0000000000
016380 2009 0 146-158 146

A Fast Verified Automatic Integration Algorithm
using Double Exponential Formula

BREBAY ERET 2R (UF &t (Naoya Yamanaka)*
Graduate School of Fundamental Science and Engineering,
Waseda University

R K 1L &HE (Tomoaki Okayama)?
BREKRY¥ KA E— (Shin’ichi Oishi)*
WHRZFKR¥E $KH K¥E (Takeshi Ogita)®

Abstract

A fast verified automatic integration algorithm of calculating univariate integrals over finite
interval using numerical computations is proposed. The proposed algorithm is applicable to the
double exponential formula for numerical integration proposed by H. Takahashi and M. Mori.
To get highly accurate integral value using the formula, how to decide the two parameters h
and n is critical. In this paper, we present a theorem to get an adequate pair h and n for
a given tolerance. Furthermore, we propose a fast verified automatic integration algorithm
based on the theorem with a priori error algorithm for rounding error. Numerical results are
presented showing the performance of the proposed algorithm.

1 Introduction

We are concerned with verified computation of an intergral

I= /: f(z)dz.

We assume that f(z) may have an integrable singularity at the end-points z = a and/or z = b.
We adopt the double exponential formula for numerical integration proposed by H. Takahashi and
M. Mori [2] in 1974. The double exponential transformation ¢ for the integral over finite interval
(a, b) is defined by

a ™ a+bd
tanh (—2— smh(t)) + 5

b—
2
and then the double exponential formula can be written as follows:

T =)=

Ingn:=h Y f(p(kh))¢' (kh),

k=-n

*naoya_yamanaka®suou.waseda. jp

tGraduate School of Information Science and Technology, The University of Tokyo
#Faculty of Science and Engineering, Waseda University

SDepartment of Mathematics, Tokyo Woman’s Christian University

147

where h and n denote a mesh size and the number of points, respectively. Here, the error E (h,n)
can be described as

I = Inn + E(h, n)
E (h,n) = C (Ep (h) + Er (h,n)),

which Ep (h) and E7 (h,n) denote the discretization error and the truncation error with a constant
C. In order that the formula works accurately and efficiently, Ep and Er should be of the same
order in magnitude, so that we attempt to select the pair h and n adequately.

Several authors have proposed the error analysis of the double exponential formula (3, 4, 5].
In particular, for verified computation, a theorem (Theorem 1), which is proposed by Okayama. et
al. [6], is useful to get an upper bound of E(h, n). We think that this theorem is much important
because it shows some constants of the upper bound of the formula explicitly, so that it can easily
be applied for verified integration algorithms. Using the theorem, however, these errors Ep and
ET are sometimes not of the same order since the pair h and n is not suitably selected.

To solve the problem, in this paper, we present a theorem (Theorem 3). Using this theorem,
we can easily get an adequate pair satisfying

E(h, n) S Eabsy

which €455 denotes a given absolute tolerance.

For developing verified algorithm using the double exponential formula, all rounding errors that
occur throughout the algorithm must be taken into account. An upper bound of rounding error
for verified computations can be calculated by interval arithmetic, but it is much slower than pure
floating-point arithmetic because it calculates the interval of evaluation res; and the upper bound
of rounding error ¢; for every z; s.t.

|res; — f(z:)| < .

Furthermore, to get the upper bound, whole calculations by interval arithmetic must be completed.
To avoid these problems, we adopt an algorithm of calculating a priori error bounds of function
evaluations using floating-point computations (Algorithm 1). This algorithm calculates a global
constant ¢ for any floating point numbers a < z < b s.t.

maxs<z<b [res — f(z)| < ¢,

which res denotes the approximate value of f(z).
Automatic integration in this paper means that the user inputs an integration and a relative
tolerance £re;, and automatic integration algorithm outputs an interval I s.t.

I-71
I

rad([)
=T

< Erel,

where rad(f) denotes the radius of I.

In this paper, we propose a fast verified automatic integration algorithm based on Theorem 3
and Algorithm 1. Using this algorithm, we can calculate I as fast as the widely-used approximation
software developed by Ooura [10] for integration problems using the double exponential formula.

148

2 Errors of The Double Exponential Formula

2.1 The Double Exponential Formula

Now consider again the integral ,
I= / f(z)dz. (1)
a

We assume that f(z) may have an integrable singularity at the end-points £ = a and/or z = b.
We apply a variable transformation

z = p(u)

to (1), where (u) is an analytic increasing function without singularities on the real axis except
infinity satisfying
a=p(-00), b= p(+00).

