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1 Introduction
Let $V$ and $V^{*}$ be a real reflexive Banach space and its dual space, respectively, and let
$H$ be a Hilbert space whose dual space $H^{*}$ is identified with itself such that

$Varrow H\equiv H^{*}arrow V^{*}$ (1)

with continuous and densely defined canonical injections. Let $\varphi$ and $\psi$ be proper lower
semicontinuous functions from $V$ into $(-\infty, \infty]$ , and let $\partial_{V}\varphi,$ $\partial_{V}\psi$ : $Varrow V^{*}$ be subdif-
ferential operators of $\varphi,$

$\psi$ , respectively, defined by

$\partial_{V}\varphi(u):=\{\xi\in V^{*};\varphi(v)-\varphi(u)\geq\langle\xi,$ $v-u\rangle$ for all $v\in D(\varphi)\}$

with the domain $D(\partial_{V}\varphi)$ $:=\{u\in D(\varphi);\partial_{V}\varphi(u)\neq\emptyset\}$ , where $D(\varphi)$ $:=\{u\in V;\varphi(u)<$

$\infty\}$ , and analogously for $\partial_{V}\psi(u)$ . Moreover, let $B$ be a (possibly) non-monotone and
multi-valued operator from $V$ into $V^{*}$ .

This note provides a brief survey of recent results of the author on the dynamical sys-
tem generated by the Cauchy problem (CP) for the following doubly nonlinear evolution
equation:

$\partial_{V}\psi(u’(t))+\partial_{V}\varphi(u(t))+B(u(t))\ni f$ in $V^{*}$ , $0<t<\infty$ , (2)

where $f\in V^{*}$ and $u_{0}\in D(\varphi)$ are given data. We first treat the existence of global
(in time) strong solutions of (CP) by imposing appropriate conditions such as the co-
erciveness and the boundedness of $\partial_{V}\psi$ , the precompactness of sub-level sets of $\varphi$ , and
the boundedness and the compactness of $B$ . The main purpose of this note is to dis-
cuss the large-time behavior of global solutions for (CP), in particular, the existence of
global attractors; however, since the scope of our abstract framework involves the case
where (CP) admits multiple solutions, the usual semigroup approach to dynamical sys-
tems could be no longer valid. Therefore we exploit the notion of generalized semiflow
proposed by J.M. Ball [5] to treat global attractors for (CP). The theory of generalized
semiflow was recently started to be applied to various nonlinear PDEs of parabolic type
(see [8], [9], [10]) and of hyperbolic type (see [4], [6]) without the uniqueness of solutions.

Furthermore, we apply the preceding abstract theory to a couple of nonlinear PDEs of
parabolic type. Gurtin [7] proposed a generalized Allen-Cahn equation, which describes
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the evolution of an order parameter $u=u(x, t)$ , of the form

$\rho(u, \nabla u, u_{t})u_{t}=div[\partial_{p}\hat{\psi}(u, \nabla u)]-\partial_{r}\hat{\psi}(u, \nabla u)+f$, (3)

where $\rho=\rho(r, p, s)\geq 0$ is a constitutive modulus, $\hat{\psi}=\hat{\psi}(r, p)$ denotes a free energy
density and $f$ is an external microforce. A usual Allen-Cahn equation corresponds to
the case that

$\rho\equiv 1$ and $\hat{\psi}(r,p)=\frac{1}{2}|p|^{2}+W(r)$

with a double-well potential $W(r)=(r^{2}-1)^{2}$ . In Section 5, we treat a generalized
Allen-Cahn equation of degenerate type as well as a perturbation problem of a semilinear
generalized Allen-Cahn equation.

2 Generalized semiflow
The notion of generalized semiflow is first introduced by J.M. Ball [5]. He also extend
the notion of global attractor to generalized semiflows and provide a criterion of the
existence of global attractors. We first recall the definition of generalized semiflow.

