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1 Introduction

Throughout this talk we consider only positive definite even unimodular lattces.
S. Manni [12] proved

Theorem 1.1. In 56 (resp. 72) dimensional even unimodular extremal lattices, the theta series associated to
such lattices we can say that in degree 3 their difference is, up to a multiplicative, possibly 0, constant, and equal
to x2s (resp. Xxse)

In 40 dimensional lattices, if two extremal theta series are equal in degree 2, then in degree 8 their difference
is up to a multiplicative, possibly 0, constant, and equal to Xz¢.

He then wrote
Find two even unimodular extremal lattices L; and L; of rank 40 whose theta series coincide in degree 2 and
differ in degree 3. Besides this he posed the problems in ranks 32, 48 and 56.

In the present report we show that there are 40 dimensional two even unimodular extremal lattices coming
from two doubly even self-dual extremal codes, whose theta series of degree 2 coincide and theta series of degree
3 differ definitely. We also show an instance of two another even unimodular extremal lattices coming from
another two doubly even self-dual extremal codes, whose theta series of degree 2 and degree 3 coincide. These
are shown by computing some beginning Fourier coefficients of theta series of the lattices in question combined
with some facts on the dimensions of the linear spaces of Siegel modular forms already. proved by other people.
S. Manni {12] also proved

Theorem 1.2. In 32 (resp. 48) dimensional even unimodular extremal lattices, about the theta series associated

to such lattices we can say that

(i) it is unique in degree 3,
(ii) in degree 4 their difference is, up to o multiplicative (possibly 0) constant, equal to a power of Schotthky’s
polynomial J.

He then wrote
Find two even unimodular extremal lattices L3 and L4 of rank 32 or 48 whose theta series differ in degree 4.
We dicuss some related trials to this problem.

2 A brief account

2.1 32 dimensional case
Erokhin [6] proved

Theorem 2.1. If two 32 dimensional even unimodular lattices have identical theta series of degree 1, then they
have identical theta series of degrees up to 3.

Venkov (28], [29] gave a method to compute some Fourier coefficients of Siegel theta series of degree 3
associated with even unimodula extremal 32 dimensional lattices.
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2.2 40 or higher dimensional cases

The 40 dimensional case is our present topic. There is not any explicit result for the 48 dimensional and
56 dimensional cases along with Manni’s questions. The reasons for this would be the facts that there are
few explicit constructions of lattices and that they are constructed through ternary codes. In 32 dimensional
case our present method will apply to Manni’s problem, but we have not pursued this case since the shapes of
minimal vectors in an extremal 32 dimensional lattice are complicated.

3 Some Basics

3.1 Lattice

A lattice L of rank n (or dimension n) is a Z-module generated by the vectors xi, ... ,x, in R”™ that are
linearly independent over R. The vectors x,,... ,X, are called the basis of L.

L is integral if the inner product (x,y) belongs to Z for all pairs x and y in L.

The dual lattice L# of L is defined to be

L* ={yeR"|(x,y) € Z, "x € L}.
A lattice L is unimodular if it holds that L = L#,.
A lattice L is even if any element x of L has even norm (x, x).
Even unimodular lattices exist only when n = 0 (mod 8).
Min(L) = mingsxes (X,X)
When L is even unimodular of rank n it holds that

Min(L) < 2 [%] +2.

A lattice which attains the above maximum is called an extremal lattice.

Let L be an even unimodular lattice of rank n.
Aam(L) : The set of x in L with (x,x) =2m (m > 1).

3.2 Siegel modular forms

The symplectic group Sp,(R) of degree g over Ris defined to be
Spy(R) =

{M:(é g)eMzg(R)l‘MJM=J,J= ( 39 P )}

Siegel modular group Sp,(Z) of degree g is a subgroup of Sp,(R) consisting of elements in Sp,(R) whose entries
are in Z. Let H, be the Siegel upper half-space of degree g:

H, = {r| =X +Yie M,(C),| *r = 7,Yis positive definite}.

A Siegel modular form of degree g (g > 2) and weight k is a holomorphic complex valued function f(7) defined
on H, satisfying the condition :

f((Ar+B)(CT+ D)) =
(det(Cr + D))*f(r) V( 4B ) € Sp,(Z).
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Note that when g = 1 an additional condition of the holomorphicity of f at the cusp is neccessary.