Then we have

1= [)¢ @ @)

in which f(¢(u))¢’(u) has no singularities on the real axis except infinity. We apply the trapezoidal
rule to (2) with a mesh size h,

In:=h) f(o(kh) (kh).

k=oc
Obviously, the infinite sum must be appropriately truncated in actual application; e.g.
n
Inn:=h > f(p(kh)¢ (kh).
=-n

In order that the formula above works accurately, the transformed function by the double
exponential transformation should be analytic and bounded on some strip domain,

2s={2€C : |Imz| <d},

for a positive constant d. More specifically, the function before the transformation is subject to be
non-singular on the following domain:

- d} .
Definition 1

0(2a)={z€C : ¢7 (2) € D}
1 z—a 1 z—a\)?
= {z(—:C . |arg [;log(b—z) +\/1+{;10g(b—z)} J
Let K, a, 3 be positive constants. Then Lk a5 (¢ (2a)) denotes the family of all functions f that
are holomorphic on ¢ (2y) for d with 0 < d < 7/2, and satisfy the condition that

‘To be more specific, we define the following function space:

If(2)| < Klz—al*' b—2)°", (3)
for all z € ¢ (24).

We can calculate the upper bound of K using circle interval arithmetic. See Eiermann 7.

149

2.2 Error Analysis of The Double Exponential Formula

For developing verified algorithm using the double exponential formula, all errors of the formula
must be taken into account. Since the trapezoidal rule in the double exponential formula is used
for transformed infinite interval, we have to consider the following two errors as the errors of the
double exponential formula:

1. The Discretization error Ep(h)
2. The Truncation error Er(h,n)

For estimating the discretization error, a lemma proposed by Okayama et al. can be used.

Lemma 1 (Okayama et al. [6, Lemma 4.16])
Let f € Lk,a,5 (¥(24)) and 4 = min {e, 8}. Then

b)
|Ep| = / f@de—h S f(e(h) ¢ (ih)

j=—oo

e—2md/h
S CICZ 1— e—271'd/h ’

where the constants C, and C, are defined by

_2K(b—a)>tA-1

©
0y = 2 (5)
2= cos**+B(Z sind) cosd’

C, 4)

Next, the following lemma proposed By Okayama et al. can be used for the estimation of the
truncation error:

Lemma 2 (Okayama et al. [6, Lemma 4.17])
Assume that the assumptions of Lemma 1 are fulfilled. Furthermore let v = max {e,8}, n be a
positive integer, and M and N be positive integers defined by

{ M=n, N =n-|logB/a)/k] (ifu=a)

N=n, M =n-|log(a/B8)/h] (ifn=20) ©

Then, it follows that
-M-1

h Y fle(Gh) @' (5h)

J==00

|Er| < +1h D fle(R) ¢ (Gh)

< eT¥(C e~ Frexp(nh) ,

where the constant C is defined by (4).

Using the above two lemmas, Okayama et al. has proposed the following theorem:

150

Theorem 1 (Okayama et al. [6, Theorem 2.11})
Let f € Lk a3(9(Z24)), 0 = min{a,B}, v = max{a,B}, n be a positive integer with n >
(ve) /(4d), and h be selected by

log (4dn/p)

n
Furthermore, let M and N be positive integers defined by (6). Then it follows that

h=p(n)= (7

< |Ep| + |ET|

b N
[f@dz—n 3= £tk o (1)
a k=—M

C,
Fv| .—2mdn/log(4dn/u)
<C, {————l_e_g_ue+e]e ,

where the constants C, and C; are defined by (4) and (5).

We think that this theorem is much important because it shows some constants of the upper
bound of the formula explicitly, so that it can easily be applied for verified integration algorithms.
Using the theorem, however, these errors Ep and Er are sometimes not of the same order since
the pair h and n is not suitably selected.

In addition, though Theorem 1 requires n first to determine h from n, it does not describe how
to select n.

To solve these problems, we present two theorems as follows:

Theorem 2
Let f € Lk a,3 (¢(24)), 4 = min {a, 8}, v = max {e, 8}, h be a positive number, and n be selected

v = [(2 21 (S))] o
R OB\ R T 7n 98\ oFv

Furthermore, let M and N be positive integers defined by (6). Then it follows that

b N
/ f@dz—h S f(e(kh)) ¢ (kh)| < |Ep| + |Ex|

k=—M

e—27rd/h
S2G0.C T —mam

where the constants C; and Cq are defined by (4) and (5).

