An explicit formula for the zeros of the Rankin-Selberg *L*-function

Takumi Noda 野田 工
College of Engineering Nihon University 日本大学 工学部

Abstract

In this report, we describe one explicit formula for the zeros of the Rankin-Selberg L-function by using the projection of the C^{∞} -automorphic forms [Noda, (Kodai. Math. J. 2008)]. The projection was introduced by [Sturm (Duke Math. J. 1981)] in the study of the special values of automorphic L-functions. Combining the idea of [Zagier (Springer, 1981, Proposition 3)] and the integral transformation of the confluent hypergeometric function, we derive an explicit formula which correlates the zeros of the zeta-function and the Hecke eigenvalues. The main theorem contains the case of the symmetric square L-function, that first appeared in author's previous paper [Noda, (Acta. Arith. 1995)].

1 Rankin-Selberg L-function

Let k and l ($k \le l$) be positive even integers and S_k (resp. S_l) be the space of cusp forms of weight k (resp. l) on $SL_2(\mathbb{Z})$. Let $f(z) \in S_k$ and $g(z) \in S_l$ be normalized Hecke eigenforms with the Fourier expansions $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi inz}$ and $g(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi inz}$

 $\sum_{n=1}^{\infty} b(n)e^{2\pi inz}$. For each prime p, we take α_p and β_p such that $\alpha_p + \beta_p = a(p)$ and $\alpha_p\beta_p = p^{k-1}$, and define

$$M_p(f) = \begin{pmatrix} \alpha_p & 0 \\ 0 & \beta_p \end{pmatrix}.$$

The Rankin-Selberg L-function attached to f(z) and g(z) is defined by

$$L(s, f \otimes g) = \prod_{p : \text{prime}} \det \left(I_4 - M_p(f) \otimes M_p(g) p^{-s}\right)^{-1}.$$

Here the product is taken over all rational primes, and I_n is the unit matrix of size n.

2 Fundamental properties

1. Dirichlet series

$$L(s, f \otimes g) = \zeta(2s+2-k-l) \sum_{n=1}^{\infty} a(n)b(n)n^{-s}$$

2. Inner product (Rankin, Selberg)

$$L(s,f\otimes g)\zeta(2s+2-k-l)^{-1}=\frac{(4\pi)^s}{\Gamma(s)}\int_{SL_2(\mathbb{Z})\backslash H}f(z)\overline{g(z)}E_{l-k}(z,s-l+1)y^{l-2}dxdy$$

3. Analytic continuation

For l > k, $\Gamma(s)\Gamma(s-k+1)L(s,f\otimes g)$ is an **entire function** in s. The functional equation is also known.

4. Others

(1 The critical strip is (k+l-2)/2 < Re(s) < (k+l)/2.

(2) For l = k, $(\Gamma - factor)\zeta(s - k + 1)^{-1}L(s, f \otimes f)$ is an entire function in s (Shimura, Zagier).

3 Statement of the results

Theorem 1 Let k and l be positive even integers such that k, l=12,16,18,20,22, and 26 respectively. Suppose $k \leq l$. Let $\Delta_k(z)=\sum_{n=1}^{\infty} \tau_k(n) e^{2\pi i n z} \in S_k$ be the unique normalized Hecke eigenform, and let ρ be a zero of $L(s-1+(k+l)/2,\Delta_k\otimes\Delta_l)$ in the critical strip 0< Re(s)<1. Assume that $\zeta(2\rho)\neq 0$. Then for each positive integer n,

$$\begin{split} &-\tau_k(n)\left\{\frac{n^{1-2\rho}(-1)^{\frac{l-k}{2}}\zeta(2\rho)}{(2\pi)^{2\rho}\Gamma(-\rho+\frac{k+l}{2})} + \frac{\zeta(2\rho-1)\Gamma(2\rho-1)}{\Gamma(\rho-1+\frac{k+l}{2})\Gamma(\rho+\frac{k-l}{2})\Gamma(\rho-\frac{k-l}{2})}\right\} \\ &= \frac{1}{\Gamma(k)\Gamma(\rho-\frac{k-l}{2})} \sum_{m=1}^{n-1} \tau_k(m)\sigma_{1-2\rho}(n-m)F\left(1-\rho+\frac{k-l}{2},-\rho+\frac{k+l}{2};k;\frac{m}{n}\right) \\ &+ \frac{1}{\Gamma(l)\Gamma(\rho+\frac{k-l}{2})} \sum_{m=n+1}^{\infty} \left(\frac{n}{m}\right)^{-\rho+\frac{k+l}{2}} \tau_k(m)\sigma_{1-2\rho}(m-n) \\ &\times F\left(1-\rho-\frac{k-l}{2},-\rho+\frac{k+l}{2};l;\frac{n}{m}\right). \end{split}$$

