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Abstract

The problem we consider in this paper is a full-information best-
choice problem in which $n$ applicants appear sequentially, but each
applicant has a right to refuse an offer with a known probability $q$

independently of other applicants and all else. The objective is to
choose the best available applicant. We obtain the optimal rule and
the success probability explicitly for finite $n$ . A remarkable feature
of this problem is that, as $narrow\infty$ , the optimal success probability
becomes insensitive to $q$ and approaches 0.580164. The planar Poisson
process model provides more insight into this phenomenon.
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1 Introduction

A known number, $n$ , of applicants appear sequentially in random order, and
one of them must be chosen. An applicant that has been rejected cannot be
recalled later. In the classical best-choice problem, often referred to as the
secretary problem, the objective is to maximize the probability of choosing
the very best applicant. At each time, we observe only the relative rank of
the current applicant with respect to his/her predecessors. It is well known
that the optimal rule lets approximately $e^{-1}n$ applicants go by and then
selects the first relatively best applicant if any. The optimal probability of
choosing the overall best tends to $e^{-1}\approx 0.368$ as $narrow\infty$ .

In contrast to the above no-information version of the problem, the full-
information analogue is the problem in which the observations are the true
values of $n$ applicants $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ , assumed to be i.i. $d$ . random variables

from a known continuous distribution, taken without loss of generality to be
the uniform distribution on the interval $[0,1]$ . There exists a single increasing
sequence of thresholds $\{b_{k}, 1\leq k\}$ with $b_{k}$ defined as a solution $x\in(0,1)$ to
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the equation

$\sum_{i=1}^{k}\frac{1}{i}(x^{-i}-1)=1$ , (1)

such that the optimal stopping rule is to select the $jth$ applicant if this
applicant is a relative maximum, i.e., $X_{j}= \max(X_{1}, \ldots, X_{j})$ and $X_{j}\geq b_{n-j}$ .
Let $c\approx O.80435$ be a root of the equation

$\sum_{j=1}^{\infty}\frac{\dot{d}}{j!j}=1$ . (2)

Then, as $narrow\infty,$ $n(1-b_{n})arrow c$ , and the optimal probability of choosing
the largest of $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ tends to

$e^{-c}+(e^{c}-c-1) \int_{1}^{\infty}\frac{e^{-cx}}{x}dx$ , (3)

which is evaluated as 0.580164. These best-choice problems were studied by
Gilbert and Mosteller (1966) together with many other best-choice problems.
See Samuels (1982, 2004) and Berezovsky and Gnedin (1984) for the limiting
form (3). We refer to the above full-information problem as the GM problem
henceforth.

Though many authors have so far implicitly assumed that the applicant is
always available, that is, she accepts an offer of selection (employment) with
certainty, Smith (1975) introduced the possibility of the applicant refusing
an offer. He considered a best-choice problem in the no-information setting
and then Petruccelli (1982) considered the corresponding full-information
problems in a greater generality. However, the common objective of their
problems is to choose the best overall, thus implying that the trial is au-
tomatically unsuccessful if the overall best is unavailable. Another more
appropriate objective may be to choose the best available applicant, i.e.,
the best among all the available applicants. Tamaki (1991) considered the
problems along this line in the no-information setting.

The problem we treat in this paper is considered as the full-information
version of Tamaki (1991). We simply assume that each applicant is available
with a known fixed probability $p(0<p\leq 1)$ and unavailable with the
remaining probability $q=1-p$, independent of the value of the applicant
and also of one another. The decision of when to make an offer is based on
both the values of the applicants and their availabilities observed so far and
the objective is to maximize the probability of choosing the best available
applicant. Two models are distinguished according to when the availability
can be ascertained.

Model 1 The availability of the applicant can be ascertained just after

56



her arrival. Thus we make an offer only to an available applicant because
nothing is lost in doing so.
Model 2 The availability of the applicant can be ascertained only when
an offer is given. If the offer is accepted the selection process terminates,
but if rejected the next applicant is to be observed if any.

In both models, we give an offer to the $nth$ applicant if the final stage is
reached. When $q=0$ , these two models are the same and reduced to the
GM problem. In this paper, we only consider Model 1.

Model 1 is considered in Section 2. A remarkable feature of this model
is that asymptotically the optimal success probability is insensitive to $q$ and
approaches 0.580164 as given by (3), though it in effect depends on $q$ for a
finite $n$ . Though this feature can be derived via the limiting argument of
the finite problem, the planar Poisson process model in Section 3 provides
more insight into this phenomenon. This model is known to facilitate the
derivation of the asymptotic results for some full-information problems.

