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1 Introduction

Let V and V* be a real reflexive Banach space and its dual space, respectively, and let
H be a Hilbert space whose dual space H* is identified with itself such that

VeeH=H <V (1)

with continuous and densely defined canonical injections. Let ¢ and v be proper lower
semicontinuous functions from V into (—o0,00], and let Oy, dvy : V — V* be subdif-
ferential operators of ¢, 1, respectively, defined by

Byo(u) = {€ € V" p(v) — p(u) = (€,v—u) for all v € D(p)}

with the domain D(8yv¢) := {u € D(p); Ovp(u) # 0}, where D(p) := {u € V; p(u) <
o}, and analogously for dy¥(u). Moreover, let B be a (possibly) non-monotone and
multi-valued operator from V into V*.

This note provides a brief survey of recent results of the author on the dynamical sys-
tem generated by the Cauchy problem (CP) for the following doubly nonlinear evolution
equation:

vy (t) + dve(u(t)) + B(u(t)) > f in V", 0<t<oo, (2)

where f € V* and uy € D(p) are given data. We first treat the existence of global
(in time) strong solutions of (CP) by imposing appropriate conditions such as the co-
erciveness and the boundedness of Oy, the precompactness of sub-level sets of ¢, and
the boundedness and the compactness of B. The main purpose of this note is to dis-
cuss the large-time behavior of global solutions for (CP), in particular, the existence of
global attractors; however, since the scope of our abstract framework involves the case
where (CP) admits multiple solutions, the usual semigroup approach to dynamical sys-
tems could be no longer valid. Therefore we exploit the notion of generalized semiflow
proposed by J.M. Ball [5] to treat global attractors for (CP). The theory of generalized
semiflow was recently started to be applied to various nonlinear PDEs of parabolic type
(see [8], [9], [10]) and of hyperbolic type (see [4], [6]) without the uniqueness of solutions.

Furthermore, we apply the preceding abstract theory to a couple of nonlinear PDEs of
parabolic type. Gurtin [7] proposed a generalized Allen-Cahn equation, which describes
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the evolution of an order parameter v = u(z, t), of the form
p(u, Vu, u)u, = div [8‘,1,@(11, Vu)] - Brz/s(u, Vu) + f, 3)

where p = p(r,p,s) > 0 is a constitutive modulus, 1 = 9(r, p) denotes a free energy
density and f is an external microforce. A usual Allen-Cahn equation corresponds to
the case that

p=1 and ¢P(rp)= -;—Ip|2 + W(r)

with a double-well potential W(r) = (r? — 1)2. In Section 5, we treat a generalized
Allen-Cahn equation of degenerate type as well as a perturbation problem of a semilinear
generalized Allen-Cahn equation.

2 Generalized semiflow

The notion of generalized semiflow is first introduced by J.M. Ball [5]. He also extend
the notion of global attractor to generalized semiflows and provide a criterion of the
existence of global attractors. We first recall the definition of generalized semiflow.

Definition 2.1. Let X be a metric space with metric dx = dx(-,-). A family G of
maps ¢ : [0,+00) — X is said to be a generalized semiflow in X, if the following four
conditions are all satisfied:

(H1) (Existence) For each z € X there exists ¢ € G such that p(0) = z;

(H2) (Translation invariance) If ¢ € G and 7 > 0, then the map ¢ also belongs to G,
where ¢ (t) 1= p(t + 1) for t € [0, +00);

(H3) (Concatenation invariance) If ¢1, 2 € G and p2(0) = p1(7) for some T > 0, then
the map v, the concatenation of @1 and ¢, at 7, defined by

—— 1(t) f te [O’ ]v
»(t) = { :iz(t -7) Zf t e (T,:-OO)

also belongs to G;

(H4) (Upper semicontinuity) If v, € G, z € X and ¢,(0) — z in X, then there exist a
subsequence {n'} of {n} and ¢ € G such that ¢ (t) — p(t) for each t € [0, +00).

Let G be a generalized semiflow in a metric space X. We define a mapping 7T'(¢) :
2X — 2X by

T@)E :={p(t); ¢€G and ¢(0)e E} for EC X (4)
for each ¢ > 0. One can check from (H1)-(H3) that {T'(t)}:>o satisfies the semigroup
properties, that is, (i) 7°(0) is the identity mapping in 2%; (ii) T(¢)T(s) = T(t + s) for

all t,s > 0.
Moreover, global attractors for generalized semiflows are defined as follows.
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Definition 2.2. Let G be a generalized semiflow in a metric space X and let {T(t)}e0
be the family of mappings defined as in (4). A set A C X is said to be a global attractor
for the generalized semiflow G if the following (i)—(iii) hold.