3.3 Siegel theta series
Siegel theta series of degree g attached to the lattice L is defined by
Fg(r, L) =
D> eap(mio([xy,. .. ,%g]T)),

X1, yXg€L

where 7 is the variable on Siegel upper-half space of degree g, [X1,... ,X,] is & g by g square matrix whose (i, 5)
entry is (xi,%;) and o is the trace of the matrix.
Siegel theta series of degree g can be expanded to

dy(r,L) = Y _a(T, L)e*™*{Tn).
T .

Here T runs over the set of positive semi-definite semi-integral symmetric square matrices of degree g, and
a(T,L) = #{(x1,... ,%xg) € L9 | [x1,... ,%4] = 2T}.

Fact: Siegel theta series of degree g associated with an even integral unimodular lattice L of rank 2k (2k is a
multiple of 8) is a modular form of degree g and weight k.

3.4 Theta Functions with characteristics

e[:,](r,z)=

S e a2 (v £)r (v 5) + (V4 5) (2+5)])

NeZ’

Here ¢, € are integral vectors of length g with entries 0 or 1, Z is a variable on C¢, and 7 is a variable on H,,
the Siegel upper half space of genus g. For g = 2 case

€1 €3
9[53 A ](7'12)

2
. € €;
= Z exp {m (E ‘r,-j(ni + —2‘-)(’!!]' -+ 51)
n=(ny ,ﬂ,g)GZ2 Hi=1
2
. €;!
+23 (it P+ 5 )) } :
t=1
_ nit+nie +ed /4 n§+n3£3+£§/4 2ning+(nae1+niea)+erea/2
Z U1 92 a3

n=(ny ,n,)eZ’
x (2niter/2) (Anates/2) grile] (na +e1/2)+ 65 (na+ea/2)

Here 7y; is the ij entry of 7, Z = (21, 22) € C°, g1 = €™i™11, gg = ™73, g3 = ™13, (1 = €™%1, (p = ™53,
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Two instances.

- E qi‘gq;‘gqgﬂx'nz Cfﬂx anz
n=(n1,n2)eZ’

10
o[ 5 §]ma
- E q§n,+1/2)’q;gqg(m+1/2)n2<;z(n1+1/2)<gn,

n=(n,y y"z)GZ2

3.5 Binary linear code

Let F; = GF(2) be the field of 2 elements. Let V = F} be the vector space of dimension n over F; . A
linear [n, k] code C is a vector subspace of V of dimension k. An element x in C is called a codeword of C.
In V', the inner product , which is denoted by x - y for x,y in V, is defined as usual. Two codes C; and C,
are said to be equivalent if and only if after a suitable change of coordinate positins of C; all the codewords in
both codes coincide.

The dual code C* of C is defined by

Ct={ueV]|u.-v=0 VYveC}

The code C is called self-orthogonal if it satisfies C C C+, and the code C is called self-dual if it satisfies
C=C+.

Self-dual codes exist only if n =0 (mod 2) and k =

3

Let
X = (1‘1,1’2, ‘e ,x,,)

be a vector in V', then the Hamming weight wt(x) of the vector x is defined to be the number of i’s such that

z; # 0. The Hamming distance d on V is also defined by d(x,y) = wt(x — y). Let C be a code ,then the
minimum distance d of the code C is defined by

d = Minx,yec,x#y d(x) Y)
Mjnxec’x#o’wt (X).

Let C be a self-dual binary [n, %] code, then the weight wt(x) of each codeword x in C is an even number.

Further, if the weight of each codeword x in C is divisible by 4, then the code is called a doubly even binary
code. It is known that doubly even self-dual binary codes C exist only when the length n of C is a multiple of
8.

Let C be a self-dual doubly even code of length n, which are embedded in F7;. Let u = (uj,uz,: -+ ,u,),v =
(v1,v2,++ ,vs) be any pair of vectors in F7, then the number of common 1’s of the corresponding coordinates
for u and v is denoted by u * v. This is called the intersection number of u and v, and u * u is nothing else
wt(u).