2 Model l

Let $X_{j}$ and $I_{j}$ denote respectively the value and the availability of the $jth$

applicant, $1\leq j\leq n$ . It is assumed that $(X_{1}, X_{2}, \ldots, X_{n})$ is a sequence
of $n$ independent random variables each uniformly distributed on $[0,1]$ and
$(I_{1}, I_{2}, \ldots, I_{n})$ is also a sequence of $n$ independent random variables each
taking a value of 1 or $0$ with probability $p$ and $q=1-p$ respectively
according to whether the applicant is available or not, that is,

$P\{I_{j}=1\}=p=1-P\{I_{j}=0\}$ .

The two sequences $(X_{1}, X_{2}, \ldots, X_{n})$ and $(I_{1}, I_{2_{f}}\ldots, I_{n})$ are also assumed to
be independemt of each other.

Let $J_{i}$ be the index set of the available applicants observed up to time $i$ ,
i.e., $J_{i}=\{1\leq j\leq i : I_{j}=1\},$ $1\leq i\leq n$ and define the largest value of the
first $i$ observations as $L_{i}= \max_{j\in J_{i}}X_{j}$ for $J_{i}\neq\emptyset$ (For $J_{i}=\emptyset$ , define $L_{i}=0$

for convenience). Call $X_{i}$ (or $ith$ applicant) a candidate if $X_{i}$ is available and
the largest of the first $i$ observations, i.e., $I_{i}=1$ and $X_{i}=L_{i}$ . The objective
is to maximize the probability of success, i.e., choosing the applicant having
the largest value $L_{n}$ for $J_{n}\neq\emptyset$ . In Model 1, an optimal rule at any decision
point will not depend on the number of available applicants passed by, but
only on the largest value observed so far and on the number of remaining
observations. Obviously an optimal rule only chooses (makes an offer to) a
candidate. Hence, if we denote by $v_{k}(x)$ the maximal probability of success,
provided that there are $k$ applicants yet to observe and the largest value
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seen so far is $x$ , the principle of optimality gives, for $1\leq k\leq n-1$ ,

$v_{k}(x)=(q+px)v_{k-1}(x)+p \int_{x}^{1}\max\{(q+pt)^{k-1}, v_{k-1}(t)\}dt$ (4)

where $(q+pt)^{k-1}$ is the probability that the $(n-k+1)th$ applicant is best
available, i.e., $X_{n-k+1}=L_{n}$ , given that she is a new candidate of value $t$

(this is just the probability that all the subsequent $X_{j}$ ’s are smaller than $t$

or unavailable). The boundary condition is given by $v_{0}(x)\equiv 0$ .
The main results of Model 1 can be summarized as follows.

Theorem 1 (a) Optimal stopping rule: Let

$m=m(q)= \min\{k\geq 1:b_{k}\geq q\}$ ,

where $b_{k}$ is defined by (1). Then, for a given $q$ , there exists a non-decreasing
sequence of the thresholds $\{s_{k}(q), 1\leq k\}$ with $s_{k}(q)$ defined as

$s_{k}(q)=\{\begin{array}{ll}\underline{b}-1-q’ if k\geq m0, if 1\leq k<m\end{array}$ (5)

or $s_{k}(q)= \max\{0, (b_{k}-q)/(1-q)\}$ as a function of $q$ , such that the optimal
rule is to choose the first candidate $X_{j}$ that exceeds the threshold $s_{n-j}(q)$ .
$(b)$ Optimal probability of success: Let $P_{n}(q)$ denote the optimal probability
of success as a function of $n$ and $q$ . Then

$P_{n}(q)$ $=$ $\frac{1}{n}[1+\sum_{i=\min(n_{2}m)}^{n-1}\sum_{r=1}^{i}\frac{1}{n-r}b_{i}^{n-r}]$

$+q^{n} \sum_{=r1}^{\min(n,m)}\frac{1}{r}1_{It(\frac{\min(n,m)-r}{n-r})q^{-r}-}’(\frac{\min(n,m)}{n})]\cdot(6)$

$(c)$ Asymptotics: Let $c\approx 0.80435$ be a root of Equation (2). Then, for
$0\leq q<1$ ,

$\lim_{narrow\infty}P_{n}(q)=e^{-c}+(e^{c}-c-1)\int_{1}^{\infty}\frac{e^{-cx}}{x}dx\approx 0.580164$ , (7)

showing the insensitivity to $q$ of the asymptotic success probability.

