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1. INTRODUCTION

This is a written version of my talk under the same title at the Conference, except for
the last section whose contents I did not mention in the talk. The first two sections are
a r\’esum\’e of my previous papers [8], [9] on the structure of the Mordell-Weil groups over
a number field of infinite degree. In the last section, we discuss a generalization of our
results from the view point of the gonality of curves contained in an abelian variety, and
propose open questions.

I thank Professor Takao Komatsu for inviting me to this exciting conference and for
financial support to participate in the conference.

Let $A$ be a nonzero abelian variety defined over a number field $K$ of finite degree over
$\mathbb{Q}$ . For an extension $M$ over $K$ , we denote the group of M-rational points by $A(M)$ and
its torsion subgroup by $A(M)_{tors}$ . We call $A(M)$ is the Mordell-Weil group of $A$ over $M$ .
It is well-known that $A(M)$ is a finitely generated abelian group for a finite algebraic
extension $M$ of $K$ ; then the Mordell-Weil rank means the rank of the torsion-free part
of $A(M)$ as a free abelian group. On the other hand, for a number field of infinite
degree its structure is not well-known. In this article we consider the Mordell-Weil group
over infinite number fields; then the Mordell-Weil rank of $A$ over an arbitrary $M$ means
$\dim_{Q}(A(M)\otimes_{Z}\mathbb{Q})$ .

In [2], Frey and Jarden have asked whether the Mordell-Weil group of every nonzero
abelian variety $A$ defined over $K$ has infinite Mordell-Weil rank over the maximal abelian
extension $K^{ab}$ of $K$ . There are many results on this question. For elliptic curves $E$

defined over $\mathbb{Q}$ , Frey and Jarden proved the Mordell-Weil group $E(\mathbb{Q}^{ab})$ has infinite
rank. In [5], [15], [8], this is generalized to the Jacobian variety of a hyperelliptic curve
defined over $\mathbb{Q}$ . In fact, they showed the infiniteness of the Mordell-Weil rank for certain
elementary abelian 2-extensions over $\mathbb{Q}$ and, in [8], we studied more precise structures of
the Mordell-Weil groups in addition to the rank. Murabayashi [10] studied the Jacobians
of superelliptic curves $y^{p}=f(x)$ , where $p$ is an arbitrary prime number, and showed the
infiniteness of the rank for certain elementary abelian p-extensions over $\mathbb{Q}(\zeta_{p})$ . Rosen
and Wong [12] proved the infiniteness of the rank for the Jacobian of any curve that can
be realized over $K$ as a cyclic geometrically irreducible cover of $\mathbb{P}^{1}$ . Recently, Sairaiji and
Yamauchi [13] proved the conjecture of Frey and Jarden for the Jacobians of non-singular
projective curves defined over $K$ under the assumption that the curves have infinitely
many $K^{ab}$-rational points. ${\rm Im}$ and Larsen [4] proved the infiniteness of the Mordell-Weil
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rank for abelian varieties over any fields which have topologically cyclic absolute Galois
groups and are not algebraic over finite fields.

2. RESULTS

Our first result is the following:

Theorem 1. Let $C$ be a hyperelliptic curve of genus at least 1 defined over $\mathbb{Q}$ and let $J$

be its Jacobian variety. Suppose that $C$ has a $\mathbb{Q}$-rational point. Let $K$ be a finite number
$field_{l}$ and let $M=K(\sqrt{m}|m\in \mathbb{Z})$ be the field generated by all square roots of rational
integers over K. Then the group $J(M)$ is the direct sum of a finite torsion group and a
free $\mathbb{Z}$-module of infinite (countable) rank.

This gives another proof of the results in [5], [15]. For a $\mathbb{Z}$-module $X$ , that $\dim_{\mathbb{Q}}(X\otimes z$

$\mathbb{Q})=\infty$ does not necessarily imply that $X$ modulo torsion is a free $\mathbb{Z}$-module of infinite
rank. Thus our statement above gives more precise information on the structure of $J(M)$
than those of [2], [5], [15]. It will be meaningful to study such precise structure of the
Mordell-Weil groups as well as their ranks.

Two key ingredients in our proof are the following results of Ribet and Siegel.

Theorem 2. (Ribet, [11]) Let $K(\zeta_{\infty})$ be the field obtained by adjoining to $K$ all roots
of unity. Then for any abelian variety $A$ over $K$ , the group $A(K(\zeta_{\infty}))_{tors}$ is finite.
Since the field $M$ in Theorem 1 is contained in $K(\zeta_{\infty})$ , the theorem of Ribet guarantees
the finiteness of torsion subgroup $J(M)_{tors}$ .
Theorem 3. (Siegel, cf. [6]) For an affine curve $C_{0}\subset A^{n}$ of genus at least 1 over $K_{f}$

the group of integer points $C_{0}(\mathcal{O}_{K})$ is finite.
For curves $C$ of genus $\geq 2$ , we may appeal to Faltings’ theorem [3] $(=$ Mordell $s$ conjec-
ture) instead of Siegel’s theorem.

Then we prepare a few algebraic lemmas, which are based on the finiteness of $J(\Lambda f)_{tors}$ .
Then these imply that the Mordell-Weil group with finite torsion group has free $\mathbb{Z}-$-module
structure modulo torsion:

Proposition 4. Let $A$ be an abelian $va7\dot{n}ety$ over a number field K. Let $M$ be a Galois
extension of $K$ such that $A(M)_{tors}$ is finite. Then the group $A(M)/A(M)_{tor8}$ is a free

$\mathbb{Z}$ -module of at most countable rank.

