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1 Introduction
Weyl’s criterion states that a sequence $x_{n}(n=0,1, \ldots)$ is uniformly dis-
tributed modulo 1 if and only if

麟 $\sum_{n=1}^{N}\exp(2\pi ihx_{n})=0$ (1.1)

for every nonzero integer $h$ . As a corollary, an arithmetic progression $\xi n+\eta$

$(n=0,1, \ldots)$ is uniformly distributed modulo 1 if and only if its common
difference is a irrational number. On the other hand, it is generally difficult
to check the criterion (1.1) in the case where the sequence $x_{n}(n=0,1, \ldots)$

is a geometric progression $\xi\alpha^{n}(n=0,1, \ldots)$ .
In this paper we study the fractional parts of geometric sequences whose

common ratio $\alpha>1$ is an algebraic number. We now review the fractional
parts of powers of Pisot and Salem numbers. Pisot numbers are algebraic
integers greater than 1 whose conjugates different from themselves have abso-
lute values strictly less than 1. Salem numbers are algebraic integers greater
than 1 which have at least one conjugate with modulus 1 and exactly one
conjugate outside the unit circle. Let $||x||$ denote the distance from the real
number $x$ to the nearest integer. Moreover, we write $\{x\}$ and $[x]$ the frac-
tional part of $x$ and the integral part of $x$ , respectively. Take a Pisot number
$\alpha$ . Since the trace of $\alpha^{n}$ is a rational integer,

$\lim_{narrow\infty}||\alpha^{n}||=0$ .

Next, let $\alpha$ be a Salem number. Then for any positive $\epsilon$ there exists a nonzero
$\xi\in Q(\alpha)$ satisfying

$\lim_{narrow}\sup_{\infty}||\xi\alpha^{n}||<\epsilon$
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(see [4]). However, little is known about the fractional parts of the sequence
$\xi\alpha^{n}(n=0,1, \ldots)$ in the case of $\xi\not\in Q(\alpha)$ . For example, suppose that
$\alpha>1$ is a natural number and that $\xi$ is a positive number. Then $\xi\alpha^{n}$

$(n=0,1, \ldots)$ is uniformly distributed modulo 1 if and only if $\xi$ is normal
in base $\alpha$ . However, we even do not know whether the numbers $\sqrt{2},$ $\sqrt[3]{5}$ ,
and $\pi$ are normal in base 10 or not. In section 2 we survey the normality
of an algebraic irrational number $\xi$ . In particular, we give a lower bound of
the number $\lambda_{N}(\alpha, \xi)$ of nonzero digits among the first $N$ digits of the $\alpha$-ary
expansion of $\xi$ . In other words, we count the number of $n\in N$ such that

$\{\xi\alpha^{n}\}\geq\frac{1}{\alpha}$ .

In section 3 and 4, we estimate the number of $n\in N$ satisfying

$\{\xi\alpha^{n}\}\geq c(\alpha)$

for an algebraic number $\alpha$ and a positive constant $c(\alpha)$ depending only on
$\alpha$ . In this paper, we introduce results without proofs in this paper.

2 Borel conjecture
Borel [5] showed that almost all positive numbers are normal in every integral
base $\alpha\geq 2$ . He [6] also conjectured that all irrational numbers $\xi$ are normal.
However, there is no such an irrational $\xi$ whose normality was proved. In the
case of $\alpha\geq 3$ , we even do not know whether all digits $0,1,$ $\ldots,$

$\alpha-1$ occur
infinitely many times in the $\alpha$-ary expansion of an irrational number. In this
section we introduce some partial results.

Let $\alpha\geq 2$ be a natural number and $\xi>0$ an irrational number. In what
follows, we denote the $\alpha$-ary expansion of $\xi$ by

$\xi=\sum_{i=-\infty}^{M}s_{i}(\xi)\alpha^{i}=s_{M}(\xi)\cdots s_{0}(\xi).s_{-1}(\xi)s_{-2}(\xi)\cdots$

Define the infinite word $s$ by

$s=s_{-1}(\xi)s_{-2}(\xi)\cdots$

First, we measure the complexity of the $\alpha$-ary expansion of $\xi$ by the number
$p(N)$ of distinct blocks of length $N$ appearing in the words $s$ . If $\xi$ is normal
in base $\alpha$ , then $p(N)=\alpha^{N}$ for any positive $N$ . Ferenczi and Mauduit [9]
showed that

$\lim_{Narrow\infty}(p(N)-N)=\infty$ .
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Adamczewski and Bugeaud [1] improved their results as follows:

$\lim_{Narrow\infty}\frac{p(N)}{N}=\infty$ .

Moreover, Bugeaud and Evertse [8] showed for any positive $\xi$ with $\eta<1/11$

that

$\lim_{Narrow}\sup_{\infty}\frac{p(N)}{N(\log N)^{\eta}}=\infty$ .

Next, we give an lower bound of $\lambda_{N}(\alpha, \xi)$ in the case of $\alpha=2$ , which we
define in the previous section. Put

$\xi’=\frac{\xi}{2[\log_{2}\xi]}$ .

