedge\neg\forall n\theta(x,1,f[n])))\wedge\in 2^{N})(\neg\psi_{0}(f)rightarrow(\forall f \exists x\in Y(\forall n\theta(x,1,f[n])\wedge\neg\forall n\theta(x’,0_{\tau}f[n])))\end{array}\}$ $(\star)$

where $x^{l}$ is $the\prec$ -successor of $x$ , and where $(Yx2, \prec Y^{*})$ is a wellordering

defined by
$(x, i)\prec^{*}(y, j)rightarrow x\prec y\vee(x=y\wedge i<j)$ .

Proof. See Theorem 3.5 of [3]. $\square$

Remark 3.8. For any $\Pi_{1}^{0}$ (or $\Sigma_{1}^{0}$ ) game $\varphi(f)$ in the Baire space, the assertion
that player I (resp. II) has a winning strategy in $\varphi(f)$ is equivalent to a $\Sigma_{1}^{1}$

formula $RCA_{0}$ , since the assertion can be written as $\exists\sigma\in S_{I}^{N}\forall\tau\in S_{II}^{N}\varphi(\sigma\otimes\tau)$

$($ resp. $\exists\sigma\in S_{II}^{N}\forall\tau\in S_{I}^{\mathbb{N}}\neg\varphi(\tau\otimes\sigma))$ and since the underlined part are equiv-
alent to some $\Pi_{1}^{0}$ formula. Similarly, for any $\Pi_{1}^{0}$ (or $\Sigma_{1}^{0}$ ) game $\varphi(f)$ in the
Baire space, the assertion that player I (resp. II) has a winning s-strategy in
$\varphi(f)$ is equivalent to a $\Sigma_{1}^{1}$ formula over RCA$0$ .

For a given arithmetical game $\varphi(f)$ , even if we know that player I wins
at each $s\in W$ , it seems that we need $\Pi_{1}^{1}$ axiom of choice to take a sequence
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$\langle\sigma_{s}$ : $s\in l4/^{r}\rangle$ of winning s-strategies for player I because, in general, the
assertion $(\sigma$ is a winning s-strategy for player I in $\varphi(f)$

” is $\Pi_{1}^{1}$ . The following
lemma proves that actually we do not need it.

Lemma 3.9. Let $1\leq n<\omega$ , Let $A\subseteq \mathbb{N}^{N}\cross \mathbb{N}$ . Let $\varphi(f)$ be a game in
the Baire space. In $RCA_{0\rangle}^{*}$ the following is provable; If for each $(s, x)\in A$ ,

player $I$ (or II) wins $\Sigma_{n}^{0}$ game $\varphi(x, f)$ at $s_{f}$ then $\Sigma_{n^{-}}^{0}Det$ yields a sequence
$\langle\sigma_{s,x}$ : $(s, x)\in A\}$ of winning s-strategtes for player $I$ (resp. II) in $\varphi(x, f)$ .

Proof. We work in $RCA_{0}^{*}$ . Let $\varphi(f)$ be a $\Sigma_{n}^{0}$ game in $\mathbb{N}^{N}$ . Assume that, for
each $(s, x)\in A$ , player I wins $\varphi(x, f)$ at $s$ . Let $e:\mathbb{N}arrow \mathbb{N}^{<N}\cross \mathbb{N}$ be a fixed
enumeration of $\mathbb{N}^{<N}\cross \mathbb{N}$ . Let $e(m)=(m_{0}, m_{1})\in \mathbb{N}^{<N}\cross \mathbb{N}$ .

Consider the following $\Sigma_{n}^{0}$ game $\varphi’(f)$ :

$\bullet$ Player II chooses $m\in \mathbb{N}$ at her first turn. If $e(m)\not\in A$ , player I wins.

$\bullet$ If $e(m)\in A$ and $|e(m)|$ is even, then player I wins if $\varphi(m_{1}, m_{0}*(f\ominus 2))$ .

$\bullet$ If $e(m)\in A$ and $|e(m)|$ is odd, then player I wins if $\varphi(m_{1}, m_{0}*(f\ominus 3))$ .

$\Sigma_{n^{-}}^{0}Det$ implies that one of the player has a winning strategy in $\varphi’(f)$ . We
can check that player II has no winning strategy in $\varphi’(f)$ . For contradiction,
suppose that player II has a winning strategy $\tau$ . Consider such a play $f$ :

$\bullet$ Player I first play $0$ , i. e., $f(O)=0$ .

$\bullet$ Player II play $m$ , following $\tau$ .

Note that $e(m)\in A$ , otherwise player II loses. Then $\tau$ yields a winning
$nx_{0}$-strategy for player II in $\varphi(m_{1}, f)$ , which contradicts the assumption that
player I wins $\varphi(f)$ at $e(m)$ . Hence player I has a winning strategy $\sigma$ in $\varphi’(f)$ .