Proof.
Clearly it follows by Lemma 1 and 2 that

e—21rd/h

|Ep|+ |ET| < C (Czl

—%rarm + e%ue—fu exp(nh))

=Cy(Ep + Er),

where Ep and Er are defined by

_ e—2md/h
Ep = Cot— =z)

Ep = e¥ve—Fuexp(nh) (10)

151

For decreasing |Ep| and |Er| at the same order, using e~27%/» « 1 when h is small, suppose
Coe 2/ = Fr. (11)
(11) can be rewritten by n as follows:

e——-’,"-uexp(nh) — 02 -27d/h

_r - C2 _srasn
= 2 pexp(nh) = log, e

;v) + log, (e72r4/")
g, (C2) _ 2nd
= 108, Tv T
= n=tlog(2_2,, (O
~h %8 uh Be \ BV
2

1 4d Cs
< | = —_—— .
- {h tog (#h O (e*"))]
Using (11), the upper bound of the double exponential formula can be written as follows:

|Ep| + |Br| < C: (ED + ET)

e—2rd/h —2md/h
=0102 <_'_1_e_2"d/h +e)

2 — g~ 2nd/h
—_ —2nd/h
= C1Cae™ 2/ (——1 - e—2nd/h>

e—21rd/ h
< 2CCy m
|
Theorem 2 shows that when Ep ~ Er, the upper bound of the double exponential formula
depends only on h. The following theorem shows the condition of the pair k and n when a tolerance
Eabs 18 inputted:

Theorem 3

Let f € Lk,a,6(9(Za4)), 4 = min{a, B} and v = max {e,3}. Furthermore, let M and N be
positive integers defined by (6), and the constants C, and C; be defined by (4) and (5). If a
positive number h and a positive integer n are selected by

2nd

h= ,
log, (1 + 2C'2>

Eabs
n= llo (i lo (26%1/) -’
- h g T ge €abs ’

b N
/ f@dz—h 3 £ (p(kh)) (k)
a k=— M

then

< Cigaps

holds.

152

Proof.
It follows by Lemma 1 and 2 that

|Ep(h)| + |Br(h,n)| < C1 (Ep + Er).

For conforming |Ep| to |Er|, assign £4p5 as follows:

Ep(h) < 5"2"’, (12)

Er(h,n) < ET" (13)

First, since Ep(h) depends on only h, from (12) we have

e—Zmi/h < Eabs
2T eman < g
-2nd/h o __Cabs
T 2C; + €aps
2nd

log, (1 + 202)

Eabs

— €

< h <

=: hm.

Next, though ET(h, n) depends on h and 7, we can choose adequate n from (13) using maximum
h (= hm) as follows:

eFve—Fuexp(nhn) Eabs
- 2

= - %nexp(nhm) < log, —22¢

2e%v

1 2 2e%v
> —1 —
= n> e og, (ﬂ_# log, P~)

Since the right-hand side is monotone decreasing for h, we have

n=|-log [*1lo 2'3%")
= | ok (7108 T—) |-

3 Fast Verified Automatic Integration Algorithm
3.1 A Priori Error Algorithm for Rounding Error

In verified numerical computations, all rounding errors that occur throughout the algorithm must
be taken into account. Although the rounding errors can be counted by interval arithmetic, it is
much slower than pure floating-point arithmetic. Moreover it is not until all calculations have done
by interval arithmetic that we could get the upper bound of rounding errors.

To avoid these problems, we adopt an algorithm of calculating a priori error bounds of func-
tion evaluations using floating-point computations, which is proposed by M. Kashiwagi [8]. This
algorithm calculates a global constant € for any a < z < b s.t.

méXe<z<b Ires - f(x)l < &,

153

which res denotes the approximate value of f(z). In the case that some numerical algorithm
computes the same function with a number of different points, we can expect the algorithm with
the a priori error algorithm to become faster than that with interval arithmetic, because the
evaluations of the function are executed by pure floating-point operations.

Consider the binary operation Z = g (Z, #). Denote Z and § in the intervals I, and I, by
approximate values of ¢ and y in I, and I, respectively. Suppose

|z —Z|<es, ly—0l<egy
hold. In addition, assume the following inequality is satisfied:
12— 9(2,9)| < |9(Z,9)|em- (14)
Then, the following inequality holds for z € I 2
|2 — 2| < |Dg| ez + | Dyley + || e
Here, let us suppose the interval I, holds
Lo{g(zy) |z €Ly e L},

and intervals D., D, hold
99
D, > {b—;(x,y) |z € Iz,yely}
9y
Dy) {gg(m,y)] rel,yeE Iy} .