(i) A is compact in X;
(ii) A is invariant under {T(t)}+>0, i.e., T(t)A = A, for allt > 0;
(i) A attracts any bounded subsets B of X by {T(t)}>0, i.€.,
tginwdist(T(t)B,.A) =0,

where dist(-, ) is defined by

dist(A, B) := sup inf dx(a,b) for A,B C X.
acA bEB

As in the standard theory of dynamical systems for (single-valued) semigroup oper-
ators, we can also introduce the notion of w-limit set.

Definition 2.3. Let G be a generalized semiflow in a metric space X. For E C X, the
w-limit set of E for G is given as follows.
w(E) = {:1: € X: there exist sequences {on} in G and {t,} on [0,+00)
such that ¢, (0) is bounded and belongs to E
for alln € N, t, — +o00 and p,(t,) — x}

In order to prove the existence of global attractors for generalized semiflows, we
employ the following theorem due to J.M. Ball [5].

Theorem 2.4 (J.M. Ball [5]). A generalized semiflow G in a metric space X has a global
attractor A if and only if the following two conditions are satisfied.

(i) G is point dissipative, that is, one can choose a bounded set B in X such that for
all ¢ € G there exists T = 7(p) > 0 satisfying p(t) € B for allt > 7.

(ii) G is asymptotically compact, that is, for any sequences {pn} in G and {t,.} on
[0, +00), if {¢n(0)} is bounded in X and t, — 400, then {pn(ts)} is precompact
in X.

Moreover, A is a unique global attractor for G and given by
A = U {w(B); B is a bounded set in X} = w(X).

Furthermore, A is the mazximal compact invariant subset of X under the family of map-
pings {T(t)}ez0-

The following proposition gives a sufficient condition for the asymptotic compactness
of generalized semiflows.
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Proposition 2.5 (J.M. Ball [5]). Let G be a generalized semiflow in a metric space X.
If G satisfies the following conditions:

(i) G is eventually bounded, that is, for any bounded set D C X, there exists T =
7(D) > 0 such that
U T(t)D is bounded in X.

t>T

(i) G is compact, that is, for any sequence {u,} in G, if {u,(0)} is bounded in X, then
there exists a subsequence {n'} of {n} such that {un(t)} is convergent in X for
each t > 0,

then G is asymptotically compact.

3 Construction of a generalized semiflow

Let us first state our basic assumptions: let p € (1,00), T > 0 be fixed.
(Al) There exist positive constants C; (i = 1,2,3,4) such that
Cilulf, < 9(u) + Cy for all u € D(3),
Y. < Cstb(u) + Cy for all [u,n] € Sy,

(A2) There exist a reflexive Banach space X, and a non-decreasing function #; on [0, co)
such that Xj is compactly embedded in V' and

lulxo < &alula +[p(w)]+) for all u € D(Bvy),
where [s] := max{s,0} > 0 for s € R.

(A3) D(8vy) C D(B). For each £ > 0 there exists a constant ¢, > 0 such that
19I5, < el€]. + ce {le(w)| + |uff, +1}  with ¢ := min{2,p}

for all u € D(Ovy), g € B(u) and £ € Svp(u).

(A4) Let S € (0,T] and let (u,) and (&) be sequences in C([0, S]; V) and L°(0, S; V*)
with o := min{2,p'}, respectively, such that u, — u strongly in C([0, S]; V),
[un(t),£.(t)] € Bvyp for ae. t € (0,5), and

S » S
9 folun(t)] + | e+ [ iea(ols-at

is bounded for all n € N,

and let (g,) be a sequence in L?'(0,S;V*) such that g,(t) € B(un(t)) for a.e. t €
(0,S) and g, — g weakly in L'(0, S; V*). Then (g,) is precompact in L (0, S; V*)
and g(t) € B(u(t)) for a.e. t € (0,9).
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(A5) Let S € (0,T) and u € C([0, S]; V)NW'P(0, S; ) be such that sup,epg g [0 (u(t))| <
oo and suppose that there exists & € L7 (0, S; V*) such that £(t) € Svp(u(t)) for
a.e. t € (0,5). Then there exists a V*-valued strongly measurable function g such
that g(t) € B(u(t)) for a.e. t € (0,5). Moreover, the set B(u) is convex for all
u € D(B).