Proof. (a) and (b) are omitted.
(c) Write $b_{n}=1-c_{n}/n$ . Then $c_{n}arrow c$ . To derive (7), write (6) in the form

$P_{n}(q)= \frac{1}{n}\{1+\sum_{i=\min(n_{2}m)}^{n-1}\sum_{r=1}^{i}\frac{1}{n-r}(1-\frac{q}{i})^{n-r}\}+A_{n}(q)$
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where $A_{n}(q)$ is the second term of (6). As $narrow\infty,$ $A_{n}(q)arrow 0$ , so $P_{n}(q)$

converges to

$/0^{1} \int_{0}^{u}\frac{1}{1-v}(e^{-c})^{\frac{1-v}{u}dvdu}$

Make the change of variables; $s=1/u$ and $t=(1-v)/u$. Since this
transformation has Jacobian $J(s, t)=\partial(u, v)/\partial(s, t)=1/s^{3}$ , this double
integral reduces to

$\int_{0}^{1}(\int_{1}^{t+1}\frac{ds}{s^{2}})\frac{1}{t}e^{-ct}dt+\int_{1}^{\infty}(\int_{t}^{t+1}\frac{ds}{s^{2}})\frac{1}{t}e^{-ct}dt$

$=$ $\int_{0}^{1}\frac{e^{-ct}}{1+t}dt+\int_{1}^{\infty}(\frac{1}{t^{2}}-\frac{1}{t}+\frac{1}{1+t})e^{-ct}dt$

$=$ $\int_{0}^{\infty}\frac{e^{-ct}}{1+t}dt+\int_{1}^{\infty}\frac{e^{-ct}}{t^{2}}dt-\int_{1}^{\infty}\frac{e^{-ct}}{t}dt$

$=$ $e^{-c}+(e^{c}-c-1) \int_{1}^{\infty}\frac{e^{-\varpi}}{x}dx$ ,

which yields (7).

The neat expression (6), inspired by Sakaguchi (1973), is crucial to derive
(7) as the limit of the finite problems. An interesting phenomenon is that
no matter what the value of $q$ is, we have asymptotically the same success
probability 0.580164 by allowing the stopping rule to depend on $q$ . To give a
more perspective to this phenomenon which prevails in a greater generality,
we reconsider the problem as a planar Poisson process model in the next
section.

3 The planar Poisson process

Samuels (2004, see Sections 9 and 10) used the planar Poisson process (PPP)
model with rate 1 on the semi-infinite strip $[0,1]\cross[0, \infty)$ as an appropriate
setting in which we can define the infinite version of the full-information
problem as the limit of the corresponding finite problems. His model inverts
the problem (i.e., turns the problem upside down), making the ‘best’ become
the ‘smallest’. The process is scanned from left to right by shifting a vertical
detector and the scanning can be stopped each time a point in the PPP,
referred to as an atom henceforth, is detected. Thus, in the GM problem,
the objective is to stop on the lowest atom in the PPP. For a more detailed
explanation, see Gnedin (1996) who used the PPP on the semi-infinite strip
$[0,1]\cross(-\infty, 0]$ . Here we use Samuels framework.

Suppose that each atom is classified as either a type I or a type II atom.
Suppose further that each atom is classified as a type I atom with probability
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$p$ and a type II atom with probability $q$ independently of all other atoms.
Then it follows that, as a simple consequence from the property of the
PPP, both the type I atoms and the type II atoms constitute the PPPs with
respective rates $p$ and $q$ and these two PPPs are independent. This is why we
use the PPP with rate $p$ on the semi-infinite strip $[0,1]\cross[0, \infty)$ as the desired
setting for Model 1. This is also consistent with the fact that, if the $X_{i}^{l}$ are
iid uniform on $[0,1]$ and $M$ is a binomial random variable with parameters
$(n,p)$ independent of $X_{i}$ , then $n \{1-\max(X_{1}, X_{2}, \ldots, X_{M})\}$ converges in
distribution to exponential $(p)$ .

However, for more generality, we consider in this section the PPP best-
choice problem with (positive) parameters $(a, \lambda)$ defined as the problem of
maximizing the probability of stopping on the lowest atom in the PPP with
rate $\lambda$ on the semi-infinite strip $[0, a]\cross[0, \infty)$ . This problem corresponds to
Modell when $(a, \lambda)=(1,p)$ and to the GM problem when $(a, \lambda)=(1,1)$ .
The typical properties of the PPP are:

$\bullet$ The number of atoms in each bounded domain of the PPP with rate $\lambda$ has
a Poisson distribution with mean equal to $\lambda\cross$ (the area of the domain).

$\bullet$ The numbers of atoms in disjoint domains are independent.

