Applications of subspace theorem to the fractional parts of geometric series

京都大学理学研究科 金子 元 (Kaneko Hajime) Department of Mathematics, Kyoto University

1 Introduction

Weyl's criterion states that a sequence x_n (n = 0, 1, ...) is uniformly distributed modulo 1 if and only if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(2\pi i h x_n) = 0 \tag{1.1}$$

for every nonzero integer h. As a corollary, an arithmetic progression $\xi n + \eta$ (n = 0, 1, ...) is uniformly distributed modulo 1 if and only if its common difference is a irrational number. On the other hand, it is generally difficult to check the criterion (1.1) in the case where the sequence x_n (n = 0, 1, ...)is a geometric progression $\xi \alpha^n$ (n = 0, 1, ...).

In this paper we study the fractional parts of geometric sequences whose common ratio $\alpha > 1$ is an algebraic number. We now review the fractional parts of powers of Pisot and Salem numbers. Pisot numbers are algebraic integers greater than 1 whose conjugates different from themselves have absolute values strictly less than 1. Salem numbers are algebraic integers greater than 1 which have at least one conjugate with modulus 1 and exactly one conjugate outside the unit circle. Let ||x|| denote the distance from the real number x to the nearest integer. Moreover, we write $\{x\}$ and [x] the fractional part of x and the integral part of x, respectively. Take a Pisot number α . Since the trace of α^n is a rational integer,

$$\lim_{n\to\infty}||\alpha^n||=0.$$

Next, let α be a Salem number. Then for any positive ε there exists a nonzero $\xi \in \mathbf{Q}(\alpha)$ satisfying

$$\limsup_{n\to\infty}||\xi\alpha^n||<\varepsilon$$

(see [4]). However, little is known about the fractional parts of the sequence $\xi \alpha^n$ (n = 0, 1, ...) in the case of $\xi \notin \mathbf{Q}(\alpha)$. For example, suppose that $\alpha > 1$ is a natural number and that ξ is a positive number. Then $\xi \alpha^n$ (n = 0, 1, ...) is uniformly distributed modulo 1 if and only if ξ is normal in base α . However, we even do not know whether the numbers $\sqrt{2}$, $\sqrt[3]{5}$, and π are normal in base 10 or not. In section 2 we survey the normality of an algebraic irrational number ξ . In particular, we give a lower bound of the number $\lambda_N(\alpha, \xi)$ of nonzero digits among the first N digits of the α -ary expansion of ξ . In other words, we count the number of $n \in \mathbb{N}$ such that

$$\{\xi\alpha^n\} \ge \frac{1}{\alpha}.$$

In section 3 and 4, we estimate the number of $n \in \mathbb{N}$ satisfying

$$\{\xi\alpha^n\} \ge c(\alpha)$$

for an algebraic number α and a positive constant $c(\alpha)$ depending only on α . In this paper, we introduce results without proofs in this paper.

2 Borel conjecture

Borel [5] showed that almost all positive numbers are normal in every integral base $\alpha \geq 2$. He [6] also conjectured that all irrational numbers ξ are normal. However, there is no such an irrational ξ whose normality was proved. In the case of $\alpha \geq 3$, we even do not know whether all digits $0, 1, \ldots, \alpha - 1$ occur infinitely many times in the α -ary expansion of an irrational number. In this section we introduce some partial results.

Let $\alpha \geq 2$ be a natural number and $\xi > 0$ an irrational number. In what follows, we denote the α -ary expansion of ξ by

$$\xi = \sum_{i=-\infty}^{M} s_i(\xi) \alpha^i = s_M(\xi) \cdots s_0(\xi) \cdot s_{-1}(\xi) s_{-2}(\xi) \cdots$$

Define the infinite word \mathbf{s} by

 $\mathbf{s} = s_{-1}(\xi) s_{-2}(\xi) \cdots .$

First, we measure the complexity of the α -ary expansion of ξ by the number p(N) of distinct blocks of length N appearing in the words s. If ξ is normal in base α , then $p(N) = \alpha^N$ for any positive N. Ferenczi and Mauduit [9] showed that

$$\lim_{N\to\infty}(p(N)-N)=\infty.$$

Adamczewski and Bugeaud [1] improved their results as follows:

$$\lim_{N \to \infty} \frac{p(N)}{N} = \infty.$$

Moreover, Bugeaud and Evertse [8] showed for any positive ξ with $\eta < 1/11$ that

$$\limsup_{N \to \infty} \frac{p(N)}{N(\log N)^{\eta}} = \infty.$$

Next, we give an lower bound of $\lambda_N(\alpha,\xi)$ in the case of $\alpha = 2$, which we define in the previous section. Put

$$\xi' = \frac{\xi}{2^{\lfloor \log_2 \xi \rfloor}}.$$

Note that $1 < \xi' < 2$. Let $D(\geq 2)$ be the degree of ξ' and A_D the leading coefficient of the minimum integer polynomial of ξ' . Bailey, Borwein, Crandall, and Pomerance [3] showed for any positive ϵ that there exists a positive $c(\epsilon)$ satisfying