4 Corollary and Remarks

Corollary 1 Let $T(n, \rho; k; l)$ be the right-hand side of the equality in Theorem 1. Then, the following equivalence holds:

$$\operatorname{Re}(\rho) = \frac{1}{2} \iff T(n,\rho;k;l) \times \tau_k(n) \quad (as \ n \to \infty).$$

Remark 1. By Shimura (1976, 77), it is known that the periods of the modular form for $L(s, f \otimes g)$ are dominated by the cusp form of large weight, whereas our theorem is expressed by using the Fourier coefficients of the cusp form of small weight.

Remark 2. The Theorem 1 includes the formula for the symmetric square L-function $L_2(s, f)$ and the Riemann zeta function $\zeta(s)$, that first appeared in author's previous paper [5].

5 Eisenstein series

Let $k \ge 0$ be an even integer, Let *i* be the imaginary unit, *s* be a complex number whose real part σ (sigma) and imaginary part *t*. As usual, *H* is the upper half plane. The non-holomorphic Eisenstein series for $SL_2(\mathbb{Z})$ is defined by

$$E_k(z,s) = y^s \sum_{\{c,d\}} (cz+d)^{-k} |cz+d|^{-2s}.$$
 (1)

Here z is a point of H, s is a complex variable and the summation is taken over $\binom{*}{c}\binom{*}{d}$, a complete system of representation of $\left\{\binom{*}{0}\binom{*}{*}\in SL_2(\mathbb{Z})\right\}\setminus SL_2(\mathbb{Z})$. The right-hand side of (1) converges absolutely and locally uniformly on $\left\{(z,s)\mid z\in H, \operatorname{Re}(s)>1-\frac{k}{2}\right\}$, and $E_k(z,s)$ has a meromorphic continuation to the whole splane. It is also well-known the functional equation:

$$\pi^{-s}\Gamma(s)\zeta(2s)E_k(z,s)$$
= $\pi^{-1+s+k}\Gamma(1-s-k)\zeta(2-2s-2k)E_k(z,1-s-k)$.

6 Projection to the space of cusp forms

The C^{∞} -automorphic forms of bounded growth are introduced by Sturm in the study of zeta-functions of Rankin type. The function F is called a C^{∞} -modular form of weight k, if F satisfies the following conditions:

(A.1) F is a C^{∞} -function from H to \mathbb{C} ,

(A.2)
$$F((az+b)(cz+d)^{-1}) = (cz+d)^k F(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$.

We denote by \mathfrak{M}_k the set of all C^{∞} -modular forms of weight k. The function $F \in \mathfrak{M}_k$ is called **of bounded growth** if for every $\varepsilon > 0$

$$\int_{0}^{1} \int_{0}^{\infty} |F(z)| y^{k-2} e^{-\varepsilon y} dy dx < \infty.$$

Let k be a positive even integer and S_k be the space of cusp forms of weight k on $SL_2(\mathbb{Z})$. For $F \in \mathfrak{M}_k$ and $f \in S_k$, we define the **Petersson inner product** as usual

$$(f,F) = \int_{SL_2(\mathbb{Z})\backslash H} f(z)\overline{F(z)}y^{k-2}dxdy.$$

The Poincaré series are defined by

$$P_m(z) = \sum_{\{c,d\}} e\left(m \cdot \frac{az+b}{cz+d}\right) (cz+d)^{-k}$$

for $k \ge 4$, $m \in \mathbb{Z}_{\ge 0}$ and $z = x + iy \in H$. Here the summation is taken over as in the definition of the Eisenstein series. In 1981, Sturm constructed a certain kernel function by using Poincaré series, and showed the following theorem:

Theorem 2 (Sturm 1981) Assume that k > 2. Let $F \in \mathfrak{M}_k$ be of bounded growth with the Fourier expansion $F(z) = \sum_{n=-\infty}^{\infty} a(n,y)e^{2\pi inx}$. Let

$$c(n) = (2\pi n)^{k-1} \Gamma(k-1)^{-1} \int_{0}^{\infty} a(n,y) e^{-2\pi ny} y^{k-2} dy.$$

Then
$$h(z) = \sum_{n=1}^{\infty} c(n)e^{2\pi i n z} \in S_k$$
 and

$$(g,F)=(g,h)$$

for all $g \in S_k$.

