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1 Introduction

Weyl’s criterion states that a sequence z, (n = 0,1,...) is uniformly dis-
tributed modulo 1 if and only if

N
l&grcl’o -]%- nz_;exp(%rz'h:cn) =0 (1.1)
for every nonzero integer h. As a corollary, an arithmetic progression £&n + 7
(n = 0,1,...) is uniformly distributed modulo 1 if and only if its common
difference is a irrational number. On the other hand, it is generally difficult
to check the criterion (1.1) in the case where the sequence z, (n =0,1,...)
is a geometric progression £a™ (n =0,1,...).

In this paper we study the fractional parts of geometric sequences whose
common ratio a > 1 is an algebraic number. We now review the fractional
parts of powers of Pisot and Salem numbers. Pisot numbers are algebraic
integers greater than 1 whose conjugates different from themselves have abso-
lute values strictly less than 1. Salem numbers are algebraic integers greater
than 1 which have at least one conjugate with modulus 1 and exactly one
conjugate outside the unit circle. Let ||z|| denote the distance from the real
number z to the nearest integer. Moreover, we write {z} and [z] the frac-
tional part of  and the integral part of z, respectively. Take a Pisot number
«. Since the trace of o™ is a rational integer,

lim ||le™|| = 0.

Next, let a be a Salem number. Then for any positive € there exists a nonzero

¢ € Q(a) satisfying

limsup ||£a”|| < €

n—oo
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(see [4]). However, little is known about the fractional parts of the sequence
§a” (n = 0,1,...) in the case of £ ¢ Q(a). For example, suppose that
a > 1 is a natural number and that £ is a positive number. Then Ea™
(n =0,1,...) is uniformly distributed modulo 1 if and only if £ is normal
in base a. However, we even do not know whether the numbers V2, V5,
and 7 are normal in base 10 or not. In section 2 we survey the normality
of an algebraic irrational number £. In particular, we give a lower bound of
the number Ay(o, §) of nonzero digits among the first NV digits of the Q-ary
expansion of £. In other words, we count the number of n € N such that

1
n
> —.
{ga"} > =
In section 3 and 4, we estimate the number of n € N satisfying

{£a"} = c(a)

for an algebraic number o and a positive constant c(a) depending only on
«. In this paper, we introduce results without proofs in this paper.

2 Borel conjecture

Borel [5] showed that almost all positive numbers are normal in every integral
base a > 2. He [6] also conjectured that all irrational numbers £ are normal.
However, there is no such an irrational £ whose normality was proved. In the
case of a >3, we even do not know whether all digits 0,1,...,a — 1 occur
infinitely many times in the a-ary expansion of an irrational number. In this
section we introduce some partial results.

Let a > 2 be a natural number and £ > 0 an irrational number. In what
follows, we denote the a-ary expansion of £ by

M

E= Y si(&)o’ = sp(€) - 50(E).5-1(E)5-2(8) - .

1=—00

Define the infinite word s by
s =5_1(§)s-2(8) - .

First, we measure the complexity of the a-ary expansion of £ by the number
p(N) of distinct blocks of length N appearing in the words s. If £ is normal
in base a, then p(N) = o for any positive N. Ferenczi and Mauduit [9]
showed that

Jim (p(N) = N) = 0.
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Adamczewski and Bugeaud [1] improved their results as follows:

. p(N)
Aim == = 00

Moreover, Bugeaud and Evertse [8] showed for any positive £ with.n < 1/11
that

lim sup P (V) = 00

N—oo N(log N)n B

Next, we give an lower bound of Ay(a,&) in the case of @ = 2 , which we
define in the previous section. Put

S
¢ = g

Note that 1 < £’ < 2. Let D(> 2) be the degree of £ and Ap the leading
coefficient of the minimum integer polynomial of £’. Bailey, Borwein, Cran-
dall, and Pomerance [3] showed for any positive € that there exists a positive
c(e) satisfying

An(2,6) > (1 — €)(2Ap)"V/PNV/D (2.1)

for N > c(€). Rivoal [15] improved the coefficient (1—¢)(2Ap)~Y/? of (2.1) for
certain classes of algebraic irrational numbers £. Namely, suppose that there
exist two polynomials P, Q) with positive integral coefficients and two positive
integers a,b fulfilling P(§) = a + bQ(£)~'. Let £ be an arbitrary positive
number. Then we have for sufficiently large N (with threshold depending on
€ and €)

An(2,€) > (1 —£)(B(p)B(q)) VNS, (2.2)

where § = deg(PQ) and p,q are the dominant coefficients of P and Q,
respectively.

For instance, let £, = 0.558. .. be the unique real zero of the polynomial
8X3 —2X2 +4X — 3. (2.1) implies

AN (2,&) > (1 —€)167/3N/3,

On the other hand, since 4&, = 1 + 2(262 + 1)1, we can apply (2.2) to &.
Thus,

Anv(2,&) > (1 —e)NY3,
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3 Limit points of the fractional parts of pow-
ers of geometric series

Koksma [14] proved that, if any common ratio o > 1 is given, then for almost
all initial values £ the geometric sequences £a™ (n = 0,1,...) are uniformly
distributed modulo 1. Similarly, let £ be any nonzero initial value. Then «
€a™ (n=0,1,...) are uniformly distributed modulo 1 for almost all common
ratios.

