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1 Introduction

This article is based on a joint paper [12] with Eiji Yanagida (Tohoku Uni-
versity).
We consider singular solutions of the semilinear parabolic equation

u = Au+uP, ze€RY, (1.1)
where p > 1 is a parameter. It is known that for
N
N >3, > PDgg 1= ——,

(1.1) has an explicit singular steady state poo(z) € C®(RY \ {0}) with a
singular point 0 € R¥ that is explicitly expressed as

2
bool) = Llz| ™, m=-—, L =m(N-m-=2)
Since this singular steady state is radially symmetric with respect to 0, we
may write oo as a function of 7 = |z|. Then Y, = Yoo(r) satisfies (1.1) in
the distribution sense, and

N-1
r
Clearly, the spatial singularity of u = ¢ persists for all £ > 0, but the
singular point does not move in time.
In [11], we studied the existence of a solution of (1.1) whose spatial sin-

gularity moves in time. More precisely, we define a solution with a moving
singularity as follows.

(Poo)rr + (Poo)r + (Poo)? =0, r = |z| > 0. (1.2)

Definition 1.

(a) The function u(z,t) is said to be a solution of (1.1) with a moving singu-

larity £(t) € RY for t € (0,T'), where 0 < T < o0, if the following conditions
hold:
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(i) u, uP € C([0,T); L} (R™)) satisfy (1.1) in the distribution sense.

(ii) u(z,t) is defined on {(z,t) € RN*! : z € RN \ {¢(¢)}, t € (0,T)}, and
is twice continuously differentiable with respect to z and continuously
differentiable with respect to .

(iii) u(z,t) — oo as z — £(¢) for every t € [0,T).

(b) If the conditions (i)-(iii) hold for T = oo, we call the function u(z,t) a
time-global solution of (1.1) with a moving singularity £(t).

Concerning the existence of a solution with singularities, it is known that

the exponent
__ N+2yN-1
BPEN i N T

plays a important role. It was shown by Véron [14] that p, is related to
the linearized stability of the singular steady state, while it was shown by
Chen-Lin [2] that p, is crucial for the existence of positive solutions with a,
prescribed singular set of the Dirichlet problem

N > 2,

Au+u? =0 in Q,
u=0 on O,

where (2 is a bounded domain in RY with a smooth boundary 8. In fact,
in [2], they proved that if N > 3 and p,, < p < p., then for any closed set
K C (), there exists a positive solution with K as a singular set. We note
that p. is larger than p,, and is smaller than the Sobolev critical exponent
ps = (N +2)/(N - 2).

In [11], for p,y < p < p., we established the time-local existence, unique-
ness and comparison principle for a solution with a moving singularity of the
Cauchy problem (1.1) with the initial condition

u(z,0) = uo(z) in RV, (1.3)

where ug € Lj,.(R"Y) is a nonnegative function. Given the motion £(t) of a
singularity and the initial data uo(z) satisfying some conditions, it can be
shown that for some T > 0, there exists a solution of (1.1) and (1.3) with a
moving singularity £(¢t). However, in [11], the global existence of a solution

with a moving singularity is not discussed.
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The aim of this article is to find a time-global solution with a moving
singularity. To this aim, we first consider a forward self-similar solution of
the form

u=(t+1)"YEVp((t+ 1)z — a), (1.4)
where a € RY is a given point. If p(2) satisfies
z+ 1
Ao+ 2a-V1§0+Z—)—_‘—IQ0+<,0p=O, ZERN, (1.5)

in the distribution sense, then u defined by (1.4) may satisfy (1.1) in the
distribution sense. Moreover, if

(A1) @(2) is defined on RY \ {0} and is twice continuously differentiable,
and

(A2) p(z) = o0 as z — 0,

then u defined by (1.4) may become a time-global solution with a singularity
at &(t) = (t + 1)/2a.

Equation (1.5) with a = 0 is called the Haraux-Weissler equation, which
was introduced in [5], and has been extensively studied by many people.
Among others, the Haraux-Wiessler equation is often used to study the large
time behavior of global solutions to the Cauchy problem [7, 8], and to study
solutions of (1.1) with singular initial data [9, 10, 13].

In order to state our result, we define A to be a set of p > p,, such that
the equality

(—m+z’)(N——m+i—2)+pm(N——m—2)=j(N+j—2) (1.6)
holds for some

i€ {1,2,...,/m]} and j€{0,1,2,...,i},

where [m] denotes the largest integer not greater than m. Clearly A is a
finite set.

Concerning the existence of a forward self-similar solution with a moving
singularity, we have the following result.

Theorem 1. Let N > 3. Suppose that p & A and

% ) <1,
Dsg <P < {p f N<10 (1.7)

A2 4 N> 10.
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Then there exists a constant & > 0 such that for any |a| < &, there ezists a
solution of (1.5) satisfying (A1), (A2). Moreover, the function u defined by
(1.4) satisfies (1.1) in the distribution sense.