Definition 2.1. Let $X$ be a metric space with metric $d_{X}=d_{X}(\cdot,$ $\cdot)$ . A family $\mathcal{G}$ of
maps $\varphi$ : $[0, +\infty)arrow X$ is said to be a generalized semiflow in $X$ , if the following four
conditions are all satisfied:
(Hl) (Existence) For each $x\in X$ there exists $\varphi\in \mathcal{G}$ such that $\varphi(0)=x$ ;

(H2) (Translation invariance) If $\varphi\in \mathcal{G}$ and $\tau\geq 0$ , then the map $\varphi^{\tau}$ also belongs to $\mathcal{G}$ ,
where $\varphi^{\tau}(t):=\varphi(t+\tau)$ for $t\in[0, +\infty)$ ;

(H3) (Concatenation invariance) If $\varphi_{1},$
$\varphi_{2}\in \mathcal{G}$ and $\varphi_{2}(0)=\varphi_{1}(\tau)$ for some $\tau\geq 0$ , then

the map $\psi_{f}$ the concatenation of $\varphi_{1}$ and $\varphi_{2}$ at $\tau$ , defined by

$\psi(t):=\{$ $\varphi_{2}(t-\tau)\varphi_{1}(t)$

if $t\in(\tau, +\infty)$

if $t\in[0, \tau]$ ,

also belongs to $\mathcal{G}$ ;

(H4) (Upper semicontinuity) If $\varphi_{n}\in \mathcal{G},$ $x\in X$ and $\varphi_{n}(0)arrow x$ in $X$ , then there exist a
subsequence $\{n’\}$ of $\{n\}$ and $\varphi\in \mathcal{G}$ such that $\varphi_{n’}(t)arrow\varphi(t)$ for each $t\in[0, +\infty)$ .

Let $\mathcal{G}$ be a generalized semiflow in a metric space $X$ . We define a mapping $T(t)$ :
$2^{X}arrow 2^{X}$ by

$T(t)E:=\{\varphi(t);\varphi\in \mathcal{G}$ and $\varphi(0)\in E\}$ for $E\subset X$ (4)

for each $t\geq 0$ . One can check from $(H1)-(H3)$ that $\{T(t)\}_{t\geq 0}$ satisfies the semigroup
properties, that is, (i) $T(O)$ is the identity mapping in $2^{X}$ ; (ii) $T(t)T(s)=T(t+s)$ for
all $t,$ $s\geq 0$ .

Moreover, global attractors for generalized semiflows are defined as follows.
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Definition 2.2. Let $\mathcal{G}$ be a generalized semiflow in a metric space $X$ and let $\{T(t)\}_{t\geq 0}$

be the family of mappings defined as in (4). A set $\mathcal{A}\subset X$ is said to be a global attractor
for the generalized semiflow $\mathcal{G}$ if the following $(i)-(iii)$ hold.

(i) $\mathcal{A}$ is compact in $X$ ;

(ii) $\mathcal{A}$ is invar ant under $\{T(t)\}_{t\geq 0_{f}}$ i. e., $T(t)\mathcal{A}=\mathcal{A}$ , for all $t\geq 0$ ;

(iii) $\mathcal{A}$ attracts any bounded subsets $B$ of $X$ by $\{T(t)\}_{t\geq 0},$ $i.e.$ ,

$\lim_{tarrow+\infty}$ dist $(T(t)B, \mathcal{A})=0$ ,

where dist $(\cdot,$ $\cdot)$ is defined by

dist $(A, B)$ $:= \sup_{a\in A}\inf_{b\in B}d_{X}(a, b)$ for $A,$ $B\subset X$ .

As in the standard theory of dynamical systems for (single-valued) semigroup oper-
ators, we can also introduce the notion of $\omega$-limit set.

Deflnition 2.3. Let $\mathcal{G}$ be a generalized semiflow in a metric space X. For $E\subset X$ , the
w-limit set of $E$ for $\mathcal{G}$ is given as follows.

$\omega(E):=\{x\in X$ ; there exist sequences $\{\varphi_{n}\}$ in $\mathcal{G}$ and $\{t_{n}\}$ on $[0, +\infty)$

such that $\varphi_{n}(0)$ is bounded and belongs to $E$

for all $n\in \mathbb{N}$ , $t_{n}arrow+\infty$ and $\varphi_{n}(t_{n})arrow x\}$ .

In order to prove the existence of global attractors for generalized semiflows, we
employ the following theorem due to J.M. Ball [5].

Theorem 2.4 (J.M. Ball [5]). A generalized semiflow $\mathcal{G}$ in a metric space $X$ has a global
attractor $\mathcal{A}$ if and only if the following two conditions are satisfied.

(i) $\mathcal{G}$ is point dissipative, that is, one can choose a bounded set $B$ in $X$ such that for
all $\varphi\in \mathcal{G}$ there enists $\tau=\tau(\varphi)\geq 0$ satisfying $\varphi(t)\in B$ for all $t\geq\tau$ .