Note that $1<\xi’<2$ . Let $D(\geq 2)$ be the degree of $\xi’$ and $A_{D}$ the leading
coefficient of the minimum integer polynomial of $\xi’$ . Bailey, Borwein, Cran-
dall, and Pomerance [3] showed for any positive $\epsilon$ that there exists a positive
$c(\epsilon)$ satisfying

$\lambda_{N}(2, \xi)>(1-\epsilon)(2A_{D})^{-1/D}N^{1/D}$ (2.1)

for $N\geq c(\epsilon)$ . Rivoal [15] improved the coefficient $(1-\epsilon)(2A_{D})^{-1/D}$ of (2.1) for
certain classes of algebraic irrational numbers $\xi$ . Namely, suppose that there
exist two polynomials $P,$ $Q$ with positive integral coefficients and two positive
integers $a,$ $b$ fulfilling $P(\xi)=a+bQ(\xi)^{-1}$ . Let $\epsilon$ be an arbitrary positive
number. Then we have for sufficiently large $N$ (with threshold depending on
$\xi$ and $\epsilon$)

$\lambda_{N}(2,\xi)\geq(1-\epsilon)(B(p)B(q))^{-1/\delta}N^{1/\delta}$ , (2.2)

where $\delta=\deg(PQ)$ and $p,$ $q$ are the dominant coefficients of $P$ and $Q$ ,
respectively.

For instance, let $\xi_{0}=0.558\ldots$ be the unique real zero of the polynomial
$8X^{3}-2X^{2}+4X-3$ . $(2.1)$ implies

$\lambda_{N}(2, \xi_{0})\geq(1-\epsilon)16^{-1/3}N^{1/3}$ .

On the other hand, since $4\xi_{0}=1+2(2\xi_{0}^{2}+1)^{-1}$ , we can apply (2.2) to $\xi_{0}$ .
Thus,

$\lambda_{N}(2, \xi_{0})\geq(1-\epsilon)N^{1/3}$ .
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3 Limit points of the fractional parts of pow-
ers of geometric series

Koksma [14] proved that, if any common ratio $\alpha>1$ is given, then for almost
all initial values $\xi$ the geometric sequences $\xi\alpha^{n}(n=0,1, \ldots)$ are uniformly
distributed modulo 1. Similarly, let $\xi$ be any nonzero initial value. Then $\alpha$

$\xi\alpha^{n}(n=0,1, \ldots)$ are uniformly distributed modulo 1 for almost all common
ratios.

Now we introduce the exceptional set of Koksma’s theorem. In particular,
we consider the maximal limit points $\lim supnarrow\infty\{\xi\alpha^{n}\}$ . It is known for a
fixed $\alpha>1$ that there is a nonzero $\xi$ satisfying

$\lim_{narrow}\sup_{\infty}\{\xi\alpha^{n}\}<1$ .

Hence, the sequence $\xi\alpha^{n}(n=0,1, \ldots)$ isn’t uniformly distributed modulo
1. More precisely, let $\alpha>2$ . Then Tijdeman [16] constructed a nonzero
$\xi=\xi(\alpha)$ such that

$\lim_{narrow}\sup_{\infty}\{\xi\alpha^{n}\}\leq\frac{1}{\alpha-1}$ . (3.1)

Let $\alpha_{0}=2.025\ldots$ be the unique solution of $34X^{3}-102X^{2}+75X-16=0$ .
Dubickas [11] showed for $1<\alpha<\alpha_{0}$ that there exists a nonzero $\xi=\xi(\alpha)$

such that

$\lim_{narrow}\sup_{\infty}\{\xi\alpha^{n}\}\leq 1-\frac{2(\alpha-1)^{2}}{9(2\alpha-1)^{2}}$ (3.2)

Note that if $2<\alpha<\alpha_{0}$ , then (3.2) is stronger than (3.1). In fact, it is easy
to check

$1- \frac{2(\alpha-1)^{2}}{9(2\alpha-1)^{2}}<\frac{1}{\alpha-1}$

for such an $\alpha$ . It is a interesting problem to estimate the value

$\inf_{\xi\in R,\xi\neq 0}\lim_{narrow}\sup_{\infty}\{\xi\alpha^{n}\}$
(3.3)

for a given $\alpha$ . Let $\alpha>1$ be an algebraic number with minimal polynomial
$a_{d}X^{d}+a_{d-1}X^{d-1}+\cdots+a_{0}\in \mathbb{Z}[X](a_{d}>0)$ . Take a positive $\xi$ . If $\alpha$ is a
Pisot of Salem number, then suppose $\xi\not\in \mathbb{Q}(\alpha)$ . Then Dubickas [10] proved

$\lim_{narrow}\sup_{\infty}\{\xi\alpha^{n}\}\geq c(\alpha):=\min t\frac{1}{L_{+}(\alpha)}\frac{1}{L_{-}(\alpha)}\}$ ,
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where

$L_{+}( \alpha)=\sum_{a_{i>0}}a_{i},$ $L_{-}( \alpha)=\sum_{a_{i}\leq 0}a_{i}$
.