This theorem shows that we have a time-global solution of (1.1) with a
singularity at £(¢) = (¢t + 1)¥2a. ,

In this article, we study only a time-global solution with a moving sin-
gularity. When a solution with a moving singularity does not exist globally
in time, it is interesting to ask what happens at the maximal existence time.
This question will be a future work.

This article is organized as follows: In Section 2 we carry out formal
analysis for a solution of (1.5) that is obtained by perturbing the singular
steady state. In section 3 we describe the sketch of proof of Theorem 1.

2 Formal expansion at a singular point

In this section, we consider the formal expansion of a solution ¢(z) of (1.5)
satisfying (A1) and (A2). Assuming that the solution resembles the singular
solution ¢ (2) around 0, we may naturally expand ¢(2) as

k-
p(z) = Lr“‘m{l + Z b;(w)rt + v(z)rm}, (2.1)

where .
r=ld, w=2es¥ k=m|,

and the remainder term v satisfies
v(z) = o(|z]™™) as |z| - 0. (2.2)
Substituting (2.1) into (1.5), and using

N -1 1
A - 87'7- + ‘———_—-afr + "-2-ASN—1
T T

and the Taylor expansion, we compare the coefficients of r~™+*-2 for { =

0,1,...,k. Here Agn-1 is the Laplace-Beltrami operator on S¥~1. Then we
obtain
—~m—2 —-m N-—-1 —m —m\p __
T 3 (L'r )rr + - - (LT’ )'r + (LT ) =0,



120

P~ Agn-ib +{(—=m+1)(N —m—1)+pm(N—m—2)}b, = —Tg(a-w), (2.3)

r~™; Agn-1by + {(=m + 2)(N — m) + pm(N — m — 2)}b,
_(m-1)
2
_ p(p; 1)Lp—1b%’
rTmH2 Agnoaby 4+ {(=m 4+ ) (N —m+1i—2) + pm(N —m — 2)}b;
:Gi(w;bl,bg,...,bi..l,a) (i=3,4,...,k),

where for each ¢ = 3.4, ...,k, the function G;(w; b1,bs,...,b;_1,a) on SN™1
is determined by by, by, ...,b;_; and a.

The equality for r~™~2 always holds by (1.2). From other equalities, we
have the above system of inhomogeneous elliptic equations for b; on SV-1,
By these equations, by, by, ... are determined sequentially.

Let us consider the solvability of (2.3), (2.4) and (2.5). It is well known
(see e.g. [1]) that for every j = 0,1,2,..., the eigenvalues of —Agn-1 are
given by

(a-w)by + %{a - Vgn-1b1 — (a- w)(Ven-1b1 -w) } (2.4)

(2.5)

i =3j(N+3—-2), 7=0,12,...,

and the eigenspace E; associated with yu; is given by
E; ={ flgn-1: f is a harmonic homogeneous polynomial of degree j }.

Therefore, unless (1.6) holds, the operators in the left-hand side of (2.3),
(2.4) and (2.5) are invertible. Moreover, we consider G;(w; b1, b, ... ,bi—1,a)
in details and obtain next lemma.

Lemma 1. Ifp & A, then for any a € RY, there exist b1 (w;a), ba(w;a), ...,
bi(w;a) € C°(SN-1) such that (2.3), (2.4) and (2.5) hold. Moreover,

1645 @)llee(sn-y = O as la] =0 (2.6)
foralli=1,...,k.

By this lemma, in order to show the existence of a solution of (1.5), it
suffices to consider v(z). By taking b;(w) as in Lemma 1, (1.5) is satisfied if
v(z) satisfies
z+a m

- Vv +

Av + 5 5

v+ F(v,z2) =0 on RY, (2.7)
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where F'(v, z) is determined by b,, b, ..., b; and a. After tedious computa-
tions, we notice that

-1

F(v,z) =

v+o(r2) as z—0.

Therefore, as a — 0, (2.7) reduces to

-1

Av+— Vv+§v+pl;p v=0 on RY, (2.8)

In order to consider the existence of solutions of (2.7), we first consider
the equation

Av+—— Vv+gv+—l—v=0 on RV (2.9)

with parameters p and . We define A;(!) and A(0) by

N-2-,/(N=-22=

)\1(l) = ) y
Na(l) = N—2+\/(2N—2)2-

By a similar method to [3, Lemma 3.1 (i)], we obtain the following lemma.
Lemma 2. If

(v —2)°

O<l< 1

and  A(l) < p < A1) + 2,

then (2.9) has a radial solution v(|z|; u,1) with the following properties:
(i) lim, oMWy =1 and lim,_o(r**®v), = 0.
(ii) v > 0 and (r**®v), <0 for all T > 0.

(iii) For each ro > 0, there ezists c_(ro) > 0 such that v(r) > c_(rg)r—* for
T>T0.

(iv) There exists ¢y > 0 such that v(r) < cyr™* for all 7 > 0.
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Applying Lemma 2, we see that there exists a positive radial solution
v(|z]) of (2.8) if
(N - 2)?