For $(s, x)\in \mathbb{N}^{<N}\cross \mathbb{N}$ , let $\overline{e}(s, x)$ be the least $k$ with $e(k)=(s, x)$ . Let $s_{x}$ be
the sequence { $\sigma(\{\rangle), \overline{e}(s, x)\}$ if $|s|$ is even and $\{\sigma(\langle\}),$ $\overline{e}(s, x),$ $\sigma(\langle\sigma(\langle\}), \overline{e}(s, x)\rangle)\rangle$

if $|s|$ is odd. Then define $\sigma_{s,x}$ by $\sigma_{s,x}(t)=\sigma(s_{x}*(t\ominus|s|))$ for each $(s, x)\in A$ .
Clearly $\sigma_{s,x}$ is a winning s-strategy for player I in $\varphi(x, f)$ for each $(s, x)\in A$ .

The statement for player II can be proved similarly. $\square$
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Theorem 3.10. $RCA_{0}$ proves that $\Sigma_{1}^{1}$ -TID implies Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})- Det$ .

Proof. Here we give only a rough sketch of the proof.
Suppose $\Sigma_{1}^{1}$ -TID. Since $\Sigma_{1}^{1}$ -TID implies $\Pi_{1}^{1}$ comprehension over $RCA_{0}^{*}$ , we

work in $\Pi|-CA_{0}$ , the system $RCA_{0}$ plus $\Pi_{1}^{1}$ coniprehension:

$\exists X\forall n(n\in Xrightarrow\phi(n))1$

where $\phi(n)$ is any $\Pi_{1}^{1}$ formula in which $X$ does not occur freely.
Let $\varphi(f)$ be a game of the form $(\psi(f)\wedge\zeta_{0}(f))\wedge(\neg\psi(f)\wedge\zeta_{1}(f))$ , where

$\psi(f)$ and $\zeta_{1}(f)$ are $\Sigma_{2}^{0}$ and $\zeta_{0}(f)$ is $\Pi_{2}^{0}$ . Assume that there is a $\Pi_{2}^{0}$ formula
such that $\forall f\in \mathbb{N}^{\mathbb{N}}(\psi(f)rightarrow\psi’(f))$ . By applying Lemma 3.7, letting $\psi(f)$ and
$\psi’(f)$ be $\psi_{0}(f)$ and $\psi_{1}(f)$ respectively, we can find a $\Pi_{1}^{0}$ formula $\forall n\theta(x, i, f[n])$

and a wellordering $(Y, \prec)$ such that $\Pi_{1^{-}}^{1}CA_{0}$ proves $(\star)$ .
Define new games $\zeta_{i}’(y, f, X)$ by

$\zeta_{0}’(y, f, X)\equiv(\forall n\theta(y, 0, f[n])\wedge\zeta_{0}(f))\vee$

$(\exists m\exists(z,j)\preceq*Y(y, i)(\neg\theta(z’, 0_{1}f[m])\wedge f[m]\in X))\vee$

$(\exists m\exists(z,j)\preceq*Y(y, i)(\neg\theta(z, 1, f[m])\wedge f[m]\not\in X))$ ,

$\zeta_{1}’(y, f, X)\equiv(\forall n\theta(y, 1, f[n])\wedge\zeta_{1}(f))\vee$

$(\exists m\exists(z,j)\preceq*Y(y, i)(\neg\theta(z’, 0, f[m])\wedge f[m]\in X))\vee$

$(\exists m\exists(z,j)\preceq*Y(y, i)(\neg\theta(z, 1, f[m])\wedge f[m]\not\in X))$ .

By Lemma 3.6, we can find $\Pi_{0}^{0}$ formulae $\theta_{0}(x, y)$ and $\theta_{1}(x, y)$ such that
$RCA_{0}$ proves that, for all $f\in \mathbb{N}^{N}$ ,

$\zeta_{0}’(y, f, X)rightarrow\forall n\exists m\theta_{0}(n, y, f[m], X[m])$ ,

$\zeta_{1}’(y, f, X)rightarrow$ ヨ$n\forall m\theta_{1}(n, y, f[m], X[m])$ .