3.6 Multiple weight enumerator

Let C be a doubly even self-dual code of length n, and g be a positive integer and we let o run the set
% of g-tuple vectors. The 29 algebraically independent over Cvariables z, are parametrized by o €Fg. Let
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u = (uf,uf, -, ul),up = (ud,ul, - ,ug), -, uy = (uj,uZ,- - ,uy) be the g-tuple codewords of C. For each
a € F? a generalized weight

wta(ur, Uz, -+ ,uy) o is defined to be the number of coordinates j (1 < j < n) such that the equation
a=(uf,uf, - ,u}) holds.

The multiple weight enumerator W (z4; C) of genus g for the code C is defined by

Wg(xa; C) = Z H m:ta(ul gy 1Ug).

(105 G S
The multiple weight enumerator of second degree is called a biweight enumerator, and the multiple weight
enumerator of third degree is called a triweight enumerator.

3.7 From binary codes to lattices
C : binary self-orthogonal [n, k] code

Construction A,
p:Z" — Ty
1) W

x = xmod?2

L(C) = %,,-1(0)_

Construction B,

p: Z" — T,
U w

X — Xmod2

M(C) =
{x = (21, Z2,... ,Zn) € p~1(C)| iw‘ =0 (mod 4)}
t=1

S

Doubling the density process:

Suppose that C is a doubly even self-dual binary [n,n/2] code. Put

715(1,...,1,—-3) ifn=8 (mod 16),
Y=Y 4@,...,1,1) ifn=0 (mod 16)
V- A AR R =

N(C) = M(C) U (v + M(C))

We pick up peculiar codes. We denote the codes C; (respctively Cz,C3,C,) the second code in [17],Yorgov’s Cs
,Yorgov’s code C; and Yorgov’s code C, [?] respectively. The lattices constructed by the above process are
denoted by M;; = N(C1), M2 = N(C2), M1z = N(C3) and My4 = N(Cq) respectively.
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3.7.1 40 dimensional case

We are particularly concerned with the set of minmal vectors A4(/N(C)) in an extremal even unimodular
lattice constructed from binary self-dual extremal [40, 20, 8] code.

When C is a doubly even self-dual binary [40, 20, 8] code, Ay = A4(N(C)) consists of two kinds of vectors:

Al = {——\/1—5-((:!:2)2,038)} number = 3120
A2 = {%((:&1)3,032)} number = 36480

The set A} forms a root system of type Dy scaled by a factor /2, and the vectors in the set A2 come from
codewords of weight 8 in the code C.

To each y € A4 we associate a binary vector v = supp(y) € ]F;o which corresponds to non zero positions of y.

3.8 Duke-Runge map

We explain the map by using the case g = 2.
We put

@e(T) =o[ o ] (2r,0).

These are theta zero values with the variable 7 multiplied by 2. There are 29 functions (7).

woo(T)
= 3 grigirigimm
n=(n1,na)el’
= 1+2¢7 +2g3 +2q745(q5 + a5*) + 24} + 243
+2¢393(a3° + 65 7%) + 20} a3 (a3 + 45 ®)
+2¢2a5(af +a5%) + -+

p10(7)
- z qf(nm/z)’ q;n: qg(mﬂ/z)n,
n=(n1,n3)eZ’
= 2§ +208 R(@E +a5?)
+2¢¥ gB(ad + i5%)
+29F + 298 g3(e8 + 459
+20f B(al? + gD + - -

Likewise o1(7),¥11(7) can be expanded. Let Wy(z4; C) be a multiple weight enumerator of genus g for a
doubly even self-dual code C, then W, (p,; C) is proved to be Siegel theta series of degree g that is associated
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with the lattice constructed by using Construction A; in Section 3.7.
For instance

Wa(xoo, Zo1, 10, T11; Ham

= o +ady + 28 + ¥ + 14(zdozd, + adorhy + 2ozt + 2hi2ty + 2hi 2 + xhoat)) + 16822, 22,72, 22
0 1 11 00Z01 + TooT10 + Zoo 0171 00

is the biweight enumerator of the Hamming [8, 4, 4] code. And

W2(@0o(7), p01(7), p10(7), ¢11(1); Ham)
= 1+ 240¢7 + 21605 + 6720¢5 + 17520¢5 + 30240¢3°