Remark 3.1. In case B is single-valued, (A4) and (A5) are satisfied under the following
simple condition:

(A4)" The map u — B(u(-)) is continuous from C([0,T}); V) into L7 (0,T; V™).

The following theorem is concerned with the existence of global (in time) strong
solutions.

Theorem 3.2 (Global existence, [1]). Let p € (1,00) and T > 0 be fized. Suppose that
(A1)-(A5) are all satisfied. Then, for all f € V* and uo € D(p), there exists at least
one strong solution u € W1?(0,T;V) on [0.T).

Remarks and an outline of a proof. To prove this theorem, we are facing the
following hurdles on our way to the goal.

e Defect of useful properties for maximal monotone operators in V' x V*: The Yosida
approximations and resolvents of maximal monotone operators are Lipschitz con-
tinuous in Hilbert space settings. However, they are not so in the V-V* setting.

o Strong nonlinearity arising from the nonlinear operator dy: It prevents us from
establishing energy estimates. For example, it could be somewhat difficult to ex-
tract valuable informations from the multiplication of (CP) and u(t).

e Non-uniqueness of solutions even for unperturbed problems: Let us define the
solution operator S : g — u for

(CP), Ov(/(t) +Bve(u(®) +g(t) 3 in V", 0<t<T,

and find a fixed point g, of F : g — B(u(')), i.e., g. € B(u.(-)) with u, := S(g.).
Then

O (uu(t)) + Fvp(ua(t)) + g.(t) > f and g.(t) € B(u.(t)).
Here, S may be multi-valued, since solutions for (CP) 4 are not unique. However,
usual fixed point theorems require the convexity of F(g).

To cope with such difficulties, in [1] this theorem is proved as follows:

Phase 1. Let us introduce approximate problems for (CP) given by

o { i?égt):iff’ $(w (1) + O @au(t)) + B(Hu(®) 3 f in V",

where ¢ is an extension of ¢ onto H, J) and 8y @, denote the resolvent and the Yosida
approximation of 8@ respectively. Solutions of (CP), will be constructed in Phase 2
below.
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Phase 2, Step 1. To prove the existence of solutions for the approximation problems
described above, we first prove the existence and uniqueness of solutions for unperturbed
problems (i.e., g is given):

M () + Oy (' (2) + On@alu(t) +g(t) > f in V™,
CPhrs 1 u(0) = w.

Here we note that the existence and uniqueness of solutions for (CP) »,g follows immedi-
ately in a Hilbert space setting, i.e., V = V* = [, since (CP) A 18 TEwritten as

w(t) = (M +09) 7 (£ = 9(8) — mpa(u(®)) in H,
U(O) = Up,
and the resolvents and Yosida approximations for maximal monotone operators are Lips-

chitz continuous in H. However, in the case of Banach space settings, we have to prepare
additional arguments.

Phase 2, Step 2. Since the solution of (CP) »g 18 unique, by applying a Kakutani-
Schauder-type fixed point theorem, we can find a fixed point u, of the mapping

.7'-,\ g B(JAU()),
where u is a solution of (CP), ; on [0,7,] with some T, > 0 independent of A. Then u,
solves (CP), , on [0, T.].

Phase 3. Establishing a priori estimates (particularly, from the multiplication of (CP) N
and u)(t)) and deriving the convergences for u,, we can obtain local (in time) solutions
of (CP).

Phase 4. Finally, we globally (in time) extend the local solutions. ]

Now let us construct a generalized semiflow from all global (in time) strong solutions
for (CP). We set X := D(yp) with the distance dx(u,v) := |u — v|v + |p(u) — p(v)| for
u,v € X, and moreover, we define

G = {u € C([0,0); X); u is a strong solution of (2) on [0,00)}.
Then G becomes a generalized semiflow on X. More precisely, we have:

Theorem 3.3 (Formation of generalized semiflow, [2]). Let p € (1,00) be given. Suppose
that (A1)-(A5) are all satisfied for any T > 0. Then, for all f € V*, the set G is a
generalized semiflow on X.