Define an operator $\eta(\langle y_{1}i\}, x, X)$ by

$\eta(\langle y, i\}, x, X)\equiv(i=0\wedge\theta(y,$ $1,$ $x)\wedge\exists n(player$ II wins $\theta_{0}’(n,$ $y,$ $f,$ $X)))\vee$

( $i=1\wedge\theta(y’,$ $0,$ $x)\wedge\exists n($player I wins $\theta_{1}’(n,$ $y,$ $f,$ $X))$ )
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By Lemma 3.8, $\eta_{i}(y, x, X)$ is a $\Sigma_{1}^{1}$ operator. $\Sigma_{1}^{1}$-TID yields the sequence
$\{iT^{7}\langle yi\rangle$ : $y\in Y,$ $i<2\rangle$ of fixed points of $\eta(y, x, Y)$ along $(Y,$ $\prec\}^{-)}\cdot$ Define

$\overline{|/i^{\tau}}\langle y,i\}$ and $\overline{V}^{\{y.i\rangle}$ by

$\tilde{tV}^{\langle y,0\rangle}=\{s:\neg\theta(y, 1, s)\wedge s\not\in M^{\gamma\langle y.0)}\}$ $\tilde{M^{\gamma\{y,1\}}}=W^{\{y,1\}}$

$\tilde{L}=T,t^{\prime^{\gamma}})$ $\tilde{V}^{\langle y,1\rangle}=\{s:\neg\theta(y’, 0, s)\wedge s\not\in W^{(y,1\rangle}\}$

In a similar way as in the proof of Theorem 3.1 of [7], we can prove that
player I wins $\zeta_{i}’’(y, f)$ at each $s\in\tilde{W}^{\{y,i\rangle}$ and that player II wins $\zeta_{i}^{J/}(y, f)$ at
each $s\in\tilde{V}^{(y_{1}i\rangle}$ , where $\zeta_{i}’’(y, f)$ is defined by

$\exists n\neg\theta(\overline{y}, 1-i, f[n])\wedge((\forall n\theta(y, i, f[n])\wedge\zeta_{i}(f))\vee\exists nf[n]\in\bigcup_{\{z.j\rangle<*Y\langle y,i\rangle}\tilde{W}^{\langle z.j)})$

where $\overline{y}$ is $y$ if $i=0$ and $y’$ if $i=1$ .

Claim 1.

1. If $s \in\bigcup_{y\in 1_{1}^{-}i<2}\tilde{lV}^{\{y,i\rangle}$ , player I wins $\varphi(f)$ .

2. If $s \in\bigcup_{y\in Y,i<2}\tilde{V}^{\langle y.i)}$ , player $\Pi$ wins $\varphi(f)$ .

Proof of the claim. We only prove 1, because 2 can be proved in a similar
way.

By Lemma 3.9, we have a sequence $\langle\sigma_{s}^{*}$ : $s \in\bigcup_{y\in Y}W^{y}\rangle$ of winning s-
strategies for player I in $\zeta_{i_{s}}’’(y_{s}, f)$ , where $\langle y_{s},$ $i_{6}\rangle$ is the $<Y*$-least $\langle y,$ $i\}$ with
$s\in\tilde{lf^{r\langle y,i\}}/}$ .

By arithmetical transfinite recursion (cf. [6, Chapter V]), which is proved

in $\Pi_{1^{-}}^{1}CA_{0}$ , we can define a sequence $\sigma_{9\mathfrak{l}}$ defined by

$\sigma_{s}(t)=\{\begin{array}{l}if u is the \subseteq- least initial segment of t\sigma_{u}(t)with t\in\bigcup_{\langle z,j\rangle<\langle y_{s},i_{s}\rangle}\end{array}$

$\overline{W}^{\langle z,j\rangle}$

$\sigma_{s}^{*}(t)$ if there is no such $u\subseteq t$

It is easy to prove $\sigma_{s}$ is a winning s-strategy for player I in $\varphi(f)$ .
Then define a new game $\varphi^{*}(f)$ by $\exists n(\forall m<n(f[m]\not\in\bigcup_{y\in 1_{1}’i<2}\tilde{V}^{\{y,i\rangle})\wedge$

$f[n] \in\bigcup_{y\in Y,i<2}\tilde{It^{r\langle y.i)}})$ . $\Sigma_{1}^{1}$ -TID implies that $\varphi^{*}(f)$ is determinate. Then we

can prove that the player who wins $\varphi^{*}(f)$ also wins $\varphi(f)$ . [I]
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We close this paper by making a conjecture. If it is true, then it turns out
that actually there is no proper hierarchy of determinacy of Wadge classes
between $\Sigma_{2}^{0}- Det$ and $\Sigma_{2}^{0}\wedge\Pi_{2^{-}}^{0}$ Det, since Sep $(\triangle_{2}^{0}, \Sigma_{2}^{0})- Det$ implies all determi-
nacy schemata corresponding to Wadge classes below $\Sigma_{2}^{0}$ A $\Pi_{2}^{0}$ . A predictably-
effective approach is to modify the proof of Theorem 2.2 of [3], which shows
that $\Sigma_{2}^{0}$ determinacy implies $\Sigma_{1^{-}}^{1}$ ID over RCA$0$ .

Conjecture 3.11. $RCA_{0}$ pmves that $\Sigma_{2^{-}}^{0}Det$ implies $\Sigma_{1}^{1}$ -TID.
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