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This paper consists of two parts. In Sections 1, 2 and 3, I give my recent work [8] of 2-dimensional
floating bodies. In Section 4, I give two important formulas of 3-dimensional floating bodies. These
formulas are already known, maybe, but I do not know where the statements and the proofs are given.
In Section 5, we apply the result of Section 4 to Ulam’s problem.

1 Ulam’s Floating Body Problem of Two Dimension
S. M. Ulam posed a problem: If a body of uniform density floats in water in equilibnum in every

direction, must it be a spheoe? See [3] or [9] for detail. The problem is still open. However, in two
dimensional case of the problem, Auerbach [1] gives a counter-example.

Theorem 1. ([1]) There is a non-circular figure $D\subset \mathbb{R}^{2}$ of density $\rho=1/2$ which $fl\infty ts$ in equilibrium
in every direction.

Before we state our result, we define some terminology of two-dimensional floating bodies. Consider
a figure $D\subset \mathbb{R}^{2}$ whose perimeter $\partial D$ is a simple closed curve, and take a number $0<\rho<1$ . For a given
angle $0\leqq\theta<2\pi$ , there is a directed line $L_{\theta}$ of slope angle $\theta$ which divides the area of $D$ in the ratio
$\rho$ : $1-\rho$ . In this paper, we assume the following three conditions:

(Cl) $\partial D$ is of class $C^{1}$ .
(C2) $L_{\theta}$ meets $\partial D$ at exactly two points, say, $P$ and $Q$ .
(C3) Neither the tangent at $P$ nor at $Q$ is not parallel to the line $PQ$ .

We call $\rho$ the density of $D$ , and the segment $PQ$ the water line of slope angle $\theta$ . We denote by $D_{u}$ and
$D_{a}$ the divided figures of area ratio $\rho$ : $1-\rho$ . We call $D_{u}$ and $D_{a}$ the underwater and abovewater parts
of $D$ , respectively. We denote by $G_{u}$ and $G_{a}$ the centroids of $D_{u}$ and $D_{a}$ , respectively. We say that $D$

floats in equilibrium in direction $e_{2}(\theta)=(-\sin\theta, \cos\theta)$ if the line $G_{u}G_{a}$ is parallel to $e_{2}(\theta)$ .
If the figure $D$ of density $\rho$ floats in equilibrium in every direction, we call $D\subset \mathbb{R}^{2}$ an Auerbach figure

of an Auerbach density $\rho$ . It is known that, if $D\subset \mathbb{R}^{2}$ is an Auerbach figure, then the water surface
divides $\partial D$ in constant ratio, say, $\sigma$ : $1-\sigma$ . See (ii) of Corollary 7. We call $\sigma$ the penmetral density of
the Auerbach figure $D$ .

If $D$ is an Auerbach figure of density $\rho=1/2$ , then the water lines $L_{\theta}$ and $L_{\theta+\pi}$ are the same but
opposite directed lines. Thus it is of perimetral density $\sigma=1/2$ . In the proof of Theorem 1, the condition
$\rho=1/2$ is essential. It is difficult to make an Auerbach figures of density $\rho\neq 1/2$ . So a question arises:
Is there a non-cincular Auerbach figure of density $\rho\neq 1/2^{q}$

Recently, Wegner [10] gave an positive answer to this question. Wegner’s examples exhibit more
interesting fact. That is, for given integer $p\geqq 3$ , one of $h$ is examples has $(p-2)$ different Auerbach
densities. So one Auerbach figure can have many perimetral densities.

On the other hand, Bracho, Montejano and Oliberos [2] gave a following result.

Theorem 2. ([2]) If there is an Auerbach figure $D\subset \mathbb{R}^{2}$ of perimetral density $\sigma=1/3$ or 1/4, then it
is a circle.