$$\lambda_N(2,\xi) > (1-\varepsilon)(2A_D)^{-1/D} N^{1/D}$$
(2.1)

for $N \ge c(\varepsilon)$. Rivoal [15] improved the coefficient $(1-\varepsilon)(2A_D)^{-1/D}$ of (2.1) for certain classes of algebraic irrational numbers ξ . Namely, suppose that there exist two polynomials P, Q with positive integral coefficients and two positive integers a, b fulfilling $P(\xi) = a + bQ(\xi)^{-1}$. Let ε be an arbitrary positive number. Then we have for sufficiently large N (with threshold depending on ξ and ε)

$$\lambda_N(2,\xi) \ge (1-\varepsilon)(B(p)B(q))^{-1/\delta}N^{1/\delta}, \qquad (2.2)$$

where $\delta = \deg(PQ)$ and p, q are the dominant coefficients of P and Q, respectively.

For instance, let $\xi_0 = 0.558...$ be the unique real zero of the polynomial $8X^3 - 2X^2 + 4X - 3$. (2.1) implies

$$\lambda_N(2,\xi_0) \ge (1-\varepsilon) 16^{-1/3} N^{1/3}.$$

On the other hand, since $4\xi_0 = 1 + 2(2\xi_0^2 + 1)^{-1}$, we can apply (2.2) to ξ_0 . Thus,

$$\lambda_N(2,\xi_0) \ge (1-\varepsilon)N^{1/3}.$$

3 Limit points of the fractional parts of powers of geometric series

Koksma [14] proved that, if any common ratio $\alpha > 1$ is given, then for almost all initial values ξ the geometric sequences $\xi \alpha^n$ (n = 0, 1, ...) are uniformly distributed modulo 1. Similarly, let ξ be any nonzero initial value. Then α $\xi \alpha^n$ (n = 0, 1, ...) are uniformly distributed modulo 1 for almost all common ratios.

Now we introduce the exceptional set of Koksma's theorem. In particular, we consider the maximal limit points $\limsup_{n\to\infty} \{\xi \alpha^n\}$. It is known for a fixed $\alpha > 1$ that there is a nonzero ξ satisfying

$$\limsup_{n \to \infty} \{ \xi \alpha^n \} < 1.$$

Hence, the sequence $\xi \alpha^n$ (n = 0, 1, ...) isn't uniformly distributed modulo 1. More precisely, let $\alpha > 2$. Then Tijdeman [16] constructed a nonzero $\xi = \xi(\alpha)$ such that

$$\limsup_{n \to \infty} \{\xi \alpha^n\} \le \frac{1}{\alpha - 1}.$$
(3.1)

Let $\alpha_0 = 2.025...$ be the unique solution of $34X^3 - 102X^2 + 75X - 16 = 0$. Dubickas [11] showed for $1 < \alpha < \alpha_0$ that there exists a nonzero $\xi = \xi(\alpha)$ such that

$$\limsup_{n \to \infty} \{\xi \alpha^n\} \le 1 - \frac{2(\alpha - 1)^2}{9(2\alpha - 1)^2}$$
(3.2)

Note that if $2 < \alpha < \alpha_0$, then (3.2) is stronger than (3.1). In fact, it is easy to check

$$1 - \frac{2(\alpha - 1)^2}{9(2\alpha - 1)^2} < \frac{1}{\alpha - 1}$$

for such an α . It is a interesting problem to estimate the value

$$\inf_{\xi \in \mathbb{R}, \xi \neq 0} \limsup_{n \to \infty} \{\xi \alpha^n\}$$
(3.3)

for a given α . Let $\alpha > 1$ be an algebraic number with minimal polynomial $a_d X^d + a_{d-1} X^{d-1} + \cdots + a_0 \in \mathbb{Z}[X]$ $(a_d > 0)$. Take a positive ξ . If α is a Pisot of Salem number, then suppose $\xi \notin \mathbb{Q}(\alpha)$. Then Dubickas [10] proved

$$\limsup_{n \to \infty} \{\xi \alpha^n\} \ge c(\alpha) := \min \left\{ \frac{1}{L_+(\alpha)}, \frac{1}{L_-(\alpha)} \right\},\,$$

where

$$L_{+}(\alpha) = \sum_{a_i > 0} a_i, \ L_{-}(\alpha) = \sum_{a_i \le 0} a_i.$$

Moreover, let

$$\lambda_N(\alpha,\xi) = \operatorname{Card} \left\{ n \in \mathbb{Z} \mid 0 \le n < N, \left\{ \xi \alpha^n \right\} \ge c(\alpha) \right\},\$$

where Card denotes the cardinality. Note that if $\alpha > 1$ is a natural number, then $\lambda(\alpha, \xi)$ means the number of nonzero digits of α -ary expansion of ξ . For simplicity, suppose that α is an algebraic integer and that α has at least one conjugate different from itself which is outside the unit circle. Let $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_p$ be the conjugates of α whose absolute values are greater than 1. In the same way as that of Theorem 3 of [10], we can show that

$$\liminf_{N \to \infty} \frac{\lambda_N(\alpha, \xi)}{\log N} \ge \left(\log \left(1 + \frac{\log \alpha}{\log |\alpha_2| + \dots + \log |\alpha_p|} \right) \right)^{-1}.$$
(3.4)

In the section 4, we improve this inequality in the case where ξ is an algebraic number with $\xi \notin \mathbb{Q}(\alpha)$.