+¢3[240 + 240933 + +240/g8¢3 + 13440¢3¢2 + 13440/q; 22 + 3024043 + 30240/g8q¢% + 30240¢8¢2 +
13440/g3%q5 + 181440/45q5 + 138240¢3g3 + 181440q% + 138240/q4q5 + 13440¢32¢S +
+362880/g3%¢3° + 1330560/ ¢343° + 30240/g1%¢1° + 36288043230 + 30240¢16¢10
+1814400g3° + 99792043 3° + 997920/¢5¢3° + 1330560¢3¢2° + 497280/¢5q5 + 99792043
+240/93%q3 + 13824043%¢8 + 24041845 + 4972804545 + 967680/g5qS
+138240/3%¢5 + 967680g345 + 181440¢5¢5 + 49728045 + 362880/g3qS + 3628809395+

is the Siegel theta series of degree 2 for the root lattice Es.
The multiple weight enumerators for the class of doubly even self-dual codes are invariant under the action

of certain finite group G of linear transformations. Runge discussed the ring R of invariants under a special
subgroup H of G and extended the mapping & to R.

4 Preliminary results

Table 1 The dimensions of the linear space of Siegel modular forms of degree g and weight k.

n\k {[4]6[8]10]12[14]16]18] 20
1 1j1j1f11t2]1}(212(]2
2 111111 2|32 |4)|4]|5
3 |1y111|1 24 |3!7|8]|11
4 }]1]1]2|3]6]| 6|14

Proposition 4.1. Siegel theta series ¥,(Z, L) of degree g associated with an even unimodular lattice of rank 2k

(k =0 (mod 2)) is determined uniguely if the Fourier coefficients a(T, L) are known for T’s given in the Table
2-1~ 2-8.

Table 2-1 g = 1 case

2k 18116 24| 321 40
Tiojojo[o0O]1
1j1]1

Table 2-2 g = 2 case

2k 8 16 24 32 40
11 13 0 0 0 0
T=( 4 (o o o o

N N N
o~ oo od
mo wo od
~— S A
—~ o~
ow oo od
=0 ~o od
e A
o~ 0o od

—~ o~

(s )| (ah )




Table 2-3 g = 3 case
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k13 kL 33 0
1T t12 %13 T 0 O 50 0 o 0 0
T=| t31 tzz ta3 o o o o 0 o 0o o @
ta1  taz  ta3 o o o o o o o o0 o
1 0 o 1 0 o 1 0 o0
o o0 o 6 o o o 0 o
o o o e o0 o o o o
1 0 o 1 0o o 1 0 o
o 1 o o 1 o o 1 o
o o o o 0o o o 0 o
1 0 o 1 1/2 o0 1 /32 0
o 1 o 1/32 10 1/3 10
0o o0 1 ) o o 0 o o
1 0 o 2 1 o
o 1 o 1 2 o
o o 1 o 0o o
1 /2 0 1 0 o
1/2 1 o o 1 o
[ o 1 0o o0 1
1 1/2 172 1 /2 0
1/3 1 0 1/2 0
/2 0 1 0 o 1
1 1/2  1/2
1/3 1 0
1/2  © 1
1 0 1/3
0 1 1/2
/2 1/3 3
1 /2 ©
1/2 2 1
0 1 2
2 0 o
o 2 o
0o o 2

even unimodular lattices K; of rank 32, whose underlining root lattices are denoted below:
K; :3Eg, K3 : Doy, K3: Az, K4: A17 0 Ey

m\j ] 0 1 2 5
1| 1| 720 | 436320 | 219024000
2 | 11104 | 1022304 | 781393536
3|1 600| 303600 | 127512000
4]1] 432| 158112 | 48263040

even unimodular lattices L; of rank 32, whose underlining root lattices are denoted below:
Ly:4FEg, Ly : D2y ® Eg, L3 : A2q ® Es, Ly : Er ® A17 + Eg,Ls : D3z, Lg : Ay © As1, L7 : A1 © Ase

Table of the Fourier coefficients of Siegel theta series of degree 3

m\j 2] 1 2 K] 5 ] 7
1 1 JTi38.4 1)
2 1 1344 1583464 110592 1610431696 120729600 4540416
3 1 840 621840 41040 403350400 28406880 970080
4 1 672 395712 27364 203109130 14736384 870340
] 1 1984 3456128 338080 5340378880 386641030 14046730
] 1 994 867008 59520 657636480 8440280 1726080
7 1 544 262208 16320 111041280 7409280 228480

even unimodular lattices M; of rank 40, whose underlining root lattices are denoted below:

M, :E§, My : D2y ® Eg, M3 : Aoy ® E}, My : Er © A7 ® EZ, Ms : D3z & Eg,

Mg : A) ® A3y & Eg, M; : A%s ® Es, Mg : Dgo, My : D4o, Myo : Dog & D;2. The lattices My, M2 and
M3 respectively are the ones ciming from doubly even self-dual [40, 20, 8] codes: Iorgov’s C; [9], a code in [17],
Iorgov’s code Cs [9] respectively.