An outline of a proof. From Theorem 3.2, we can obtain (H1) immediately. Moreover,
(H2) and (H3) follow from the definition of strong solutions. In [2], the author proved
(H4) as follows: Let u, € G and uy € X be such that u,(0) — wup in X. As in
Theorem 3.2, we establish energy estimates for u,. Then for every T > 0, we can take
a subsequence (n}) of (n) such that

u,z7 — u  strongly in C([0,T}; V),

[ etz — [ owoa,
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which implies
Un, (t) — u(t) strongly in V for all t > 0 (5)

with some subsequence (n) of (n¥ ). Moreover, u solves (CP) on [0, 00). Hence it remains
to show ¢ (un, (t)) — ¢(u(t)) for all t > 0.
From the definition of dy ¢ and (5),

liminf @(un, (t)) = p(u(t)) for a.e. t > 0. (6)
Nj—00
Here we used the fact that
p() 1= liminf |€a( v € Lhe([0,0))

with a section &,(t) € v p(un(t)) by Fatou’s lemma.
On the other hand, we can verify that

Go(8) = () ~ Ot (1S +1) = © [ {plun(r) + lun(D)E
is non-increasing for all ¢ > 0. By Helly’s lemma (see, e.g., [3]),
Ca(t) = o(t) forallt>0
with some function ¢ : [0,00) — [—00, 0]. Moreover, by (6),

B(t) = lminf G ()

= wl(®) - Ct (11 +1) = C [ {olalr) + lu(D)} dr =: ()

for a.e. t > 0. From the continuity of ¢(-) and the assumption that ¢(u,(0)) — (uo),
we have ¢(t) = ((¢) for all ¢ > 0. Thus

e(tn, (t)) — p(u(t)) forallt>0.

Consequently, un, (t) — u(t) in X for all £ > 0. O

4 Existence of global attractors

The existence of global attractors for the generalized semiflow G is ensured under some
structure condition for 8y and B, which yields a dissipative estimate.

Theorem 4.1 (Existence of global attractors, [2]). Suppose that
(A6) There exist constants o > 0 and Cs > 0 such that
a{p(w) + |ulp} < (€ +g,u) +Cs
for all u € D(Byp), £ € dvp(u) and g € B(u).
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In addition, assume f € V* and (A1)—(A5) for any T > 0. Then the generalized semiflow
G has a global attractor A, and A is a unique mazimal compact invariant subset of X.

An outline of a proof. We first establish a dissipative estimate by using (A6).

Lemma 4.2 ([2]). Under the same assumptions as in Theorem 4.1, there ezist a constant
R > 0 and an increasing function Ty(-) on [0,00) such that

e(u(t)) + lu(®)l}, <R for all uy € X, u € G satisfying u(0) = uo
- and t > To(p(uo) + |uolt)- (7

Proof. For simplicity, we assume that 1(0) = 0 and all operators are single-valued, and

we also denote by C a non-negative constant, which does not depend on the elements of
the corresponding space or set and may vary from line to line. Multiply /(t) to get

Y (1)) + S eul®) = { — Bu®), o/(1)
which together with (A1) and (A3) gives |

SV () + = {p(ul(®) + ()]}

< O (IfF- +1) +C{e(u®) + lu@®)}. (®)
On the other hand, by (Al), (A6) and (CP),

a{p(u®) + OB} < (Bre(u(t) + Bu(t),u(®) +C
(f = B (), u(t))
< O (IfF. +1) + Slu®f + Co@ @), (9)

Il

Then by (8) + £(9) with € > 0 small enough, we have
dt)+Co(t) <C forae t>0
with ¢(t) := @(u(t)) + |u(t)[},. This yields that
#(t) < C(1+e ™) with some 8> 0,

which implies that there exists R > 0 such that ¢(t) < R for all ¢t > Ty with some
constant Ty = To(¢(0)) > 0 depending on ¢(0) = p(uo) + |uol},- O

Hence we can prove that u(t) will eventually enter a ball in X with an estimate from
above for the arrival time and eternally stay there. This lemma further implies that G
is eventually bounded and point dissipative in X.

Moreover, the compactness of G also follows as in the proof of (H4) (see Theorem
3.3). Consequently, the general theory due to J.M.Ball (see Theorem 2.4) ensures the
existence of a unique global attractor for the generalized semifiow X. O
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5 Applications to generalized Allen-Cahn equations

Finally, we briefly discuss the applications of the preceding abstract theory to a couple of
nonlinear PDE problems of parabolic type arising from Gurtin’s generalized Allen-Cahn
equations. Let Q be a bounded domain in RY with C? boundary 9. For given functions
ug, f : @ — R, we first deal with

a(u(z,t)) — Bmu(z,t) + 8:W(z,u(z,t)) 3 f(x), (z,t) € Qx(0,00),
u(z,t) =0, (z,t) € 90 x (0,00), (10)
u(z,t) = uo(x), T €N,

where a(r) = |r|P~%r with p > 2 and A, stands for the so-called m-Laplace operator

given by
Apu(z) = V- (|Vu(@)|"?Vu(r)), 1<m <oo.