7 Fourier expansion of the Eisenstein series

Let $e(u) := \exp(2\pi i u)$ for $u \in \mathbb{C}$. For $z \in H$ and $Re(s) > 1 - \frac{k}{2}$, $E_k(z, s)$ has an expansion:

$$E_k(z,s) = y^s + a_0(s)y^{1-k-s} + \frac{y^s}{\zeta(k+2s)} \sum_{m \neq 0} \sigma_{1-k-2s}(m)a_m(y,s)e(mx), \quad (2)$$

where

$$a_0(s) = (-1)^{\frac{k}{2}} 2\pi \cdot 2^{1-k-2s} \frac{\zeta(k+2s-1)}{\zeta(k+2s)} \frac{\Gamma(k+2s-1)}{\Gamma(s)\Gamma(k+s)},$$

$$\sigma_s(m) = \sum_{d|m, d>0} d^s,$$

$$a_m(y,s) = \int_{-\infty}^{\infty} e(-mu)(u+iy)^{-k} |u+iy|^{-2s} du.$$
 (3)

and

$$a_{m}(y,s) = \begin{cases} \frac{(-1)^{\frac{k}{2}}(2\pi)^{k+2s}m^{k+2s-1}}{\Gamma(k+s)}e^{-2\pi ym}\Psi(s,k+2s;4\pi ym) & (m>0),\\ \frac{(-1)^{\frac{k}{2}}(2\pi)^{k+2s}|m|^{k+2s-1}}{\Gamma(s)}e^{-2\pi y|m|}\Psi(k+s,k+2s;4\pi y|m|) & (m<0). \end{cases}$$

Here $\Psi(\alpha, \beta; z)$ is the confluent hypergeometric function defined for Re(z) > 0 and $\text{Re}(\alpha) > 0$ by the following

$$\Psi(\alpha,\beta;z):=\frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}e^{-zu}u^{\alpha-1}(1+u)^{\beta-\alpha-1}du.$$

We call the first two terms of (2) are the constant term of E(z, s). The integral (3) is entire function in s and of exponential decay in y|m|. This fact gives the meromorphical continuation and the y-aspect of E(z, s) when y tends to ∞ . Namely, there exist positive constants A_1 and A_2 depending only on k and s such that

$$|E_k(z,s)| \le A_1 y^{\operatorname{Re}(s)} + A_2 y^{1-\operatorname{Re}(s)-k}$$
 $(y \to \infty),$

except on the poles. Further, the modularity for $y^{\frac{k}{2}}E_k(z,s)$ gives the following:

Proposition 1 Assume $E_k(z,s)$ is holomorphic at $s \in \mathbb{C}$. Then, there exist positive constants A_1 and A_2 depending only on k and s such that

$$|E_k(z,s)| \le \begin{cases} A_1(y^{-\text{Re}(s)-k} + y^{\text{Re}(s)}) & (\text{Re}(s) > \frac{1-k}{2}) \\ A_2(y^{-1+\text{Re}(s)} + y^{1-\text{Re}(s)-k}) & (\text{Re}(s) \le \frac{1-k}{2}) \end{cases}$$

for every y > 0.

8 Proof of Theorem 1

By Proposition 1, it is easy to see the Eisenstein series $E_k(z,s)$ is a C^{∞} -modular form of weight k, and of bounded growth for 2-k < Re(s) < -1 except on the poles. Therefore

Lemma 1 For $f(z) \in S_k$ and $s \in \mathbb{C}$ in k/2 - l + 2 < Re(s) < k/2 - 1, $f(z)E_{l-k}(z,s)$ is a C^{∞} -modular form of weight l and of bounded growth.

We have also the following;

Lemma 2 Let $f(z) \in S_k$ and $g(z) \in S_l$ be normalized Hecke eigenforms. Let ρ be a zero of $L(s-1+(k+l)/2, f \otimes g)$ in the critical strip 0 < Re(s) < 1. Assume $\zeta(2\rho) \neq 0$. Then

$$\langle f(z)E_{l-k}(z, \, \rho+\frac{k-l}{2}), \, g(z)\rangle=0.$$

To evaluate the Laplace-Mellin transform of the Fourier coefficient of the product of the Eisenstein series and the Hecke eigenform, we use the following proposition.