Table of the Fourier coefficients of Siegel theta series of degree 3
93(Z, M) (1 <m <13)



miy | 0 1 p] 3 1 T [3
T T 1200 1303300 | 'WL‘mmo | 1273968000 | 69350400 |
2|1 1684 | 2257824 | 124032 383278632864 2882537856 166302720
3 | 1 1080 | 1055280 54480 185566037280 938094400 50513760
4 1 912 748512 40704 135668986273 550800000 31379104
5 1 2224 | 4438688 | 251520 734060529568 7810593930 471413760
6 | 1 1234 | 1374368 72960 238658059648 1373972320 77061120
711 784 553568 29760 102348818848 350997120 19605120
8 1 1520 | 2088480 | 109440 357220647840 2579976040 142709760
9 1 | 3120 | 8779680 | 474240 | 1422569435040 | 22161709440 1263375360
10 1 1776 | 2815008 | 167808 474354791328 3964519296 247698432
11 1 [ 5} [} 994281120 [}

12 1 0 o 0 994281120 [ 0
13 | 1 o o 0 10356568800 0 0
14 | 1 0 4} 0 1035568800 0 0
v\ T ] £l 10
18144200 B375688000 |
2 4903206 11702768640 0419495777280
3 1332960 3945026400 | 16132530647200
4 933130 2366742528 1991438453696
6 | 14409600 | 81503139840 | 24945629414400
6 2088960 5677661440 4703505845760
7 591360 1516810240 1343172316060
8 3830400 | 10705566720 8331241263080
9 | 35568000 | 88857400320 | 67244838036480
10 8330288 18670720728 | 12015085043808
11 0 o 0 | 13596332778880
12 0 [’} 0 [ 15596305376806
13 0 [} 0 | 17448486307200
14 0 o 0 | 17448486307200

5 Main result
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Theorem 5.1. There are a pair of even unimodular 40 dimensional lattices L, and Ly such that their Siegel

theta series of degrees 1 and 2 coincide and their theta series of degree 3 differ.

Theorem 5.2. There are a pair of even unimodular 40 dimensional non-isomorphic lattices L3 and L, such

that their Siegel theta series of degrees 1, 2 and 8 coincide.

6 A brief sketch of computing the Fourier coefficients of 9¥;3(Z, L)
We compute
a’(T’ L) = #{(z,y,z) € L3 | ["L‘v Y z] = 2T}9

for the case when L is an even unimodular 40-dimensional extremal lattice constructed from binary code.
This quantity is expressed as

a(T,L) = > u(=z,y;t1, tis, t23),

2, 2t )

(w,y)GL’,[m,y]=( 2t12 2t2

where
w(, y5t1,t13, tas) = #{z € Aoy, |(z,2) = 2t13, (¥, 2) = 2t23.}

We need to compute a(T', L) for particular T’s given in the Table 2-3. For

2 00
T= 02 0],
0 0 2
We see that
ao(T,L) = Z w(z,y;2,0, 0),

<r.v>€L’,lz,y]=( 3 2 )



and
wz,9;2,0,0) = #{z€ Au(L)|(z,2) =0,(y,z) =0}
= ,u,q(x,y;2,0,0)+/,L3(x,y;2,0,0),
where
”A(za ¥:2,0,0) = #{z € Al(z,2) =0,(y, z) = 0}’
“B(x7y;2)0’0) = #{z EBI(I1Z) =0, (y’z) =0}.
Further we get
oT,L) = Y {84200+ > us(z,1:20,0)}
ZEA,yEA TE€EA,YyEA
+ > {a@¥2,0,0+ > ps(z,¥;2,0,0)}
z€A,yeB TEA,YEA
> {pa=1:2,0,00+ > us(z,5;2,0,0)}
z€B,ycA TEA,yeA
Z {/‘A(z)y; 2,0,0) + Z us(z,y; 2,0,0)}
z€B,yeB TEA,yEA