(ii) $\mathcal{G}$ is asymptotically compact, that is, for any sequences $\{\varphi_{n}\}$ in $\mathcal{G}$ and $\{t_{n}\}$ on
$[0, +\infty)$ , if $\{\varphi_{n}(0)\}$ is bounded in $X$ and $t_{n}arrow+\infty$ , then $\{\varphi_{n}(t_{n})\}$ is precompact
in $X$ ,

Moreover, $\mathcal{A}$ is a unique global attractor for $\mathcal{G}$ and given by

$\mathcal{A}=\cup$ {$\omega(B);B$ is a bounded set in $X$ } $=\omega(X)$ .

Furthe$ore,$ $\mathcal{A}$ is the maximal compact invariant subset of $X$ under the family of map-
pings $\{T(t)\}_{t\geq 0}$ .

The following proposition gives a sufficient condition for the asymptotic compactness
of generalized semiflows.
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Proposition 2.5 (J.M. Ball [5]). Let $\mathcal{G}$ be a generalized semiflow in a metric space $X$ .
If $\mathcal{G}$ satisfies the following conditions:

(i) $\mathcal{G}$ is eventually bounded, that is, for any bounded set $D\subset X$ , there exists $\tau=$

$\tau(D)\geq 0$ such that
$\bigcup_{t\geq\tau}T(t)D$

is bounded in $X$ .

(ii) $\mathcal{G}$ is compact, that is, for any sequence $\{u_{n}\}$ in $\mathcal{G}$ , if $\{u_{n}(0)\}$ is bounded in $X$ , then
there exists a subsequence $\{n’\}$ of $\{n\}$ such that $\{u_{n^{l}}(t)\}$ is convergent in $X$ for
each $t>0$ ,

then $\mathcal{G}$ is asymptotically compact.

3 Construction of a generalized semiflow
Let us first state our basic assumptions: let $p\in(1, \infty),$ $T>0$ be fixed.

(Al) There exist positive constants Ci $(i=1,2,3,4)$ such that

$C_{1}|u|_{V}^{p}\leq\psi(u)+C_{2}$ for all $u\in D(\psi)$ ,
$|\eta|_{V}^{P’}$. $\leq C_{3}\psi(u)+C_{4}$ for all $[u, \eta]\in\partial_{V}\psi$ .

(A2) There exist a reflexive Banach space $X_{0}$ and a non-decreasing function $\ell_{1}$ on $[0, \infty)$

such that $X_{0}$ is compactly embedded in $V$ and

$|u|_{X_{0}}\leq\ell_{1}(|u|_{H}+[\varphi(u)]_{+})$ for all $u\in D(\partial_{V}\varphi)$ ,

where $[s]_{+}:= \max\{s, 0\}\geq 0$ for $s\in \mathbb{R}$ .
(A3) $D(\partial_{V}\varphi)\subset D(B)$ . For each $\epsilon>0$ there exists a constant $c_{\epsilon}\geq 0$ such that

$|g|_{V^{k}}^{p’}\leq\epsilon|\xi|_{V^{*}}^{\sigma}+c_{\epsilon}\{|\varphi(u)|+|u|_{V}^{p}+1\}$ with $\sigma$ $:= \min\{2,p’\}$

for all $u\in D(\partial_{V}\varphi),$ $g\in B(u)$ and $\xi\in\partial_{V}\varphi(u)$ .

(A4) Let $S\in(0, T]$ and let $(u_{n})$ and $(\xi_{n})$ be sequences in $C([0, S];V)$ and $L^{\sigma}(O, S;V^{*})$

with $\sigma$ $:= \min\{2,p’\}$ , respectively, such that $u_{n}arrow u$ strongly in $C([0, S];V)$ ,
$[u_{n}(t), \xi_{n}(t)]\in\partial_{V}\varphi$ for a.e. $t\in(O, S)$ , and

$\sup_{t\in[0,S]}|\varphi(u_{n}(t))|+\int_{0}^{S}|u_{n}’(t)|_{H}^{p}dt+\int_{0}^{S}|\xi_{n}(t)|_{V^{*}}^{\sigma}dt$

is bounded for all $n\in \mathbb{N}$ ,

and let $(g_{n})$ be a sequence in $U’(0, S;V^{*})$ such that $g_{n}(t)\in B(u_{n}(t))$ for a.e. $t\in$

$(0, S)$ and $g_{n}arrow g$ weakly in $U’(0, S;V”)$ . Then $(g_{n})$ is precompact in $L^{P’}(0, S;V^{*})$

and $g(t)\in B(u(t))$ for a.e. $t\in(O, S)$ .

