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Abstract

In this report, we describe one explicit formula for the zeros of the
Rankin-Selberg L-function by using the projection of the C”-automorphic
forms [Noda, (Kodai. Math. J. 2008)]. The projection was introduced
by [Sturm (Duke Math. J. 1981)] in the study of the special values of
automorphic L-functions. Combining the idea of [Zagier (Springer, 1981,
Proposition 3)] and the integral transformation of the confluent hypergeo-
metric function, we derive an explicit formula which correlates the zeros of
the zeta-function and the Hecke eigenvalues. The main theorem contains
the case of the symmetric square L-function, that first appeared in author’s
previous paper [Noda, (Acta. Arith, 1995)].

1 Rankin-Selberg L-function

Let k and ! (k £ I) be positive even integers and Sy (resp. S;) be the space of cusp

forms of weight & (resp. ) on SL,(Z). Let f(z) € S; and g(z) € S; be normalized

Hecke eigenforms with the Fourier expansions f(z) = Y a(n)e?™" and g(z) =
n=1

> b(n)e*™"z_ For each prime p, we take ¢, and B, such that a, + B, = a(p) and
1

n=
opPp = p*~!, and define

a, 0
M, = p .
The Rankin-Selberg L-function attached to f(z) and g(z) is defined by

L(s,f@g)= JI det(l—M,(f)@My(g)p™) " .
p : prime

Here the product is taken over all rational primes, and 7, is the unit matrix of size
n.



2 Fundamental properties

1.

Dirichlet series

L(s, f@g) = £(25+2—k—1) ga(n)b(n)n_s

. Inner product (Rankin, Selberg)

(4m)*
I'(s)

SL(Z)\H

L(s, f®g)§(2s+2 k=)=

F(REDE1-k(z,s~1+1)y' ~2dxdy

. Analytic continuation

Forl >k, T(s)I'(s—k+1)L(s,f®g) is an entire function in s. The
functional equation is also known.

. Others

(1 The critical strip is (k+1—2)/2 < Re(s) < (k+1)/2.

@ Forl=k, (T-factor)f(s—k+1)"1L(s,f® f) is an entire function
in s (Shimura, Zagier).

3 Statement of the results

Theorem 1 Let k and | be positive even integers such that k, | =
12,16,18,20,22, and 26 respectively. Suppose k S 1. Let Ay(z) =

Z‘L'k(n)ez"""z € Sy be the unique normalized Hecke eigenform, and let p
n=1

be a zero of L(s — 1+ (k+1)/2,A; ® A;) in the critical strip 0 < Re(s) < 1.
Assume that {(2p) # 0. Then for each positive integer n,

) {n1—2P<~—1)’—‘rc<2p> . {(2p—1)r(2p—1) H)}

r)?r(-p+5)  T(p-1+5Hr(p+5HI(p
1
l“(k)l“(p

ka(m)cl 2p(n—m)F (1-p+%¢ p+&§1;k;§’,’-)

l"(1)1"(;3 + &L _Z,;'H ( ) 1'k(m) O1-2p(m—n)

><F(1——p——-5—,~—-p+—§;l;;).
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4 Corollary and Remarks

Corollary 1 Let T(n,p;k;l) be the right-hand side of the equality in Theo-
rem 1. Then, the following equivalence holds:

Re(p)=% = Tkl < 1) (as n— o).

Remark 1. By Shimura (1976, 77), it is known that the periods of the mod-
ular form for L(s, f ® g) are dominated by the cusp form of large weight, whereas
our theorem is expressed by using the Fourier coefficients of the cusp form of
small weight.

Remark 2. The Theorem 1 includes the formula for the symmetric square
L-function L,(s, f) and the Riemann zeta function {(s), that first appeared in
author’s previous paper [5].

5 Eisenstein series

Let k£ 2 0 be an even integer, Let i be the imaginary unit, s be a complex number
whose real part ¢ (sigma) and imaginary part t. As usual, H is the upper half
plane. The non-holomorphic Eisenstein series for SL;(Z) is defined by

Ei(z,5) =y 3, (cz+d)F|cz+d|7%. 1)
{c.d}
Here z is a point of H, s is a complex variable and the summation is taken over
(%), a complete system of representation of {(§ 1) € SL,(Z)}\SL2(Z). The
right-hand side of (1) converges absolutely and locally uniformly on {(z,s)| z € H,
Re(s) > 1— £}, and Ey(z,s) has a meromorphic continuation to the whole s-
plane. It is also well-known the functional equation:

ST (s)§ (25)Ex(z,5) |
= g (1 —5—k){ (2 — 25 — 2k)Ex(z,1 — s — k).
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6 Projection to the space of cusp forms

The C*=-automorphic forms of bounded growth are introduced by Sturm in the
study of zeta-functions of Rankin type. The function F is called a C*-modular
form of weight k, if F satisfies the following conditions:

(A.1) F isaC*-function from H to C,

(A2) F((az+b)(cz+d)™ ") =(cz+d)*F(z) forall (25) € SL,(Z).
We denote by 21 the set of all C*-modular forms of weight k. The function
F ey is called of bounded growth if for every € > 0

1 oo .
/ / |F(2)[y* e ¥ dydx < eo.
00

Let k be a positive even integer and S; be the space of cusp forms of weight k on
SLy(Z). For F € M and f € S, we define the Petersson inner product as usual

(P = [ 1QFGY2dsdy.