The purpose of the first part of this paper is to prove the following theorem.
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Theorem 3. (1) If an Auerbach figure $D\subset \mathbb{R}^{2}$ has three peremetral densities $\sigma_{1},$ $\sigma_{2}$ and $\sigma_{3_{f}}$ and if
$\sigma_{1}+\sigma_{2}+\sigma_{3}=1$ , then it is a circle. $($These $\sigma_{i}s$ are not necessargly different.$)$

(2) If an Auerbach figure $D\subset \mathbb{R}^{2}$ has four perimetral densities $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}$ and $\sigma_{4}$ , and if $\sigma_{1}+\sigma_{2}+$

$\sigma_{3}+\sigma_{4}=1$ , then it is a circle. $($These $\sigma_{i}$ ’s are not necessarily different.$)$

The above theorem is a generalization of Theorem 2. Certainly, putting $\sigma_{1}=\sigma_{2}=\sigma_{3}=1/3$ gives
the 1/3 case of Theorem 2, and putting $\sigma_{1}=\sigma_{2}=\sigma_{3}=\sigma_{4}=1/4$ gives the 1/4 case of Theorem 2.

2 Auerbach Figures
In this section, we give a short survey of Auerbach figures.

Theorem 4. ([1], [10]) If a figure $D\subset \mathbb{R}^{2}$ is Auerbach, then the water line is of constant length.

We give a proof of the above theorem in Section 5.

Theorem 5. If a figure $D\subset \mathbb{R}^{2}$ is Auerbach, and if $PQ$ is the water line of slope angle $\theta$ , then there is
a $2\pi$-periodic function $f$ of class $C^{2}$ such that the position vectors of $P$ and $Q$ are given by

$p(\theta)=-f(\theta)e_{2}(\theta)+(f’(\theta)-l)e_{1}(\theta)$ , $q(\theta)=-f(\theta)e_{2}(\theta)+(f’(\theta)+l)e_{1}(\theta)$ , (1)

where $e_{1}(\theta)=(coe\theta,\sin\theta),$ $e_{2}(\theta)=(-\sin\theta,coe \theta)$ , and $l$ is half the length of $PQ$ .
Prvof Assume that $D$ is an Auerbach figure, Then by Theorem 4, the waterline is of constant length.
Since $\{e_{1}(\theta),e_{2}(\theta)\}$ is a basis of $\mathbb{R}^{2}$ , we can represent the position vectors of the points $P$ and $Q$ as
follows:

$p(\theta)=-f(\theta)e_{2}(\theta)+g(\theta)e_{1}(\theta))$ $q(\theta)=-f(\theta)e_{2}(\theta)+(g(\theta)+2l)e_{1}(\theta)$. (2)

Suppose that the chord $P^{*}Q^{*}$ of $C$ is the water line of slope angle $\theta+h$ . Then the position vector of the
intersection $H$ of the chords $PQ$ and $P^{*}Q^{*}$ are given by

$oB=-f(\theta)e_{2}(\theta)+\lambda e_{1}(\theta)=-f(\theta+h)e_{2}(\theta+h)+\mu e_{1}(\theta+h)$ . (3)

By taking the inner product of (3) and $e_{2}(\theta+h)$ , we have that $f(\theta+h)=\lambda\sin h+f(\theta)\cos h$ . Thus we
obtain that

$f’( \theta)=\frac{f(\theta+h)-f(\theta)}{h}+o(1)=\lambda\frac{\sin h}{h}-f(\theta)\frac{1-\cos h}{h}+o(1)=\lambda+o(1)$ . (4)

We can evaluate the areas of the sectors $HPP^{*}$ and $HQQ^{*}$ by

$\frac{1}{2}HP^{2}h+o(h)=\frac{1}{2}|g(\theta)-f’(\theta)|^{2}h+o(h)$ and

$\frac{1}{2}HQ^{2}h+o(h)=\frac{1}{2}|g(\theta)-f’(\theta)+2l|^{2}h+o(h)$, (5)

respectively. Since these two areas are equal, we obtain that $g(\theta)=f^{f}(\theta)-l$ . Hence we have proved (1).
By taking the inner product of (1) and $e_{1}(\theta)$ , we have that $f’(\theta)=p(\theta)\cdot e_{1}(\theta)+l$ . Thus the function
$f(\theta)$ is of class $C^{2}$ . ロ

The following result is a ”proof” of Theorem 1.