For the single operation z = g(z), we can show the upper bound of rounding error by the
almost same way. Denote Z in the intervals I, by approximate values of z in I,. Suppose

|z — & < e
hold. In addition, assume the following inequality is satisfied:
12— g(%)| < |9(2)|em- (15)
Then, the following inequality holds for z € I,:
|2 — 2| < |Dgleg + || em.
Here, let us suppose the interval I, holds
I; 5 {g9(z) | z € L},

and intervals D, hold
D, > {J(z) |z e I}.

We make the pair (I,) as

I : An input interval into the operation
€ : Collected errors until the operation,

154

and define every operation for the pair.
For example, the addition operator ”+” for the pair is defined by

Iz, e2) + (Iy,6y) = (Is + Iy, &x + &y + | Iz + Lylem) .
To similar, the multiplication operator ”.” is defined by
(I:msz:) : (Iyasy) = (I:c : Iy’ Eg"Ey + lIx : Iyl EM) .

With bottom-up calculation by recursive use of the defined operation, we can get an upper
bound of rounding errors when evaluating a point of a function in floating-point arithmetic.

Algorithm 1

Computation of an a priori error algorithm of rounding errors when evaluating f (¢) in floating-
point arithmetic (a < £<b, £ €F).

Step 1 Set an interval I = [a, b].

Step 2 Make a pair z = (I,0).

Step 3 Calculate y = f (x) with the pair.
Step 4 Output the second value e, of y.

Remark 1
In IEEE standard 754 double precision with rounding-to-nearest mode,

£z =€y = 2758

and for the operators of addition, subtraction, multiplication, division and square root,

em =275,

When we build a program based on this algorithm, we have to use a software satisfying (14)
and (15) for all inputted floating point numbers on every function. Unfortunately, some free
mathematical libraries do NOT satisfy these inequality for all inputted floating point numbers on
every function. CRlibm software [9] developed by J.Muller, F.Dinechin and others is designed to
satisfy these inequalities, so that in numerical results of this paper we use this library.

3.2 Proposed Algorithm

Summarizing the above mentioned discussions, we propose the following algorithm.

Algorithm 2 _
A verified automatic integration algorithm outputs an interval I satisfying

I-71

< €rel

when user inputs the integral (1) and relative tolerance €ye;.

Step 1 Choose d and calculate K.

155

Step 2 Get the order of the true value by verified computation.

Step 3 Rewrite inputted relative tolerance Erel to absolute tolerance eg44,.
Step 4 Calculate an upper bound of rounding error |E,| using Algorithm 1.
Step 5 If |E.| < €qbs, get h and n for e = €abs — |Er| by Theorem 3.

Step 6 Calculate the integral value s by the double exponential formula using h and n with pure
floating-point numbers.

Step 7 Output the interval [s — |Er|, s+ |E.|].

4 Numerical Results

In this section, we present the numerical experiments. These experiments have been done under
the following computer environment:

e Linux (Fedora8)
® Memory 8GB, Intel Core 2 Extreme 3.0GHz (Use 1 Core Only)
¢ GCC 4.1.2 with CRlibm 1.0 beta (CRlibm is used to satisfy (14) and (15).)

4.1 Comparison for Estimating Rounding Error

We shall present numerical results that Algorithm 1 and interval arithmetic are applied for the
following two examples for comparison in terms of the execution time and the upper bound of
rounding error.

Example 1
@) =P +22 4. .+ +1

Example 2
f2(z) = sin(exp(z))

First, we present a comparison of the execution time of Algorithm 1 and interval arithmetic for
fi(z) and f2(z) when the number of points has increased.

Left figure of Figure 1 shows the ratios of the execution time ; /tp, which t, and t; denote the
execution time of Algorithm 1 and that of interval arithmetic.

This figure shows that because #; depends on the number of points and £, does not depend on
that, the ratios between them have increased exponentially.

Next, we show a comparison of the upper bound of rounding error when the number of points
has increased. Right figure of Figure 1 shows that the ratios of the number of points e,/e;, which
ep and e; denote the upper bound of rounding error calculated by Algorithm 1 and that by interval
arithmetic, respectively.

This figure shows that e, is about 30 times larger than e; for fi(x), and e, is almost the same
as e; for fa(z).