Proposition 2 The integral transform

$$\int_{0}^{\infty} \Psi(a,c;y) y^{b-1} e^{-uy} dy = \frac{\Gamma(b)\Gamma(b-c+1)}{\Gamma(a+b-c+1)} u^{-b}$$
$$\times F\left(a,b;a+b-c+1;1-\frac{1}{u}\right)$$

is valid when Re(u) > 0 and Re(b-a) - M - N > 0. Here M and N are nonnegative integers so as Re(a+M) > 0 and $Re(c-a) \le N+1$ respectively.

Proof of Theorem 1 Let $\Delta_k(z)$ be the unique normalized Hecke eigenform for k = 12, 16, 18, 20, 22, and 26. We write the Fourier expansion as follows:

$$\Delta_k(z) \cdot E_{l-k}(z,s) = \sum_{n=0}^{\infty} b(n,y,s)e^{2\pi inx}.$$

Using the notation $a_0(s)$ and $a_n(y,s)$ defined by (2) and (3),

$$b(n,y,s) = \{y^s + a_0(s)y^{1-l+k-s}\}\tau_k(n)e^{-2\pi ny} + \frac{y^s}{\zeta(2s+l-k)}\sum_{\substack{m=1,\\m\neq n}}^{\infty}\tau_k(m)\sigma_{1-l+k-2s}(n-m)a_{n-m}(y,s)e^{-2\pi my}.$$

Here we regard $\tau_k(m)$ as 0 if $m \le 0$.

By Lemma 1 and Theorem 2, there exists $h(z,s) = \sum_{n=1}^{\infty} c(n,s)e^{2\pi inz} \in S_l$ such that $\langle f(z) \cdot E_{l-k}(z,s), g(z) \rangle = \langle h(z,s), g(z) \rangle$ for all $g(z) \in S_l$ in the region k/2 - l + 2 < Re(s) < k/2 - 1. The Fourier coefficients of h(z,s) are given by

$$c(n,s) = (2\pi n)^{l-1} \Gamma(l-1)^{-1} \int_{0}^{\infty} b(n,y,s) e^{-2\pi ny} y^{l-2} dy,$$

for n > 0. We put $\gamma(n, l) = (2\pi n)^{l-1} \Gamma(l-1)^{-1}$. Then we have

$$c(n,s) = \frac{\gamma(n,l)}{\zeta(2s+l-k)} \sum_{\substack{m=1\\m \neq n}}^{\infty} \tau_k(m) \sigma_{1-l+k-2s}(n-m) \times \int_{0}^{\infty} a_{n-m}(y,s) y^{s+l-2} e^{-2\pi(m+n)y} dy$$

+ (transformed constant terms).

Combining Lemma 2 and Proposition 2, we obtain the equation in the Theorem 1.

References

- [1] P. Deligne. La conjecture de Weil I, Publ. Math. I.H.E.S., No.43, 1974, 273-307.
- [2] A. Erdélyi, et al. Higher Transcendental Functions, McGraw-Hill, New York, 1953.
- [3] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, Academic Press, New York, 5th ed. 1994.
- [4] T. Miyake, Modular Forms, Springer-Verlag, 1989.
- [5] T. Noda, An application of the projections of C[∞]automorphic forms, Acta Arith., 72, No.3, 1995, 229-234.
- [6] T. Noda, On the zeros of symmetric square L-functions, Kodai math. J., 22, No.1, 1999, 66-82.
- [7] T. Noda, A note on the non-holomorphic Eisenstein series, the Ramanujan Journal, 14 2007, 405-410
- [8] T. Noda, An explicit formula for the zeros of the Rankin-Selberg L-function via the projection of $C \infty$ -modular forms, Kodai math. J., 31, No.1, 2008, 120-132.

- [9] R. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, Proc. Camb. Phil. Soc. 35, 1939, 351-372.
- [10] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Collected Papers, I, Springer-Verlag, 1989.
- [11] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29, 1976, 783-804.
- [12] G. Shimura, On periods of modular forms, Math. Ann., 229, 1977, 211-221.
- [13] J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48, No.2, 1981, 327-350.
- [14] D. Zagier, Eisenstein series and the Riemann zeta-function, (Automorphic forms, Representation theory and Arithmetic: edited by S. Gelbart) Bombay 1979, Springer 1981, 275-301.