In the last of this section, we consider geometric sequences $\xi \alpha^n$ (n = 0, 1, ...) for a fixed initial value. The author [12] gave an algorithm to construct common ratios α such that $||\xi \alpha^n|||$ is arbitrarily small for all n. Let ξ be a nonzero real number. Then for any positive numbers ε and M, there exists a common ratio α with $\alpha > M$ such that

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \le \frac{1 + \varepsilon}{2\alpha}.$$

Moreover, the set of α satisfying

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \le \frac{1+\varepsilon}{\alpha}.$$
(3.5)

is uncountable. In particular, there is an α transcendental over the field $\mathbb{Q}(\xi)$ satisfying (3.5).

4 Main results

In what follows, we assume that $\alpha > 1$ is an algebraic number with minimal polynomial $a_d X^d + a_{d-1} X^{d-1} + \cdots + a_0 \in \mathbb{Z}[X]$ $(a_d > 0)$. Write the conjugates of α by $\alpha_1 = \alpha, \ldots, \alpha_d$. Take an algebraic irrational positive number ξ with $\xi \notin \mathbb{Q}(\alpha)$. Then we have the following:

THEOREM 4.1. (1) If α is a Pisot or Salem number, then

$$\lim_{N \to \infty} \frac{\lambda_N(\alpha, \xi)}{\log N} = \infty.$$

(2) Otherwise,

$$\liminf_{N\to\infty} \frac{\lambda_N(\alpha,\xi)}{\log N} \ge \left(\log\left(\frac{\log M(\alpha)}{\log \alpha}\right)\right)^{-1},$$

where $M(\alpha)$ is the Mahler measure of α defined by

$$M(\alpha) = a_d \prod_{i=1}^d \max\{1, |\alpha_i|\}.$$

Theorem 4.1 gives a good estimation if $\log M(\alpha)/\log \alpha$ is small. Now we give a numerical example in the case of $\alpha = 4 + \sqrt{2}$. Let ξ be a positive number. By (3.4), we get

$$\liminf_{N \to \infty} \frac{\lambda_N(4 + \sqrt{2}, \xi)}{\log N} \ge \log \left(\frac{\log(14)}{\log(4 - \sqrt{2})}\right)^{-1} = 0.978\dots$$

Moreover, if ξ is an algebraic number with $\xi \notin \mathbb{Q}(\sqrt{2})$, then Theorem 4.1 implies

$$\liminf_{N \to \infty} \frac{\lambda_N(4 + \sqrt{2}, \xi)}{\log N} \ge \log \left(\frac{\log(14)}{\log(4 + \sqrt{2})}\right)^{-1} = 2.24\dots$$

If $\alpha = 2$, then there is a big gap between the estimation (2.1) and the first statement of Theorem 4.1. So we give a stronger lower bound for $\lambda_N(\alpha, \xi)$ than that of Theorem 4.1 in the case where α is a Pisot or Salem number.

THEOREM 4.2. Let $\alpha > 1$ be a Pisot or Salem number. Let ξ be a positive algebraic number with $\xi \notin \mathbb{Q}(\alpha)$. Put

$$D = [\mathbb{Q}(\alpha, \xi) : \mathbb{Q}(\alpha)].$$

Then there exists an effectively computable absolute constant c > 0 such that

$$\lambda_N(\alpha,\xi) \ge c \frac{(\log N)^{3/2}}{(\log(4D))^{1/2} (\log\log N)^{1/2}}$$

for every sufficiently large N.

References

- B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. 165 (2007), 547-565.
- [2] B. Adamczewski and Y. Bugeaud, On the independence of expansions of algebraic numbers in an integer base, Bull. Lond. Math. Soc. 39 (2007), 283-289.
- [3] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), 487-518.
- [4] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992.
- [5] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. circ. Mat. Palermo **27** (1909), 247-271.
- [6] É. Borel, Sur les chiffres décimaux de $\sqrt{2}$ et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris **230** (1950), 591-593.
- [7] Y. Bugeaud, On the β -expansion of an algebraic number in algebraic base β , manuscript.
- [8] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers, Acta Arith. 133 (2008), 221-250.
- [9] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161.
- [10] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
- [11] A. Dubickas, On the fractional parts of lacunary sequences. Math. Scand. **99** (2006), 136-146.
- [12] H. Kaneko, Distribution of geometric sequences modulo 1, Result. Math. 52 (2008), 91-109.
- [13] H. Kaneko, Limit points of fractional parts of geometric sequences, submitted.
- [14] J. F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, Compositio Math. 2 (1935), 250-258.

- [15] T. Rivoal, On the bits counting function of real numbers, J. Austral. Math. Soc. To appear.
- [16] R. Tijdeman, Note on Mahler's $\frac{3}{2}$ -problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.