156

10 - 40 —
- & Example 1 - o Example 1
g Example 2 Example 2
= - 30t PN |
= R PR
% 103. //::;// 1 Eg ,’,f“ ’}
P o
o 20}~
g S 27
S 10% e °
3 T 5 10
& L e
e . s e)
WsTe 7 8 s 10 11 u L N B TR TR

The Number of Points [2*] The Number of Points [2%]

Figure 1: Comparison for the upper bound of rounding error

4.2 Comparison between Two Theorems

In this section, we also present numerical results that the comparison between Theorem 1 and 2.

The main difference between two theorems is the relation between n and h: Theorem 1 uses
(7) and Theorem 2 uses (8).

In this numerical experiment, we’d like to compare the ratio of the order between Ep and Er
defined by (9) and (10), when the user input an absolute tolerance £,5,. Figure 2 shows the ratio

of the order of each errors as .
810 Er)’
whend=10anda=8=1.
This figure displays the errors of Theorem 1 don’t decrease at the same order in magnitude,
but that of Theorem 2 keep in step.

300

J ~«— Theorem 1‘ ;’;"
250 -_Theorem 2 (Proposed) _,7.-’-"'3
&
E 200} e
£ e
S 150t 7 J
P~ P
8 i
€ ool £
& -
5 &
50 [fro.f
Sl - s - |
0 5 10 15 20 25
Tolerance [—log‘ 0(x)]

Figure 2: Comparison between theorems

4.3 Comparison on Automatic Integration

We compare the following three algorithms on automatic integration:

157

(A) (Verified) Proposed algorithm (Algorithm 2)
(B) (Verified) An algorithm consists of interval arithmetic and Theorem 2
(C) (Approximate) Automatic integration software developed by T. Ooura [10]

Example 1

L = /_11 fi(z)dz

_ [@
Iz—/o i/de

We show a comparison of the execution time of (A)-(C) for I; and I, when the relative tolerance
has become tighter gradually on left figure and right figure of Figure 3 respectively.

These figures show that (A) is 3-10 times faster than (B) and (A) can calculate at almost the
same speed compared with (B).

Example 2

-3

-4
12740 : , : , 2.5%20
e (A) ~o--(A) y
i ®) T “(B) o
—_ il (%] T 2[~*—(C) 7
o 0.8} T = T
|- By B1s -~
= [t A
g 0.6 E e
0.4 B /\/
a 4
0.2 e 0.5 ;_,o__@____G_,.<a-_e/-0‘~er——0—'"€‘"’ ST
0 L 0 N
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Relative Tolerance [107] Relative Tolerance [107]

Figure 3: Ratio of the execution time

5 Conclusion

We presented verified automatic integration algorithms using the double exponential formula. The
proposed algorithm is designed for the discretization error and the truncation error to decrease at
the same order in magnitude. From the numerical results, we confirm that the proposed algorithm
tends to be as fast as the widely-used approximation software developed by Ooura.

- References

[1] P.J. Davis and P. Rabinowitz: Methods of Numerical Integration, Academic Press, New York,
1975.

[2] H. Takahashi, M. Mori: Double Exponential Formulas for Numerical Integration, Publ. RIMS,
Kyoto Univ, 9 (1974), 721-741.

158

[3] M. Sugihara: Optimality of the double exponential formula, Numerische Mathematik, 75
(1997), 379-395.

[4] Y. Kobata, N. Yamamoto: Verified Numerical Integration using Double Exponential Formula,
Master Thesis, The University of Electro-Communications, 2003.

[5] K. Tanaka, M. Sugihara, K. Murota, M. Mori: Function classes for double exponential inte-
gration formulas, Numerische Mathematik, 111 (2009), 631-655.

[6] T. Okayama, T. Matsuo, M. Sugihara: Error Estimates with Explicit Constants for Sinc Ap-
proximation, Sinc Quadrature and Sinc Indefinite Integration, METR2009-01, The university
of Tokyo, 2009.

[7] M. C. Eiermann: Automatic, Guaranteed integration of analytic functions, BIT 29 (1989)
270-282.

(8] M. Kashiwagi: Fast Interval Arithmetic Algorithm using A Priori Error Analysis for Rounding
Error, Preprint.

[9] Correctly Rounded mathematical library
http://lipforge.ens-lyon.fr/www/crlibm/

[10] Ooura’s Mathematical Software Packages
http://www.kurims.kyoto-u.ac. jp/“ooura/intde.html