59



(A5) Let $S\in(0, T]$ and $u\in C([0, S];V)\cap W^{1,p}(0, S;lI)$ be such that $\sup_{t\in[0,S]}|\varphi(u(t))|<$

$\infty$ and suppose that there exists $\xi\in U^{l}(0, S;V^{*})$ such that $\xi(t)\in\partial_{V}\varphi(u(t))$ for
a.e. $t\in(0, S)$ . Then there exists a $V^{*}$-valued strongly measurable function $g$ such
that $g(t)\in B(u(t))$ for a.e. $t\in(0, S)$ . Moreover, the set $B(u)$ is convex for all
$u\in D(B)$ .

Remark 3.1. In case $B$ is single-valued, (A4) and (A5) are satisfied under the following
simple condition:

(A4)’ The map $u\mapsto B(u(\cdot))$ is continuous from $C([0, T];V)$ into $U’(0, T;V^{*})$ .

The following theorem is concerned with the existence of global (in time) strong
solutions.

Theorem 3.2 (Global existence, [1]). Let $p\in(1, \infty)$ and $T>0$ be fixed. Suppose that
(Al)$-(A5)$ are all satisfied. Then, for all $f\in V^{*}$ and $u_{0}\in D(\varphi)$ , there exists at least
one strong solution $u\in W^{1,p}(0, T;V)$ on $[0.T]$ .

Remarks and an outline of a proof. To prove this theorem, we are facing the
following hurdles on our way to the goal.

1 Defect of useful properties for maximal monotone operators in $V\cross V^{*}$ : The Yosida
approximations and resolvents of maximal monotone operators are Lipschitz con-
tinuous in Hilbert space settings. However, they are not so in the $V- V^{*}$ setting.

$\bullet$ Strong nonlinearity arising from the nonlinear operator $\partial_{V}\psi$ : It prevents us from
establishing energy estimates. For example, it could be somewhat difficult to ex-
tract valuable informations from the multiplication of (CP) and $u(t)$ .. Non-uniqueness of solutions evcn for unperturbed problems: Let us define the
solution operator $S:g\mapsto u$ for

$(CP)_{g}$ $\partial_{V}\psi(u’(t))+\partial_{V}\varphi(u(t))+g(t)\ni f$ in $V^{*}$ , $0<t<T$,

and find a fixed point $g_{*}$ of $\mathcal{F}$ : $g\mapsto B(u(\cdot))$ , i.e., $g_{*}\in B(u_{*}(\cdot))$ with $u_{*};=S(g_{*})$ .
Then

$\partial_{V}\psi(u_{*}’(t))+\partial_{V}\varphi(u_{*}(t))+g_{*}(t)\ni f$ and $g_{*}(t)\in B(u_{*}(t))$ .

Here, $S$ may be multi-valued, since solutions for $($ CP $)_{g}$ are not unique. However,
usual fixed point theorems require the convexity of $\mathcal{F}(g)$ .

To cope with such difficulties, in [1] this theorem is proved as follows:

Phase 1. Let us introduce approximate problems for (CP) given by

$(CP)_{\lambda}$ $\{\begin{array}{l}\lambda u’(t)+\partial_{V}\psi(u’(t))+\partial_{H}\tilde{\varphi}_{\lambda}(u(t))+B(J_{\lambda}u(t))\ni f in V^{*},u(0)=u_{0},\end{array}$

where $\tilde{\varphi}$ is an extension of $\varphi$ onto $H,$ $J_{\lambda}$ and $\partial_{H}\tilde{\varphi}_{\lambda}$ denote the resolvent and the Yosida
approximation of $\partial_{H}\tilde{\varphi}$ respectively. Solutions of $($ CP $)_{\lambda}$ will be constructed in Phase 2
below.