Now we introduce the exceptional set of Koksma’s theorem. In particular,
we consider the maximal limit points limsup,,_,{£a™}. It is known for a
fixed o > 1 that there is a nonzero £ satisfying

limsup{éa"} < 1.
n—o0
Hence, the sequence £a™ (n = 0,1,...) isn’t uniformly distributed modulo

1. More precisely, let o > 2. Then Tijdeman [16] constructed a nonzero
£ = £(a) such that

limsup{éa"} < a_l_' (3.1)

n—oo -1

Let ap = 2.025. .. be the unique solution of 34X3 — 102X? 4+ 75X — 16 = 0.
Dubickas [11] showed for 1 < a < ap that there exists a nonzero § = £(a)
such that

limsup{éa"} <1- 2o — 1)°

Note that if 2 < a < oy, then (3.2) is stronger than (3.1). In fact, it is easy
to check

_2(a—1)2< 1
92a—12 ~a—1

1

for such an a. It is a interesting problem to estimate the value

inf lims a” 3.3

celibo i (ée’) (33)
for a given a. Let o > 1 be an algebraic number with minimal polynomial
ag X%+ ag_1 X% 4+ ... + a9 € Z[X] (ag > 0). Take a positive . If o is a
Pisot of Salem number, then suppose £ € Q(a). Then Dubickas [10] proved

limsup{£a”} 2 ¢(@) := min {L+1(a)’ L—l(a)} ’

n—oo
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where

Moreover, let
Anv(a,§) =Card{n € Z|0 <n < N,{£&a"} > c(a)},

where Card denotes the cardinality. Note that if a > 1 is a natural number,
then \(a,&) means the number of nonzero digits of o-ary expansion of &.
For simplicity, suppose that o is an algebraic integer and that o has at
least one conjugate different from itself which is outside the unit circle. Let

a; = a,Qg,...,0p be the conjugates of oo whose absolute values are greater
than 1. In the same way as that of Theorem 3 of [10], we can show that
.. An(a,8) log o -1
1 f ————=> 11 1 . 3.4
s logN — g\t log |az| + - - - + log |ap)| (3:4)

In the section 4, we improve this inequality in the case where £ is an algebraic
number with £ € Q(a).

In the last of this section, we consider geometric sequences £a™ (n =
0,1,...) for a fixed initial value. The author [12] gave an algorithm to con-
struct common ratios o such that ||£a™||| is arbitrarily small for all n. Let
¢ be a nonzero real number. Then for any positive numbers € and M, there
exists a common ratio a with o > M such that

1+¢
. n < )
hfln_'s;}plléa || < 5

Moreover, the set of a satisfying

1
lim sup [|€a"]| < T

n—00 «

(3.5)

is uncountable. In particular, there is an o transcendental over the field Q(§)
satisfying (3.5).

4 Main results

In what follows, we assume that o > 1 is an algebraic number with minimal
polynomial agX%+aq_1 X% +---+ao € Z[X] (ag > 0). Write the conjugates
of & by a1 = a, ..., 0q. Take an algebraic irrational positive number §{ with
€ € Q(a). Then we have the following:
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THEOREM 4.1. (1) If a is a Pisot or Salem number, then

. )\N (aa é) —_
J\}'l—-»I{l)o logN
(2) Otherwise,
.. o An(0,€) log M(a)\\ ™
L ASatAVARS o m\=/
H inf logN = log log o ’

where M(a) is the Mahler measure of o defined by

d
M(e) = ag | [ max{1, oul}.

=1

Theorem 4.1 gives a good estimation if log M (a)/ log  is small. Now we
give a numerical example in the case of @ = 4 + v/2. Let £ be a positive
number. -By (3.4), we get

An(4+v2,6) > 1o (1 ;?5(14\)/5 ;
oz(4 —

Moreover, if £ is an algebraic number with £ € Q(v/2), then Theorem 4.1
implies

lim inf
Neoo | logN | ©

-1
) = 0.978....

-1
liming ¥+ V20 > log ( log(14) ) —9224. ..
N=00 log N log(4 + v2)

If o = 2, then there is a big gap between the estimation (2.1) and the first
statement of Theorem 4.1. So we give a stronger lower bound for Ay (a, §)
than that of Theorem 4.1 in the case where « is a Pisot or Salem number.

THEOREM 4.2. Let o > 1‘ be a Pisot or Salem number. Let £ be a positive
algebraic number with £ € Q(a). Put

D = [Q(,€) : Q)]
Then there exists an effectively computable absolute constant ¢ > 0 such that

(log N)3/2

Anv(a, &) = c(log(4D))1/2v(10g log N)1/2

for every sufficiently large N.
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