See Gnedin (2004, Section 2.1) for further properties of the PPP.
The goal in this section is to show that, though the optimal rule of the

PPP best-choice problem with parameters $(a, \lambda)$ depends on the parameters,
its optimal success probability is insensitive to them (Theorem 2). Our ar-
gument goes quite parallel to that developed by Samuels (2004, see Sections
10.1 and 10.2) to find the optimal rule and the success probability of the
GM problem. Let $u(t, y)$ denote the probability of success if we choose the
point $(t, y)$ in the PPP, i.e., we stop at time $t$ with a relatively best atom
having value $y$ . Then, if we denote by $P_{\dot{\alpha}s}(k;\mu)$ the Poisson probability of
$k$ events, for a given mean $\mu$ , we have

$u(t, y)=P_{ois}(0;\lambda y(a-t))$ , (8)

because $u(t, y)$ is just the probability that there is no atom in the box domain
$[t, a]\cross[0, y]$ whose area is $y(a-t)$ . On the other hand, let $v(t, y)$ denote
the probability of success if we do not choose the point $(t, y)$ , but instead
choose the point related to the next relatively best atom, if any, then

$v(t, y)= \sum_{j=1}^{\infty}\frac{1}{j}P_{\alpha s}(j;\lambda y(a-t))$ ,

because, if there are $j$ atoms in the box $[t, a]\cross[0, y]$ , the leftmost one has
probability $1/j$ of being best (lowest). Solving for the locus of point $(t,y)$

at which $u(t, y)=v(t, y)$ yields $\lambda y(a-t)=c$ for $c\approx 0.80435$ given as a
root of (2). Moreover, since $u(t, y)\geq v(t, y)$ implies that $u(t’, y’)\geq v(t^{l}, y’)$
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for $t’>t,$ $y’<y$ , so the problem is monotone, we can conclude that the
optimal rule stops with the first relatively best atom, if any, that lies below
the threshold curve

$y= \frac{c}{\lambda(a-t)}$ . (9)

We now have the following result.

Theorem 2 The optimal rule of the $PPP$ best-choice problem with param-
eters $(a, \lambda)$ is specified by the threshold curve (9) and its optimal success
probability is given by

$P_{a_{2}\lambda}=e^{-c}+(e^{c}-c-1) \int_{1}^{\infty}\frac{e^{-cx}}{x}dx\approx O.580164$ ,

which is insensitive to $(a, \lambda)$ .
Proof. Let

$T=$the arrival time of the first (leftmost) point that lies below the
threshold curve $y=c/\lambda(a-t)$ .

$S=$the time when the value of the best (lowest) above-threshold arrival
is now equal to the threshold.

Then $T$ and $S$ are independent and have the following respective densities:

$f_{T}(t)$ $=$ $- \frac{d}{dt}P\{T>t\}=-\frac{d}{dt}\exp(-\lambda\int_{0}^{t}\frac{c}{\lambda(a-r)}dr)$

$=$ $\frac{c(a-t)^{c-1}}{a^{c}}$ , $0<t<a$ (10)

$f_{S}(s)$ $=$ $- \frac{d}{ds}P\{S>s\}=-\frac{d}{ds}\exp(-\lambda[\int_{0}^{s}(\frac{c}{\lambda(a-s)}-\frac{c}{\lambda(a-r)})dr])$

$=$ $- \frac{d}{ds}r\lfloor(\frac{a}{a-s})^{c}e^{-\frac{cs}{a-s}}]=\frac{csa^{c}}{(a-s)^{c+2}}e^{-\frac{cs}{a-s}}$ , $0<s<a$ . (11)

The so called ‘forward-looking argument’ by Samuels(2004, see his Eq(10))
then yields

$P_{a_{1}\lambda}$ $=$ $\int_{0}^{a}/0^{t_{u}}(s,$ $\frac{c}{\lambda(a-s)})f_{S}(s)f_{T}(t)dsdt$

$+ \int_{0}^{a}\int_{0}^{s}[\frac{\lambda(a-t)}{c}\int_{0}^{c/\lambda(a-t)}u(t, y)dy]f\tau(t)fs(s)dtds$,

which, combined with $u(t, y)=e^{-\lambda y(a-t)}$ ffom (8), can be simplified to

$e^{-c}P \{S\leq T\}+\frac{1}{c}(1-e^{-c})P\{S>T\}$
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$=$ $e^{-c}+( \frac{1}{c}-\frac{1}{c}e^{-c}-e^{-c})P\{S>T\}$ . (12)

By the way, we have from (10) and (11)

$P\{S>T\}$ $=$ $\int_{0}^{a}P\{S>t\}f_{T}(t)dt$

$=$ $c \int_{0}^{a}\frac{1}{a-t}e^{-\frac{ct}{a-t}}dt$

$=$ $ce^{c} \int_{1}^{\infty}\frac{e^{-cx}}{x}dx$ , (13)

where the last equality follows by making the change of variable $x=a/(a-t)$ .
Substituting (13) into (12) gives the desired result.
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