Example 6. Put $f(\theta)=-k\cos 3\theta$ in Equation (1). Then the curve is rotational symmetric with respect
to the angle $2\pi/3$ . So it surrounds an Auerbach figure of density 1/2. See Theorem 11. The figures of
$k/l=0.03$ and $k/l=0.1$ are drawn as follows:
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The following result gives geometric properties of Auerbach figures.

Corollary 7. If a figure $D\subset \mathbb{R}^{2}$ is Auerbach, and if $PQ$ is the water line of slope angle $\theta$ , then:
(i) The vectors $p’(\theta)$ and $q’(\theta)$ are symmetnc with respect to the line $PQ$ .
(ii) The arc $PQ$ of $\partial D$ is of constant length.

Proof. By differentiating (1), we have that

$p’(\theta)=s(\theta)e_{1}(\theta)-le_{2}(\theta)$ , $q’(\theta)=s(\theta)e_{1}(\theta)+le_{2}(\theta)$ , (6)

where $s(\theta)=f(\theta)+f^{l/}(\theta)$ . Since the line $PQ$ is parallel to the vector $e_{1}(\theta)$ , we have proved (i).
(ii) By (6), we have that $|p’(\theta)|=|q’(\theta)|=\sqrt{s(\theta)^{2}+l^{2}}$ . This implies that the points $P$ and $Q$ move

at the same speed along $\partial D$ . Thus we have proved (ii). ロ

Remark. By integrating (6), we have that

$p(\theta)=c+\int_{0}^{\theta}s(\phi)e_{1}(\phi)d\phi-le_{1}(\theta)$ , $q(\theta)=c+\int_{0}^{\theta}s(\phi)e_{1}(\phi)d\phi+le_{1}(\theta)$, (7)

where $c$ is a constant vector. These formulas are same as those given in Section 2 of [10].

3 Proof of Theorem 3
Proof of Theorem S. (i) Let $P_{1},$ $P_{2}$ and $P_{3}$ be three points of $\partial D$ such that for each $i=1,2,3$ , the line
$P_{1}P_{1+1}$ can be a water surface of perimetral density $\sigma;$ . (The indices are taken cyclic in modulo 3.) For
each $i=1,2,3$ , we denote by $p_{i}(\theta)$ the position vector of $P_{i}$ , by $x_{i}$ the angle $\angle P_{1-}{}_{1}P_{j}P_{i+1}$ and by $\alpha_{j}$ the
angle between $p_{j}’(\theta)$ and $P_{1}P_{j+1}$ . By (i) of Corollary 7, the angle between $P_{i-}{}_{1}P_{i}$ and $p_{j}’(\theta)$ is equal to
$\alpha_{i}$ . So we obtain that $x_{1}+\alpha_{3}+\alpha_{1}=\pi,$ $x_{2}+a_{1}+\alpha_{2}=\pi$ and $x_{3}+\alpha_{2}+\alpha_{3}=\pi$ . Since $x_{1}+x_{2}+x_{3}=\pi$ ,
we have that $\alpha_{1}+\alpha_{2}+\alpha_{3}=\pi$ . See the figure below left. So we obtain that $\alpha_{1}=x_{3}$ . By the converse of
Alternate Segment Theorem, $p_{1}’(\theta)$ tangents to the circumcircle of the triangle $P_{1}P_{2}P_{3}$ . Thus $P_{1}$ varies
on the circumcircle. Hence $D$ is a circle.