Remark. In my original talk, the extension $M/K$ in Proposition 4 was not assumed
Galois. After the talk, Professor Akio Tamagawa pointed out the Galois condition is
necessary by providing a nice counterexample. The author thank him for this and some
other useful comments.

By Proposition 4, it only remains to show that $J(M)$ is not finitely generated, and
this can be proved by using Siegel’s theorem.

In [8], in addition to Theorem 1, we exhibit some cases where, over certain larger
fields, the Mordell-Weil groups modulo torsion are infinite-dimensional $\mathbb{Q}$-vector spaces.
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Next, we generalized Theorem 1 to the Jacobians of superelliptic curves $y^{n}=f(x)$
defined over $K$ (cf. [9]).

Theorem 5. Let $C$ be a smooth projective curwe of genus $\geq 1$ which is the smooth com-
pactification of an affine plane curve defined by the equation $y^{n}=f(x)$ rrtth coefficients
in $K$ , and let $J$ be its Jacobian varriety. Suppose that $C$ has a K-rational point. Let
$M=K(\sqrt[\hslash]{m}|m\in \mathcal{O}_{K})$ , where $\mathcal{O}_{K}$ is the ring of integers of K. Then the Mordell- Weil
group $J(M)$ is the direct sum of a finite torsion group and a free $\mathbb{Z}$-module of infinite
rank.

The key ingredient in the proof is the following variant of Theorem 2, which may be
of some interest in its own right. We give here a proof of this Proposition which uses a
different method from our original paper [9].

Proposition 6. Let $K$ be a number field and $K^{(n)}$ the composite field of all Galois
extensions over $K$ of degree $\leq n$ . Then for any abelian variety $A$ over $K$ , the torsion
group $A(K^{(n)})_{tors}$ is finite.
Proof. Let $v$ be a finite place of $K$ and $w$ a place of $K^{(n)}$ lying above $v$ . Let $K_{w}^{(n)}/K_{v}$

be the completion of $K^{(n)}/K$ at $w$ . Then $K_{w}^{(n)}$ is the composite field of extensions over
$K_{v}$ of degree $\leq n$ . By Serre’s mass formula ([14]), the number of extensions of $K_{v}$

with bounded degree is finite, and hence $K_{w}^{(n)}/K_{v}$ is a finite extension. Then Mattuck’s
theorem ([7], Thm. 7) implies the finiteness of torsion subgroup $A(K_{w}^{(n)})_{tors}$ . Hence we
conclude that $A(K^{(n)})_{tors}$ is finite. $\square$

3. OPEN QUESTIONS

Our results are of the cases where an abelian variety contains a hyperelliptic curve
$y^{2}=f(x)$ or a superelliptic curve $y^{n}=f(x)$ . To generalize our results to a general
abelian variety, it is useful to look at the gonality of curves embedded in the abelian
$\mathbb{P}^{1}var$

iety. The gonality of a curve $C$ means the lowest degree of a rational map from $C$ to

Along this line, Theorem 5 is converted to the following:
Let $K^{(n)}$ be the composite field of all Galois extensions over $K$ of degree $\leq n$ .

(a) If an abelian variety $A$ over $K$ contains an algebraic curve $C$ which has a finite
morphism $Carrow \mathbb{P}_{K}^{1}$ of degree $\leq n$ , then

$A(K^{(n)})/tors\simeq \mathbb{Z}^{\oplus\infty}$ .

In fact, this follows by combining
$(a’)$ If an algebraic curve $C$ defined over $K$ is n-gonal, then $C$ has infinitely many $K^{(n)_{-}}$

rational points.
and
$(a”)$ If an abelian variety $A$ over $K$ contains an algebraic curve $C$ which has infintely
many $K^{(n)}$ -rational points, then the rank of $A(K^{(n)})$ is infinite.
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On the other hand, $\mathbb{R}ey$ showed the following in [1].
(b) If an algebraic curve $C$ defined over $K$ has infinitely many $K^{(n)}$ -rational points, then
$C$ is of at most $2n$-gonal.

This is close to the converse of $(a’)$ and so it is natural to ask whether the converse of
(a) holds or not:
(Ql) Let $A$ be an abelian variety defined over $K$ . Suppose the group $A(K^{(n)})$ has an
infinite rank. Then does $A$ contain a curve $C$ of genus $\geq 2$ and gonality $\leq n$?
In view of (b), we can ask a weaker question:

(Ql’) Let $A$ be an abelian variety.defined over $K$ . Suppose the group $A(K^{(n)})$ has an
infinite rank. Then does $A$ contain a curve $C$ of genus $\geq 2$ and gonality $\leq 2n$?
By (b), this follows from:
(Q2) Suppose the group $A(K^{(n)})$ has an infinite rank. Then does $A$ contain a curve $C$

of genus $\geq 2$ and having infinitely many $K^{(n)}$ -rational points?

The question can be asked with an arbitrary extension of $K$ (not only with $K^{(n)}$ ):

(Q3) Let $M$ be an algebraic extension of $K$ . Suppose the group $A(M)$ has an infinite
rank. Then does $A$ contain a curve $C$ of genus $\geq 2$ and having infinitely many M-rational
points?
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