We can easily prove that
Proposition 6.1. It holds that

> kue(z,%2,0,0)}

z€A,yeA

= E MA(z»y;ZO»O)
z€A,yEB

Z l‘A(zay;2v0;0)’
z€B,yeA

and

z #B(l‘,y; 2a070)}

€A, yEB

= Z #B(zv Ys 2’ 0»0)
z€B,yEA

= Y ual=1:2,0,0).
z€B,yeB

By the above proposition we get an expression:
a(T,L)
= z {pa(z,v;2,0,0) +3 Z {pa(z,9;2,0,0)

T€EA,YEA z€B,yeA

+3 Y {wal®,5:2,0,00+ > {us(z,1:2,0,0)
z€B,yeB z€B,yeB

158
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Computation of erA,yeA pa(z,v;2,0,0)
We get

3" ka(2,1;2,0,0) = 3120(2 - 2812 + 2812 - 2524) = 22161709440
T€EA,yEA )

Computation of EzeB,ueA #a(zr,y;2,0,0)
We get

3" ka(z,4;2,0,0) = 36480 - (56 - 2014 + 1984 - 1798) = 134246983680.
z€B,yeA

Computation of Zzea_yeg palz,y;2,0,0)

The biweight enumerator of a linear code of length n is defined to be

BW(C, X11, X10, Xo1, Xoo) = 3 X x o) yun () xso(ay),

u,veC

where X1, X10, Xo1 and Xgo are algebraically independent variables over the field of complex numbers, and
wij(u,v) (0 < 4,5 < 1) is the number of the coordinates k (1 < k < n) such that the kth component of u
takes the value i and the k-th component v takes the value j. We exibit the biweight enumerators of the codes
C:i(1<i<4):

BW(C, X11, X10, Xo1, Xoo) =
BW(Cz, X11, X10, Xo1, Xoo) =
= -4+ 285XP X3 + 5040X7, XH X8 X35 +
+53760X % X5 X§, X38 + 22140X5 X8 X328 + ...
BW(Cs, Xn, Xm, X01, Xoo) =
BW(Cy4, X11, X10, Xo1, X00) = ‘
= ...+ 285X3 X532 + 11760.X%, X f, X&, X35 +
+40320X7, X3, X8, X38 + 28860X 50 X5 X35 + - -

In the above we display all the terms for both u and v are of weight 8.

After all we get

E /"A(mv v; 2, 0’ 0)

z€B,yeB
= 27. (285 - 70 - 2008 + 5040 - 48 - 1540 + 53760 - 64 - 1360 + 22140 - 128 - 1216)
= 1092855490560 for codes C,,C:
= 27.(285.70-2008 + 11760 - 48 - 1540 + 40320 - 64 - 1360 + 28860 - 128 - 1216)
= 1140584048640 for codes C3,C,

Computation of - _. ByeB ue(z,y;2,0,0)

If we dare to explain every detail of the computation, it may take too much space, therefore we only describe
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the inner product relations of the vectors z,y and z in B. The description is well-controled by some terms of
the triweight enumerator of a code C:

TW(C, X111, X110, X101, X011, X100, X010, X001, X000) =
w11 (u,v,w) ywii0(u,v,w) y w101 (1,v,W) y+w011(1,V,W) 1rw1i00 (1,V,W) 5 wo10(1,V,W) 1 w001(1,V,W) v w000 (1,v,W)
z : X111 X110 X101 Xo1n X100 Xo10 Xoo1 Xooo ,

u,v,weC

where X111, X110, X101, X011, X100, X010, X001 and Xgo¢ are algebraically independent variables over the field of
complex numbers, and w;;s(u,v,w) (0 < 4,5, h < 1) is the number of the coordinates k (1 < k < n) such that
the kth component of u takes the value i and the k-th component v takes the value j, and k-th component of
w takes the value h. ) :

For our present computation we only need the terms coming from the codewords u,v,w of weight 8. For
instance, in case of C; terms such as 11760X%,, X7, X%y, X3, X200 X310 X 21 X35, and

42000X ), X1, X{00X§10X 81 There are 50 types of terms that correspond to triples of codewords of weight8.
For a fixed z € B we want to count the vectors y, 1B such that (z,y) = (z,2) = (y,z) = 0. However the
frequencies of the pairs < y, z >vary according to the intersection relation among suppz, suppy, suppz. We
omit the details.