(ii) Let $P_{1},$ $P_{2},$ $P_{3}$ and $P_{4}$ be four points of $\partial D$ such that for each $i=1,2,3,4$ , the line $P_{i}P_{j+1}$ can
be a water surface of perimetral density $\sigma_{i}$ . (The indices are taken cyclic in modulo 4.) By the same
notation and argument used in (i) of this theorem, we otain that $x_{1}+\alpha_{4}+\alpha_{1}=\pi,$ $x_{2}+a_{1}+\alpha_{2}=\pi$ ,
$x_{3}+\alpha_{2}+\alpha_{3}=\pi$ and $x_{4}+\alpha_{3}+\alpha_{4}=\pi$ . See the figure below right. Since $x_{1}+x_{2}+x_{3}+x_{4}=2\pi$ , we have
that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=\pi$ . So we obtain that $x_{1}+x_{3}=\pi$ . By the converse of Inscribed Quadrangle
Theorem, the quadrangle $P_{1}P_{2}P_{3}P_{4}$ inscribes to a circle. Thus $P_{3}P_{1}$ is of constant length, and therefore,
it can be a water line of perimetral density $\sigma_{3}+\sigma_{4}$ . Hence, by (i) of this theorem, $D$ is a circle. a
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4 On formulas for 3-dimensional floating bodies
Suppose that a solid $\mathcal{F}\subset \mathbb{R}^{3}$ has a volume $V$ and a uniform density $\rho(0<\rho<1)$ and that it floats

on water so that a unit vector $n\in \mathbb{R}^{3}$ is the vertical and upward direction. The water surface is a plane
which is orthogonal to $n$ and cuts $\mathcal{F}$ in ratio $1-\rho$ : $\rho$ . By Archimedes Principle, the volume of the
undersurface part of $\mathcal{F}$ is equal to $\rho V$ . In the paper, we assume that the boundary of $\mathcal{F}$ is sufficiently
differentiable and do not tangent to the water surface. From now, we consider that $\mathcal{F}$ is fixed and $n$

varies, that is, we consider that $\mathcal{F}$ is not inclined but the water surface is inclined. We call $n$ the vertical
vector and orthogonal vectors to $n$ honzontal vectors.

We can solve the stability problem of floating bodies by analyzing the relation between the positions
of its center of gravity and its center of buoyancy. The center of buoyancy is the center of gravity of the
underwater part of the floating body. The center of gravity $G$ does not depend on $n$ , but the center of
buoyancy $B$ is a function of $n$ .

The gravity acts vertically downward on $G$ and the buoyancy acts vertically upward on $B$ . If $G$ and
$B$ do not lie on same vertical line, then the floating body rotates. We say that $\mathcal{F}$ is in equilibrium state
with respect to the direction $n$ if $G$ and $B$ lie on the same vertical line, that is, $(B-G)\cdot u=0$ for every
horizontal vector $u$ .

Suppose that the floating body $\mathcal{F}$ is in equilibrium state with respect to $n_{0}$ . Then fix a horizontal
vector $t$ and consider the vector $u_{0}$ which is made by the vector product $u_{0}=n_{0}xt$ . Rotate the vectors
$u_{0}$ and $n_{0}$ counterclockwise with respect to $t$ , that is,

$u=u_{0}\cos\theta+n_{0}\sin\theta$ , $n=-u_{0}\sin\theta+n_{0}\cos\theta$ . (8)

It means that the water line inclines counterclockwise by the angle $\theta$ , that is, the floating body inclines
clockwise by the angle $\theta$ . We call $t$ the vector of rotation azzs.

Assume that the floating body inclines by a sufficiently small angle $\theta$ . If the function $F(\theta)=(B-G)\cdot u$

is monotone increasing, then the gravity and buoyancy act as the floating body retums to the original
state. If the function $F(\theta)$ is monotone decreasing, then the gravity and buoyancy act as the floating
body inclines more. So we define as follows:
Deflnition. We say that a floating body $\mathcal{F}\subset \mathbb{R}^{S}$ in equilibrium is stable (unstable) with respect to a
rotation axis $t$ if $F(\theta)$ is monotone increasing (decreasing). We say that $\mathcal{F}$ is stable if it is stable with
respect to every rotation axis $t$ .

We denote by $E$ the cross section of $\mathcal{F}$ cut by the water surface. We make a coordinate plane whose
origin is the center of gravity of $E$ and x- and z-axis have the same direction as $u$ and $t$ , respectively.
Then we can regard $E$ as the figure in the xz-plane. Consider the following quantity:

$I(n, t)= \int\int_{E}x^{2}dxdz$ . (9)
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We call it the moment of inertia with respect to $n$ and $\ell$ . From now, we fix vectors $n_{0}$ and $t$ , and consider
the moment of inertia as a function of $\theta$ , that is, we denote $I(\theta)=I(n, t)$ .