SLy(Z)\H

The Poincaré series are defined by

_ . az+bv -k
Pn(z) = {%}e (m cz+d) (cz+d)

fork 24, m € Zyg and z =x+ iy € H. Here the summation is taken over as in
the definition of the Eisenstein series. In 1981, Sturm constructed a certain kernel
function by using Poincaré series, and showed the following theorem:

Theorem 2 (Sturm 1981) Assume that k > 2. Let F € 90, be of bounded
growth with the Fourier expansion F(z) = ¥, a(n,y)e*™™*, Let

n=—oe

c(n) = (2zn)* 1T (k- 1)“1/a(n,y)e"2”"yy"”2dy.
0

Then h(z) = ) c(n)e?™ ¢ §; and

n=1

(gaF) = (g’h)

for all g € S.
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7 Fourier expansion of the Eisenstein series

Let e(u) := exp(2miu) for u € C. For z € H and Re(s) > 1 — %, E(z,s) has an
expansion:

Ex(z,5) =y +ao(s)y" ™ + W);-s—)%ool-k—zs(m)am(y, s)e(mx), (2)
where
- i Ck+25s—1)T(k+2s—1)
a(s) = (~Diam-21k Clk+2s) T()T(k+s)’
os(m) = Y d°,
d|m, d>0
an(3,8) = [ e(=mu)(u-+iy) Hu-+iy|du. @
and i
(_l)z(i_jzl)::is)mﬂzs_]e‘z”y’"‘l’(s,k+2s;4rcym) (m>0),
am(y,s) = (— 1)} (27)+25 ||+ 25-1 (s ks
0 e (k+s,k+2s;4my|m|) (m<0).

Here W(a,B;z) is the confluent hypergeometric function defined for Re(z) > 0
and Re(e) > 0 by the following

1

¥(a,B;z) = a)

/e"”‘u"‘_1 (1+u)P~%"1qu.
0

We call the first two terms of (2) are the constant term of E(z,s). The integral (3)
is entire function in s and of exponential decay in y|m|. This fact gives the mero-
morphical continuation and the y-aspect of E(z,s) when y tends to c. Namely,
there exist positive constants A; and A, depending only on k& and s such that

|Ex(z,5)| < A1yReS) 4 Agy! ~ReC) (y = eo),

except on the poles. Further, the modularity for ygEk(z, s) gives the following:

Proposition 1 Assume Ey(z,s) is holomorphic at s € C. Then, there exist
positive constants A1 and A, depending only on k and s such that

MOTROELRO)  (Re(s) > 13t)
IEk(Z,S)| g {Az(y—l+Re(s) +y1—-Re(s)—k) (Re(s) é LE_’E

for everyy > 0.




8 Proof of Theorem 1

By Proposition 1, it is easy to see the Eisenstein series Ex(z,s) is a C*-modular
form of weight &, and of bounded growth for 2 — k < Re(s) < —1 except on the
poles. Therefore

Lemma 1 For f(z) € Sy and s € C in k/2 — [+ 2 < Re(s) < k/2—1,
f(2)Ei_(z,s) is a C™-modular form of weight | and of bounded growth.

We have also the following;

Lemma 2 Let f(z) € Sy and g(z) € S; be normalized Hecke eigenforms. Let
p be azero of L(s— 1+ (k+1)/2, f® g) in the critical strip 0 < Re(s) < 1.
Assume §(2p) #0. Then

(f(R)Ei—k(z, p+51), 8(2)) = 0.

To evaluate the Laplace-Mellin transform of the Fourier coefficient of the prod-
uct of the Eisenstein series and the Hecke eigenform, we use the following propo-
sition.

Proposition 2 The integral transform

T e T(B)(b—c+1) _
cyWolomw gy, o b
0/‘I‘(a,c, )y’ e “dy TatboctD u

xF (a,b;a+b—c+1;1-1)

is valid when Re(u) >0 and Re(b—a) —M—N > 0. Here M and N are non-
negative integers so as Re(a+ M) > 0 and Re(c —a) £ N + 1 respectively.

Proof of Theorem 1 Let Ag(z) be the unique normalized Hecke eigenform for
k=12,16,18,20,22, and 26. We write the Fourier expansion as follows:

Ak(z) ‘El._k(Z,S) = 2 b(n,y, s)e2m'nx.
Nz oo

Using the notation ag(s) and a,(y,s) defined by (2) and (3),

b(n,y, s) — {y’+ao(s)yl"l+k's}1k(n)e“2""y

+a2—;1.}if:—]5 m;; T (m)O1_14k—2s(n —m)an_m(y,s)e
m#n

—2nmy
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Here we regard 7,(m) as 0 if m < 0.

By Lemma 1 and Theorem 2, there exists h(z,s) = z’c(n,s)ez"i"z € S such

n=1
that (f(z) - E1—x(z,5), &(z)) = (h(z,s), g(2)) for all g(z) € §; in the region k/2 ~
I +2 < Re(s) < k/2 — 1. The Fourier coefficients of A(z,s) are given by

c(n,8) = (22n)' T = 1) [b(n,y,s)e ™20y ~2a,
0

for n > 0. We put ¥(n,!) = (2an)"~1I'( — 1)~1. Then we have
vinl)

c(n,s) = c(zs_*_l_k)Z;Tk(m)o'l-wk-zs("—m)
- ms#n
x/an-—m()’, s)ys+l—28—21t(m+n)ydy
0

+ (transformed constant terms).

Combining Lemma 2 and Proposition 2, we obtain the equation in the Theorem 1. []
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