After all we get

2 00

a(| 0 2 0 |,L(Cy)) = 15596332778880,
0.0 2
2 00

a(l 0 2 0 },L(C)) = 15596205376896.
0 0 2
2 00 2 00

a(| 0 2 0 |,L(C3))= a(| 0 2 0 |,L(Cy) = 17448486307200
0 0 2 0 0 2

In the same way the values in the last table in Section 4 are determined. These value are the base of our
Theorems in Section 5.

7 Further Research

7.1 Some Basic Difliculties
7.1.1 Graded Ring Structure

In genus (degree) 2 case the theory of Siegel modular forms has rich tools.
In genus 3 case thanks to Tsuyumine the graded ring structure of Siegel modular forms is available. However
if we fix the weight k we seems not to have the explicit method to determine the linear basis of the space of
Siegel modular forms of genus 3 and weight k, although we could know the dimension of the space. We do not
have the way to compute the Fourier expansion of those Siegel modular forms.
In genus 4 case the graded ring structure is not determined. Oura, Poor and Yuen [13] initiate to study this
case.

7.1.2 Computational Difficulties

Duke-Runge map does not directly produce the Siegel theta series of even unimodular extremal lattice from
the multiple weight enumerator of doubly even self-dual extremal binary code.
The weight enumarator of (24,12, 8] binary Golay code is given by

Waa (2, y) = 22 + 7592'8y® + 2576x12y'2 + 75928y16 + y24.
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In g = 1 case the mapping from weight enumerators to modular forms is known as Broué-Enguehard map (cf.

2])

Examplel. In 24 dimension case.

WGu (‘PO (T)’ ¥1 (T))
= 1+ 48q7 + 195408} + 16785216¢° + 3979633444} + 462961296041 +

This is theta series of degree 1 associated with even unimodular lattice of root type 24 x A;. The polynomial

WGM
= 22 +7592'%% + 25762'%y'2 + 7592816 + 424
_3(3,;20 4 4216y8+6212 12 4z8y16+:c y20)

leads to theta series of degree 1 associated with the Leech lattice:

Wea. (‘PO (T) y1(1))
= 1+ 196560qf + 16773120¢5 + 398034000¢% + 4629381120¢}° +

Example 2. In 32 dimension there are five classes of doubly even self-dual binary hnea.r codes, and they have
identical weight enumerator:

Wes, (2, y) = 232 + 6202248 + 138882202 + 3651820y + 13888212y + 6202%y% + 32
The image of this polynomial under Broué-Enguehard map is

Wess (po(T), ¢1(7))
= 1+ 644% + 160704¢?% + 64543488¢% + 4845725632¢5 + 137699222400q1° + - - -

This is theta series of degree 1 associated with even unimodular 32 dimensional lattice of root type 32 x A4;.
Another polynomial:
Wcsa
= %% 46202%%® + 13888x2°y12 + 365181610
+13888z12y2 + 620282 + 432
_4( 101'24 8 491:20 12 + 763316 16
—492"2y20 4 1028324 + 28y + 4282%)

leads to

2 (soo (T)yp1(7))
= 1+ 167360q] + 657408004° + 48676105604¢° + 138035363840¢3° + - - -

which is theta series of degree 1 associated with even unimodular 32 dimensional extremal lattice.

In g = 2 case. We utilize the polynomials Py, Py2, Pao, Pas that are described in [14]. The biweight enumerator
of extremal binary self-dula doubly even self-dual [32, 16, 8] code is
182 49

13 49
29 sonPePoy + 271’4 739 PP} 243 s Pi2Poo
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The image under the Duke-Runge map is the Siegel theta series of degree 2 for the even unimodular lattice of
root lattice type 32 x A;.

The polynomial which corresponds to the Siegel theta series for even unimodular exremal lattice constructed
from the above extremal code is

20 4 25 25
ﬁPBPM + §P§‘ + '32_4})8[)122 + umon,

which is not the biweight enumerator of a code, since it has negative coefficients.

A last remark: the reporter has downsized the total report, since he realizes the strong constraint that the
number of pages should be under 16 posed by the organizer. The reader who wants to read this report more
precisely may take enlarged copies.
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