Moreover, let

$\lambda_{N}(\alpha, \xi)=$ Card $\{n\in \mathbb{Z}|0\leq n<N, \{\xi\alpha^{n}\}\geq c(\alpha)\}$ ,

where Card denotes the cardinality. Note that if $\alpha>1$ is a natural number,
then $\lambda(\alpha, \xi)$ means the number of nonzero digits of $\alpha$-ary expansion of $\xi$ .
For simplicity, suppose that $\alpha$ is an algebraic integer and that $\alpha$ has at
least one conjugate different from itself which is outside the unit circle. Let
$\alpha_{1}=\alpha,$ $\alpha_{2},$

$\ldots,$ $\alpha_{p}$ be the conjugates of $\alpha$ whose absolute values are greater
than 1. In the same way as that of Theorem 3 of [10], we can show that

$\lim_{Narrow}\inf_{\infty}\frac{\lambda_{N}(\alpha,\xi)}{\log N}\geq(\log(1+\frac{\log\alpha}{\log|\alpha_{2}|+\cdots+\log|\alpha_{p}|}))^{-1}$ (3.4)

In the section 4, we improve this inequality in the case where $\xi$ is an algebraic
number with $\xi\not\in \mathbb{Q}(\alpha)$ .

In the last of this section, we consider geometric sequences $\xi\alpha^{n}(n=$

$0,1,$ $\ldots)$ for a fixed initial value. The author [12] gave an algorithm to con-
struct common ratios $\alpha$ such that $||\xi\alpha^{n}\Vert|$ is arbitrarily small for all $n$ . Let
$\xi$ be a nonzero real number. Then for any positive numbers $\epsilon$ and $M$ , there
exists a common ratio $\alpha$ with $\alpha>M$ such that

$\lim_{narrow}\sup_{\infty}||\xi\alpha^{n}||\leq\frac{1+\epsilon}{2\alpha}$ .

Moreover, the set of $\alpha$ satisfying

$\lim_{narrow}\sup_{\infty}||\xi\alpha^{n}||\leq\frac{1+\epsilon}{\alpha}$ . (3.5)

is uncountable. In particular, there is an $\alpha$ transcendental over the field $\mathbb{Q}(\xi)$

satisfying (3.5).

4 Main results
In what follows, we assume that $\alpha>1$ is an algebraic number with minimal
polynomial $a_{d}X^{d}+a_{d-1}X^{d-1}+\cdots+a_{0}\in \mathbb{Z}[X](a_{d}>0)$ . Write the conjugates
of $\alpha$ by $\alpha_{1}=\alpha,$ $\ldots,$

$\alpha_{d}$ . Take an algebraic irrational positive number $\xi$ with
$\xi\not\in \mathbb{Q}(\alpha)$ . Then we have the following:
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THEOREM 4.1. (1) If $\alpha$ is a Pisot or Salem number, then

$\lim_{Narrow\infty}\frac{\lambda_{N}(\alpha,\xi)}{\log N}=\infty$ .

(2) Otherwise,

$\lim_{Narrow}\inf_{\infty}\frac{\lambda_{N}(\alpha,\xi)}{\log N}\geq(\log(\frac{\log M(\alpha)}{\log\alpha}))^{-1}$ ,

where $M(\alpha)$ is the Mahler measure of $\alpha$ defined by

$M( \alpha)=a_{d}\prod_{i=1}^{d}\max\{1, |\alpha_{i}|\}$ .

Theorem 4.1 gives a good estimation if $\log M(\alpha)/\log\alpha$ is small. Now we
give a numerical example in the case of $\alpha=4+\sqrt{2}$ . Let $\xi$ be a positive
number. By (3.4), we get

$\lim_{Narrow}\inf_{\infty}\frac{\lambda_{N}(4+\sqrt{2},\xi)}{\log N}\geq\log(\frac{\log(14)}{\log(4-\sqrt{2})})^{-1}=0.978\ldots$ .

Moreover, if $\xi$ is an algebraic number with $\xi\not\in \mathbb{Q}(\sqrt{2})$ , then Theorem 4.1
implies

$\lim_{Narrow}\inf_{\infty}\frac{\lambda_{N}(4+\sqrt{2},\xi)}{\log N}\geq\log(\frac{\log(14)}{\log(4+\sqrt{2})})^{-1}=2.24\ldots$ .

If $\alpha=2$ , then there is a big gap between the estimation (2.1) and the first
statement of Theorem 4.1. So we give a stronger lower bound for $\lambda_{N}(\alpha, \xi)$

than that of Theorem 4.1 in the case where $\alpha$ is a Pisot or Salem number.

THEOREM 4.2. Let $\alpha>1$ be a Pisot or Salem number. Let $\xi$ be a positive
algebraic number with $\xi\not\in \mathbb{Q}(\alpha)$ . Put

$D=[\mathbb{Q}(\alpha, \xi):\mathbb{Q}(\alpha)]$ .

Then there exists an effectively computable absolute constant $c>0$ such that

$\lambda_{N}(\alpha, \xi)\geq c\frac{(\log N)^{3/2}}{(\log(4D))^{l/2}(\log\log N)^{1/2}}$

for every sufficiently large $N$ .
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