Moreover, 8,W stands for the derivative in 7 of a potential W = W(z,r) : @ x R —
(—o00, +o0] given by
W(z,r) = j(r) +/ 9(z,p)dp for z€Q, reR (11)
0

with a lower semicontinuous convex function j : R — (—o00.+00] and a (possibly non-
monotone) Carathéodory function g :  x R — R. Hence 9,W(z,r) = 9j(r) + g(z,r).
Then (10) can be regarded as a special case of (3); more precisely, p and ¢ are given
such that

~ 1
af(s) = p(s)s and Y(r,p) = Elpl”‘ + W(r).
In order to reduce (10) to an abstract Cauchy problem such as (CP), we set V =
LP(Q), H = L*(Q), V* = L”(Q) and define ¢ : V — [0,00], ¥ : V — [0,00) by
3! Jypense it wewirne, s
— Vu(z)|™dz + u(x))dz if vwe W,™(Q), i(u(r) € LYQ),
T Y N R C) (), Gu() € Q)
00 otherwise
and )
ww) =+ / lu(z)Pdz.
P Ja
Then 8y ¢(u) and 8y (u) coincide with —Au + 9j5(u(-)) equipped with the boundary
condition u|sn = 0 and a(u) = |u/P%u in V*. Furthermore, let us set a mapping
B:V —-V*by
B(u) := g(-, u())

with the domain D(B) = {u € V; g(-,u(-)) € V*}. Then (10) is reduced to (CP).
Let us introduce the following assumptions.

(al) g = g(z,r) is a Carathéodory function, i.e., measurable in z and continuous in r.
Moreover, there exist constants ¢ > 2, Cs > 0 and a function a; € L*(2) such that

lg(z, 7)< Csl|rP’ @ + a,(x)

for a.e. z € Q and all r € R.
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(a2) there exist constants o > 1 and C7 > 0 such that

Irl” < C (j(T) + 1) for all r € R.

Our result reads,

Theorem 5.1 ([2]). In addition to (al) and (a2), assume that
2 <p<max{m*,0} and p'(¢g—1) < max{m,p,o},

where m* is the Sobolev critical exponent, i.e., m* ;== Nm/(N — m),. Then, for f €
L (Q) and uo € W3™(Q) satisfying j(uo(-)) € L1(Q), the initial-boundary value problem
(10) admits at least one LP-solution on (0,00). Moreover, the set of solutions for (10)
forms a generalized semiflow G in a phase space X := {v € Wy ™(Q); j(v(-) € L}{()}.
Furthermore, if p < max{m, o}, then G possesses a global attractor in X.

The following generalized problem also falls within our abstract theory.

a(u(z, t)) — Au(z, t) + N(z,u(z, t), Vu(z,t)) 3 f(z), (z,t) € Q x (0,00),
u(z,t) =0, (z,t) € 9Q x (0, 00), (12)
w(z,t) = ug(x), z €Q,

where N = N(z,r,p) is written as follows
N{(z,r,p) = 85(r) + h(z,r,p) for z€Q, reR, peR".

It could be emphasized that this problem may not be written as a (generalized) gradient
system such as (3), since the nonlinear term N depends on the gradient of u. We discuss
the existence of global (in time) solutions and their long-time behavior for (10) and (12).

(a3) h = h(z,r,p) is a Carathéodory function, i.e., measurable in z and continuous in
r and p. There exist constants gi,g2 > 2, C3 > 0 and a function a; € L(2) such
that

Ih(z,r, )P < Cs (Irlp’(ﬂ_l) " |p|p’(qz—1)) + ao(z)

for ae. z € Qand all r € R and p € RY.

Then we have:

Theorem 5.2 ([2]). In addition to (a2) and (a3), assume that
2 <p<max{2*, 0}, p(q1—1) <max{p,o} and p'(g2—1) < 2.

Then, for f € LP () and ug € HL(Q) satisfying j(uo(-)) € L*(N), the initial-boundary
value problem (12) admits at least one LP-solution on (0,00). Moreover, the set of solu-
tions for (12) forms a generalized semiflow G in a phase space X := {v € H}(Q); j(v(*)) €
LY(Q)}. Furthermore, if p =2 or p < o, then G possesses a global attractor in X.
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