60



Phase 2, Step 1. To prove the existence of solutions for the approximation problems
described above, we first prove the existence and uniqueness of solutions for unperturbed
problems (i.e., $g$ is given):

$(CP)_{\lambda,g}$ $\{\begin{array}{l}\lambda u’(t)+\partial_{V}\psi(u’(t))+\partial_{H}\tilde{\varphi}_{\lambda}(u(t))+g(t)\ni f in V^{*},u(0)=u_{0}.\end{array}$

Here we note that the existence and uniqueness of solutions for $($ CP$)_{\lambda,g}$ follows immedi-
ately in a Hilbert space setting, i.e., $V=V^{*}=H$ , since $($ CP $)_{\lambda,g}$ is rewritten as

$\{\begin{array}{l}u’(t)=(\lambda I+\partial_{H}\psi)^{-1}(f-g(t)-\partial_{H}\varphi_{\lambda}(u(t))) in H,u(0)=u_{0},\end{array}$

and the resolvents and Yosida approximations for maximal monotone operators are Lips-
chitz continuous in $H$ . However, in the case of Banach space settings, we have to prepare
additional arguments.

Phase 2, Step 2. Since the solution of $(CP)_{\lambda,q}$ is unique, by applying a Kakutani-
Schauder-type fixed point theorem, we can find a fixed point $u_{\lambda}$ of the mapping

$\mathcal{F}_{\lambda}:g\mapsto B(J_{\lambda}u(\cdot))$ ,

where $u$ is a solution of $($ CP$)_{\lambda,g}$ on $[0, T_{*}]$ with some $T_{*}>0$ independent of $\lambda$ . Then $u_{\lambda}$

solves $(CP)_{\lambda_{l}g}$ on $[0, T_{*}]$ .
Phase 3. Establishing a priori estimates (particularly, from the multiplication of $($ CP$)_{\lambda}$

and $u_{\lambda}’(t))$ and deriving the convergences for $u_{\lambda}$ , we can obtain local (in time) solutions
of (CP).

Phase 4. Finally, we globally (in time) extend the local solutions, $[$:$]$

Now let us construct a generalized semiflow from all global (in time) strong solutions
for (CP). We set $X$ $:=D(\varphi)$ with the distance $d_{X}(u, v)$ $:=|u-v|_{V}+|\varphi(u)-\varphi(v)|$ for
$u,$ $v\in X$ , and moreover, we define

$\mathcal{G}$ $:=$ {$u\in C([0,$ $\infty);X);u$ is a strong solution of (2) on $[0,$ $\infty)$ }.
Then $\mathcal{G}$ becomes a generalized semiflow on $X$ . More precisely, we have:
Theorem 3.3 (Formation of generalized semiflow, [2]). Let $p\in(1, \infty)$ be given. Suppose
that $(A1)-(A5)$ are all satisfied for any $T>0$ . Then, for all $f\in V^{*}$ , the set $\mathcal{G}$ is a
generalized semiflow on $X$ .
An outline of a proof. From Theorem 3.2, we can obtain (Hl) immediately. Moreover,
(H2) and (H3) follow from the definition of strong solutions. In [2], the author proved
(H4) as follows: Let $u_{n}\in \mathcal{G}$ and $u_{0}\in X$ be such that $u_{n}(0)arrow u_{0}$ in $X$ . As in
Theorem 3.2, we establish energy estimates for $u_{n}$ . Then for every $T>0$ , we can take
a subsequence $(n_{k}^{T})$ of $(n)$ such that

$u_{n_{k}^{T}}arrow u$ strongly in $C([0, T];V)$ .
$\int_{0}^{T}\varphi(u_{n_{k}^{T}}(t))dtarrow\int_{0}^{T}\varphi(u(t))dt$,
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which implies

$u_{n_{k}}(t)arrow u(t)$ strongly in $V$ for all $t\geq 0$ (5)

with some subsequence $(n_{k})$ of $(n_{k}^{T})$ . Moreover, $u$ solves (CP) on $[0, \infty)$ . Hence it remains
to show $\varphi(u_{n_{k}}(t))arrow\varphi(u(t))$ for all $t\geq 0$ .