Suppose that a floating body $\mathcal{F}$ is in equilibrium with respect to the direction $n_{0}$ . Then the following
formula holds:

$F( \theta)=\int_{0}^{\theta}(\frac{I(\phi)}{\rho V}-\overline{GB}_{0})\cos(\theta-\phi)d\phi$, (Fl)

where $B_{0}$ is the center of buoyancy of $\mathcal{F}$ with respect to the direction $n_{0}$ . Remark that $\overline{GB}_{0}$ is a distance
between $G$ and $B_{0}$ , and so, a constant number. We can approximate (Fl) as follows:

$F( \theta)=(\frac{I(0)}{\rho V}-\overline{GB}_{0})\theta+O(\theta^{2})$ . (10)

By using (10), we deduce the following corollary:

Corollary 8. If $I(O)>\rho V\overline{GB}_{0}$ , then $\mathcal{F}$ is stable with respect to the axts $t$ . If $I(O)<\rho VTB_{0}$ , then $\mathcal{F}$ is
unstable with respect to the $a\dot{r}st$ .

Set $U(\theta)=(G-B)\cdot n$ . We call it the potential function of the floating body $\mathcal{F}$ . Suppose that a
floating body $\mathcal{F}$ is in equilibrium with respect to the direction $n_{0}$ . Then the following formula holds:

$U( \theta)=\int_{0}^{\theta}(\frac{I(\phi)}{\rho V}-\overline{GB}_{0})\sin(\theta-\phi)d\phi$ (F2)

By (Fl) and (F2), we find that

$U’(\theta)=F(\theta)$ , $F’( \theta)=-U(\theta)+\frac{I(\theta)}{\rho V}-\overline{GB}_{0}$. (11)

By the first formula of (11), we obtain the following corollary:

Corollary 9. The floating body $\mathcal{F}$ is stable with respect to the axis $t$ if and only if the fmction $U(\theta)$

takes a local minimum at $\theta=0$ . The floating body $\mathcal{F}$ is unstable with $oes\mu ct$ to the axts $t$ if and only if
the function $U(\theta)$ takes a local maximum at $\theta=0$ .

Proof of $(Fl)$ and $(FZ)$ . Rotate $u$ and $n$ by a small angle $\epsilon$ with respect to the axis $t$ . Denote them by
$u_{e}$ and $n_{e}$ , that is,

$u_{\iota}=u$ coe $\epsilon+n\sin\epsilon$ , $n_{e}=-u\sin\epsilon+n\cos\epsilon$ . (12)

We denote by $\mathcal{W}$ and $\mathcal{W}_{l}$ the under surface parts of $\mathcal{F}$ with respect to the vertical vectors $\mathfrak{n}$ and $n.$ ,
respectively, and by $B$ and B. the centers of buoyancy of them. By the definition, $B$ and $B_{e}$ are the
center of gravity of $\mathcal{W}$ and $\mathcal{W}_{l}$ , respectively. Then put

$\mathcal{W}_{3}=\mathcal{W}\cap \mathcal{W}.$ , $\mathcal{W}_{1}=\mathcal{W}\backslash \mathcal{W}_{3}$ and $\mathcal{W}_{2}=\mathcal{W}_{e}\backslash \mathcal{W}_{S}$ , (13)

and denote by $B_{3},$ $B_{1}$ and $B_{2}$ the centers of gravity of them, respectively. Since the volumes of $\mathcal{W}$ and
$\mathcal{W}_{e}$ are equal to $\rho V$ , the volumes of $\mathcal{W}_{1}$ and $\mathcal{W}_{2}$ are equal, putting $V_{1}$ . Then by the property of center
of gravity, we obtain that

$B=(1- \frac{V_{1}}{\rho V})B_{3}+\frac{V_{1}}{\rho V}B_{2}$ ,

By the above equality, we obtain that

$B=(1- \frac{V_{1}}{\rho V})B_{3}+\frac{V_{1}}{\rho V}B_{1}$ . (14)

$B$. $-B= \frac{V_{1}}{\rho V}(B_{2}-B_{1})$ . (15)
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We cut the cross section $E$ into the following two parts:

$E_{2}=E\cap \mathcal{W}_{2}$ , $E_{1}=E\cap \mathcal{W}_{1}$ . (16)

We take the center of gravity of $E$ as the origin, and take $x,$ $y$ and z-axis so that they have the same
directions as $u,$ $n$ and $t$ , respectively. We denote by $x=\delta$ the border line of $E_{2}$ and $E_{1}$ , and set

$\tilde{E}_{2}=\{(r\cos\theta+\delta, r\sin \theta, z)|(r+\delta, z)\in E_{2},0\leqq\theta\leqq\epsilon\}$ ,
$\tilde{E}_{l}=tt-$ rcos $\theta+\delta,$ $-r\sin\theta,$ $z$ ) $|(-r+\delta, z)\in E_{1},0\leqq\theta\leqq\epsilon\}$ . (17)

Then we obtain that

$V_{1}= \int\int\int_{\mathcal{W}_{2}}dxdydz=\int\int\int_{\tilde{B}a}rdrd\theta dz+O(\epsilon^{2})$

$= \epsilon\int\int_{(r+\delta,z)\in E_{2}}rdrdz+O(\epsilon^{2})$

$= \epsilon\int\int_{E_{2}}(x-\delta)dxdz+O(\epsilon^{2})$ . (18)

Similarly, we obtain that

$V_{1}= \int\int\int_{\mathcal{W}_{2}}dxdydz=\epsilon\int\int_{E_{1}}(\delta-x)dxdz+O(\epsilon^{2})$ . (19)

By (18) and (19), we obtain that

$\epsilon(\int\int_{B}xdxdz-\delta\int\int_{B}dxdz)=\epsilon\int\int_{B_{2}}(x-\delta)dxdz-\epsilon\int\int_{B_{1}}(\delta-x)dxdz=O(\epsilon^{2})$. (20)

Since we take the center of gravity of $E$ as the origin, we obtain that $\iint_{B}xdxdz=0$ . Putting it into
(20), we obtain that $\delta=O(\epsilon)$ . Since $u$ is the unit vector of direction x-axis, we obtain that

$V_{1}B_{2} \cdot u=\int\int\int_{\mathcal{W}_{2}}xdxdydz=\int\int\int_{B_{2}}r(r coe \theta+\delta)drd\theta dz+O(\epsilon^{2})$

$= \int\int_{(r+\delta,x)\in B_{3}}r(r\sin\epsilon+\delta\epsilon)drdz+O(\epsilon^{2})$

$= \epsilon\int\int_{E_{2}}x(x-\delta)dxdz+O(\epsilon^{2})=\epsilon\int\int_{E_{2}}x^{2}dxdz+O(\epsilon^{2})$ . (21)

Similarly, we obtain that

$V_{1}B_{1} \cdot u=-\epsilon\int\int_{B_{1}}x^{2}dxdz+O(\epsilon^{2})$ , (22)

$V_{1}B_{2}\cdot n=O(\epsilon^{2})$ , $V_{1}B_{1}\cdot n=O(\epsilon^{2})$ . (23)

By using (15), (21) and (22), we obtain that

$(B_{e}-B) \cdot u=\frac{\epsilon}{\rho V}\int\int_{B}x^{2}dxdz+O(\epsilon^{2})=\frac{\epsilon I(\theta)}{\rho V}+O(\epsilon^{2})$ . (24)

Similarly, we obtain that

$(B_{l}-B)\cdot n=O(\epsilon^{2})$ . (25)

By dividing (24) and (25) by $\epsilon$ , and taking $\epsilonarrow 0$ , we obtain that

$B’( \theta)\cdot u=\frac{I(\theta)}{\rho V}$ , $B’(\theta)\cdot n=0$ . (26)
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By putting (8) into (26), we obtain that

$B’( \theta)\cdot u_{0}=\frac{I(\theta)}{\rho V}\cos\theta$ , $B’( \theta)\cdot n_{0}=\frac{I(\theta)}{\rho V}\sin\theta$ . (27)