From the definition of $\partial_{V}\varphi$ and (5),

$\lim_{n_{k}arrow}\inf_{\infty}\varphi(u_{n_{k}}(t))=\varphi(u(t))$ for a.e. $t>0$ . (6)

Here we used the fact that

$p(\cdot)$ $:= \lim_{narrow}\inf_{\infty}|\xi_{n}(\cdot)|v\cdot\in L_{loc}^{1}([0, \infty))$

with a section $\xi_{n}(t)\in\partial_{V}\varphi(u_{n}(t))$ by Fatou’s lemma.
On the other hand, we can verify that

$\zeta_{n}(t):=\varphi(u_{n}(t))-Ct(|f|_{V}^{p’}$ . $+1)-C \int_{0}^{t}\{\varphi(u_{n}(\tau))+|u_{n}(\tau)|_{V}^{p}\}d\tau$

is non-increasing for all $t\geq 0$ . By Helly’s lemma (see, e,g., [3]),

$\zeta_{n}(t)arrow\phi(t)$ for all $t\geq 0$

with some function $\phi$ : $[0,$ $\infty)arrow[-\infty,$ $\infty]$ . Moreover, by (6),

$\phi(t)$ $=$
$\lim_{knarrow}\inf_{\infty}\zeta_{n_{k}}(t)$

$=$ $\varphi(u(t))-Ct(|f|_{V}^{p’}$ . $+1)-C \int_{0}^{t}\{\varphi(u(\tau))+|u(\tau)|_{V}^{p}\}d\tau=:\zeta(t)$

for a.e. $t>0$ . From the continui$ty$ of $\zeta(\cdot)$ and the assumption that $\varphi(u_{n}(0))arrow\varphi(u_{0})$ ,
we have $\phi(t)=\zeta(t)$ for all $t\geq 0$ . Thus

$\varphi(u_{n_{k}}(t))arrow\varphi(u(t))$ for all $t\geq 0$ .

Consequently, $u_{n_{k}}(t)arrow u(t)$ in $X$ for all $t\geq 0$ . $\square$

4 Existence of global attractors

The existence of global attractors for the generalized semiflow $\mathcal{G}$ is ensured under some
structure condition for $\partial_{V}\varphi$ and $B$ , which yields a dissipative estimate.

Theorem 4.1 (Existence of global attractors, [2]). Suppose that

(A6) There exist constants $\alpha>0$ and $C_{5}\geq 0$ such that

$\alpha\{\varphi(u)+|u|_{V}^{p}\}\leq\langle\xi+g,$ $u\}+C_{5}$

for all $u\in D(\partial_{V}\varphi),$ $\xi\in\partial_{V}\varphi(u)$ and $g\in B(u)$ .
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In addition, assume $f\in V^{*}$ and $(A1)-(A5)$ for any $T>0$ . Then the generalized semiflow
$\mathcal{G}$ has a global attractor $\mathcal{A}$ , and $\mathcal{A}$ is a unique maanmal compact invariant subset of $X$ .

An outline of a proof. We first establish a dissipative estimate by using (A6).

Lemma 4.2 ([2]). Under the same assumptions as in Theorem 4.1, there exist a constant
$R\geq 0$ and an increasing function $T_{0}(\cdot)$ on $[0, \infty)$ such that

$\varphi(u(t))+|u(t)|_{V}^{p}\leq R$ for all $u_{0}\in X,$ $u\in \mathcal{G}$ satisfying $u(O)=u_{0}$

and $t\geq T_{0}(\varphi(u_{0})+|u_{0}|_{V}^{p})$ . (7)

Proof. For simplicity, we assume that $\psi(0)=0$ and all operators are single-valued, and
we also denote by $C$ a non-negative constant, which does not depend on the elements of
the corresponding space or set and may vary from line to line. Multiply $u’(t)$ to get

$\psi(u’(t))+\frac{d}{dt}\varphi(u(t))=\langle f-B(u(t)),$ $u’(t)\rangle$ ,

which together with (Al) and (A3) gives

$\frac{1}{2}\psi(u^{l}(t))+\frac{d}{dt}\{\varphi(u(t))+|u(t)|_{V}^{p}\}$

$\leq$ $C(|f|_{V}^{p’}$. $+1)+C\{\varphi(u(t))+|u(t)|_{V}^{p}\}$ . (S)

On the other hand, by (Al), (A6) and (CP),

$\alpha\{\varphi(tz(t))+|u(t)|_{V}^{p}\}$ $\leq$ $\langle\partial_{V}\varphi(u(t))+B(u(t)),$ $u(t)\}+C$
$=$ $\langle f-\partial_{V}\psi(u’(t)),$ $u(t)\}$

$\leq$ $C(|f|_{V^{*}}^{p’}+1)+ \frac{\alpha}{2}|u(t)|_{V}^{p}+C\psi(u’(t))$ . (9)

Then by (8) $+\epsilon(9)$ with $\epsilon>0$ small enough, we have

$\phi’(t)+C\phi(t)\leq C$ for a.e. $t>0$

with $\phi(t):=\varphi(u(t))+|u(t)|_{V}^{p}$ . This yields that

$\phi(t)\leq C(1+e^{-\beta t})$ with some $\beta>0$ ,

which implies that there exists $R>0$ such that $\phi(t)\leq R$ for all $t\geq T_{0}$ with some
constant $T_{0}=T_{0}(\phi(O))>0$ depending on $\phi(0)=\varphi(u_{0})+|u0|_{V}^{p}$ . ロ

Hence we can prove that $u(t)$ will eventually enter a ball in $X$ with an estimate from
above for the arrival time and eternally stay there. This lemma further implies that $\mathcal{G}$

is eventually bounded and point dissipative in $X$ .
Moreover, the compactness of $\mathcal{G}$ also follows as in the proof of (H4) (see Theorem

3.3). Consequently, the general theory due to J.M.Ball (see Theorem 2.4) ensures the
existence of a unique global attractor for the generalized semiflow X. ロ
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5Applications to generalized Allen-Cahn equations
Finally, we briefly discuss the applications of the preceding abstract theory to a couple of
nonlinear PDE problems of parabolic type arising from Gurtin’s generalized Allen-Cahn
equations. Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$ with $C^{2}$ boundary $\partial\Omega$ . For given functions
$u_{0},$ $f$ : $\Omegaarrow \mathbb{R}$ , we first deal with

$\alpha(u_{t}(x, t))-\triangle_{m}u(x, t)+\partial_{r}W(x, u(x, t))\ni f(x)$ , $(x, t)\in\Omega\cross(O, \infty)$ ,

$u(x, t)=0$ , $(x, t)\in\partial\Omega\cross(0, \infty)$ , (10)
$u(x, t)=u_{0}(x)$ , $x\in\Omega$ ,

where $\alpha(r)=|r|^{p-2}r$ with $p\geq 2$ and $\triangle_{m}$ stands for the so-called m-Laplace operator
given by

$\triangle_{m}u(x)=\nabla\cdot(|\nabla u(x)|^{m-2}\nabla u(x))$ , $1<m<\infty$ .

Moreover, $\partial_{r}W$ stands for the derivative in $r$ of a potential $W=W(x, r)$ : $\Omega\cross \mathbb{R}arrow$

$(-\infty, +\infty]$ given by

$W(x, r)$ $;=j(r)+ \int_{0}^{r}g(x, \rho)d\rho$ for $x\in\Omega,$ $r\in \mathbb{R}$ (11)

with a lower semicontinuous convex function $j$ : $\mathbb{R}arrow(-\infty, +\infty]$ and a (possibly non-
monotone) Carath\v{c}odory function $g:\Omega\cross \mathbb{R}arrow \mathbb{R}$ . Hence $\partial_{r}W(\tau, r)=\partial j(r)+g(x, r)$ .
Then (10) can be regarded as a special case of (3); more precisely, $\rho$ and $\psi$ are given
such that

$\alpha(s)=\rho(s)s$ and $\hat{\psi}(r, p)=\frac{1}{m}|p|^{m}+W(r)$ .

In order to reduce (10) to an abstract Cauchy problem such as (CP), we set $V=$

$U(\Omega),$ $H=L^{2}(\Omega),$ $V^{*}=L^{P’}(\Omega)$ and define $\varphi$ : $Varrow[0, \infty],$ $\psi$ : $Varrow[0, \infty)$ by

$\varphi(u):=\{\begin{array}{ll}\frac{1}{m}\int_{\Omega}|\nabla u(x)|^{m}dx+\int_{\Omega}j(u(x))dx if u\in W_{0}^{1,m}(\Omega), j(u(\cdot))\in L^{1}(\Omega),\infty otherwise\end{array}$

and
$\psi(u):=\frac{1}{p}\int_{\Omega}|u(x)|^{p}dx$ .

Then $\partial_{V}\varphi(u)$ and $\partial_{V}\psi(u)$ coincide with $-\triangle_{m}u+\partial j(u(\cdot))$ equipped with the boundary
condition $u|_{\partial\Omega}=0$ and $\alpha(u)=|u|^{p-2}u$ in $V^{*}$ . Furthermore, let us set a mapping
$B:Varrow V^{*}$ by

$B(u):=g(\cdot, u(\cdot))$

with the domain $D(B)=\{u\in V;g(\cdot, u(\cdot))\in V^{*}\}$ . Then (10) is reduced to (CP).
Let us introduce the following assumptions.