By replacing $\theta$ of (27) by $\phi$ , and by integrating it on the interval $0\leqq\phi\leqq\theta$ , we obtain that

$(B-B_{0}) \cdot u_{0}=\frac{1}{\rho V}\int_{0}^{\theta}I(\phi)\cos\phi d\phi$ ,

By (8) and (28), we obtain that

$(B-B_{0}) \cdot n_{0}=\frac{1}{\rho V}\int_{0}^{\theta}I(\phi)\sin\phi d\phi$ . (28)

$(B-B_{0}) \cdot u=\frac{1}{\rho V}\int_{0}^{\theta}I(\phi)(c\propto\theta coe \phi+\sin\theta\sin\phi)d\phi$

$= \frac{1}{\rho V}\int_{0}^{\theta}I(\phi)\cos(\theta-\phi)d\phi$ . (29)

Similarly, we obtain that

$(B-B_{0}) \cdot n=-\frac{1}{\rho V}\int_{0}^{\theta}I(\phi)(\sin\theta\cos\phi-c\propto\theta\sin\phi)d\phi$

$=- \frac{1}{\rho V}\int_{0}^{\theta}I(\phi)\sin(\theta-\phi)d\phi$ . (30)

Hence we obtain that

$F(\theta)=(-(G-B_{0})+(B-B_{0}))\cdot u$

$=-(G-B_{0})\cdot(u_{0}\cos\theta+n_{0}\sin\theta)+(B-B_{0})\cdot u$

$=- \overline{GB}_{0}\sin\theta+\frac{1}{\rho V}\int_{0}^{\theta}I(\phi)\cos(\theta-\phi)d\phi$

$= \int_{0}^{\theta}(\frac{I(\phi)}{\rho V}-\overline{GB}_{0})\cos(\theta-\phi)d\phi$. (31)

Similarly, we obtain that

$U( \theta)=\int_{0}^{\theta}(\frac{I(\phi)}{\rho V}-\overline{GB}_{0})\sin(\theta-\phi)d\phi$ . (32)

Hence we have proved (Fl) and (F2). ロ

5 Application to Ulam’s problem
Firstly, we consider three dimensional case. Remark that a floating body $\mathcal{F}\in \mathbb{R}^{3}$ is in equilibrium in

every direction if and only if $F(\theta)=0$ for every rotation axis $t$ . If $F(\theta)=0$ , then by (11), we have that
$I(\mathfrak{n}, t)=I(\theta)$ is constant. Hence we have proved the following theorem:

Theorem 10. If a floating body $\mathcal{F}$ is in equilibrium in every direction, then the moment of inertia $I(n, \ell)$

is constant for every $n$ and $t$ .
Secondly, we consider two dimensional case. Consider a rod of base $D\subset \mathbb{R}^{2}$ and height $h$ . Suppose

that it floats so that the rotation axis $\ell$ is parallel to the axis of the rod and fixed. In this case, denote
by $\ell=\ell(\theta)$ the length of the water line. Then we obtain that

$I( \theta)=\int_{-h/2}^{h/2}\{\int_{-\ell/2}^{\ell/2}x^{2}dx\}dz=\frac{h}{12}\ell^{3}$ . (33)

By Theorem 10 and (33), we have proved Theorem 4.
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The converse of Theorem 4 holds under a rotational symmetry condition.

Theorem 11. If a figure $D\subset \mathbb{R}^{2}$ is rotational symmetric with nespect to some angle, and if the water
line is of constant length, then it is Auerbach.

Proof. By (33), the moment of inertia $I(\theta)$ is constant. So by (28), we obtain that

$B=G+( \frac{I(0)}{\rho V}-\overline{GB}_{0})n_{0}+\frac{I(0)}{\rho V}(u_{0}\sin\theta-n_{0}\cos\theta)$. (34)

So the locus of $B$ is a circle. Since $D$ is rotational symmetric, so is the locus of $B$ . Thus we obtain that

$B=G+ \frac{I(0)}{\rho V}(u_{0}\sin\theta-n_{0}\cos\theta)$ . (35)

By (35), we obtain that $F(\theta)=0$ . Hence $D$ is Auerbach. ロ
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