(al) $g=g(x, r)$ is a Carath\’eodory function, i.e., measurable in $x$ and continuous in $r$ .
Moreover, there exist constants $q\geq 2,$ $C_{6}\geq 0$ and a function $a_{1}\in L^{1}(\Omega)$ such that

$|g(x, r)|^{p’}\leq C_{6}|r|^{p’(q-1)}+a_{1}(x)$

for a.e. $x\in\Omega$ and all $r\in \mathbb{R}$ .
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(a2) there exist constants $\sigma>1$ and $C_{7}\geq 0$ such that

$|r|^{\sigma}\leq C_{7}(j(r)+1)$ for all $r\in \mathbb{R}$ .

Our result reads,

Theorem 5.1 ([2]). In addition to (al) and (a2), assume that

$2 \leq p<\max\{m^{*}, \sigma\}$ and $p’(q-1)< \max\{m,p, \sigma\}$ ,

where $m^{*}$ is the Sobolev critical exponent, i. e., $m^{*}:=Nm/(N-m)_{+}$ . Then, for $f\in$

$L^{p}$
‘

$(\Omega)$ and $u_{0}\in W_{0}^{1,m}(\Omega)$ satisfying $j(u_{0}(\cdot))\in L^{1}(\Omega)$ , the initial-boundary value problem
(10) admits at least one $L^{p}$ -solution on $(0, \infty)$ . Moreover, the set of solutions for (10)
forms a generalized semiflow $\mathcal{G}$ in a phase space $X$ $:=\{v\in W_{0}^{1,m}(\Omega);j(v(\cdot))\in L^{1}(\Omega)\}$ .
$F1\iota rthermore$ , if $p \leq\max\{m, \sigma\}$ , then $\mathcal{G}$ possesses a global attractor in $X$ .

The following generalized problem also falls within our abstract theory.

$\alpha(u_{t}(x, t))-\triangle u(x, t)+N(x, u(x, t), \nabla u(x, t))\ni f(x)$ , $(x, t)\in\Omega\cross(O, \infty)$ ,
$u(x, t)=0$ , $(’\gamma;, t)\in\partial\Omega\cross(O, \infty)$ , (12)
$u(x, t)=u_{0}(x)$ , $x\in\Omega$ ,

where $N=N(x, r, p)$ is written as follows

$N(x,r, p)=\partial j(r)+h(x, r, p)$ for $x\in\Omega,$ $r\in \mathbb{R},$ $p\in \mathbb{R}^{N}$ .

It could be emphasized that this problem may not be written as a (generalized) gradient
system such as (3), since the nonlinear term $N$ depends on the gradient of $u$ . We discuss
the existence of global (in time) solutions and their long-time behavior for (10) and (12).

(a3) $h=h(x, r, p)$ is a Carath\’eodory function, i.e., measurable in $x$ and continuous in
$r$ and $p$ . There exist constants $q_{1},$ $q_{2}\geq 2,$ $C_{3}\geq 0$ and a function $a_{2}\in L^{1}(\Omega)$ such
that

$|h(x, r, p)|^{\rho’}\leq C_{3}(|r|^{p’(q_{1}-1)}+|p|^{p’(q_{2}-1)})+a_{2}(x)$

for a.e. $x\in\Omega$ and all $r\in \mathbb{R}$ and $p\in \mathbb{R}^{N}$ .

Then we have:

Theorem 5.2 ([2]). In addition to (a2) and (a3), assume that

$2 \leq p<\max\{2^{*}, \sigma\}$ , $p’(q_{1}-1)< \max\{p, \sigma\}$ and $p’(q_{2}-1)<2$ .

Then, for $f\in L^{P’}(\Omega)$ and $u_{0}\in H_{0}^{1}(\Omega)$ satisfying $j(u_{0}(\cdot))\in L^{1}(\Omega)$ , the initial-boundary
value problem (12) admits at least one $L^{p}$ -solution on $(0, \infty)$ . Moreover, the set of solu-
tions for (12) forms a generalized semiflow $\mathcal{G}$ in a phase space $X$ $;=\{v\in H_{0}^{1}(\Omega);j(v(\cdot))\in$

$L^{1}(\Omega)\}$ . thrthermore, if $p=2$ or $p\leq\sigma$ , then $\mathcal{G}$ possesses a global attractor in $X$ .
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