-1
0<plP™ < 1

(2.10)

and
A <m<A+2, (2.11)

where \; and )\, are defined by

_ N—2—+/(N—-2)?—4pLr~!
= > ,
_ N-2+/(N-2)? - 4pLr-!
= > _

Alt

/\2'.

We note that for N > 3 and ps; < p < Dx, the constants A\; < A are positive
roots of

A2 — (N = 2)A+pLP 1 =0.

Since the gradient term in (2.7) and the higher order term of F' do not
affect the well-posedness for small |a|, we must assume (2.10) and (2.11) for
the solvability of (2.7). The inequalities (2.10) hold if and only if p satisfies
Psg <P <psfor N >3or

N —2v/N -1
pP>DpiL =
N—-4—-2¢/N -1

for N > 10. Here the exponent py; was first introduced by Joseph-Lundgren
[6] and is known to play an important role for the dynamics of solutions of
(1.1). If p > pyr, then Ay < m does not hold so that (2.2) may not be
true. Hence we exclude the case p > pyr. On the other hand, in the case
Dsg < P < Ds, (2.11) holds if and only if (1.7) holds.

Based on the above formal analysis, we will focus on the case (1.7).

3 Sketch of Proof of Theorem 1

In this section, taking into account of the formal analysis in the previous
section, we describe the sketch of proof of Theorem 1.

The sketch of proof of Theorem 1 is divided into three steps. Roughly
speaking, we first construct a suitable supersolution and subsolution of (1.5)
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satisfying (A2). Next, we construct a sequence of approximate solutions and
find a convergent subsequence. Then we show that the limiting function is
indeed a solution of (1.5) satisfying (A1) and (A2), and the function u defined
by (1.4) satisfies (1.1) in the distribution sense.

3.1 Construction of a supersolution and a subsolution

In this subsection, we construct a supersolution and a subsolution of (1.5)
satisfying (A2).
We first note that if p € A, then by Lemma 1,

b1(w;a), ba(w;a), ..., be(w;a) € C*(SN-Y)

are obtained by solving (2.3), (2.4) and (2.5). If p satisfies (1.7), we can take

[ such that
(v —2)
R
and replace k defined in Section 2 with & := [m — A;]. We set
M(a) := w:;l}gﬂl{miaX(lbi(w; a)|, [Vsn-1b;(w; a)]) }.

O0<plPl<ic M) <m < A(l)+2, [m—X] = [m— ()],

By (2.6), we have M(a) — 0 as a — 0. We also take ¢ so small that
0<e <!—pLP

Let Br denote a ball centered at 0 with radius R > 0. First we construct
a supersolution and a subsolution of (1.5) in Bg by using (2.7). By (2.1), we
have
zZ+a

(,0+c,0p=L{A’U+ 5 -Vv+—T-n2—v+F(v,z)}.

zZ4+a m
g Vet y

Azp+

Hence

k
200 = {1+ s + 7}

=1

is a supersolutiori of (1.5) if and only if 7 is a supersolution of (2.7). Similarly,

p(z) = Lr'm{l + ibi(w; a)r* + y_(z)rm}
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is a subsolution of (1.5) if and only if v is a subsolution of (2.7).
We will show that 7 := Cyv(|z|;m,!) is a supersolution of (2.7) on Bpg,
for some Ry = R;(C1,a) > 0. We take R; such that

p

k
[p~ip—m—2 [{1 + Z b;(w; a)r* + Crv(|z];m, l)rm}

—1- Z {rJ Z > A(p, )by (w; @) - - - by, (w5 a)}]

=1 i1+---+4=7, i1,...,5421
_ 1 _ )
<y (pL” 4 —2-60>7‘ 2v(|z|;m,1) in Bg,,

and
R, — o0 as la|]—0, C; —0.

Since it follows from tedious calculation that 7 = Cyv(|z|; m,!) is a superso-
lution of (2.7) in Bg, for small |a,

k
Pin 1= Lr“m{l + Z bi(w; a)r* + Crv(|z|;m, l)}
i=1

is a supersolution of (1.5) on Bpg, for small |a].
We will construct a subsolution as follows. For sufficiently large Cy > 0,
there exist a domain = and a constant Ry = R3(Cs,a) > 0 such that

0 € Q C Bp,, R, —»0 as |a| =0, C; —»
and

k
1+ Zbi(w; a)rf — Cyr™m MW >0 in Q7,
k
1+ Z bi(w;a)rt — Cor™™W =0 on 097,
k P
[P lp—m—2 [{1 + Z b (w; a)rt — Cgrm"\l(”}

—1—2{7"’2 S Ao bwia)

=1 i1+~ +1'l'-.7a7'1a---11'l>1

Z—Cg(pr_ +%eo)r“>‘1(l)"2 in Q7.
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Since it follows from tedious calculation that v = —Cyhr—*1® is a subsolution
of (2.7) on Q= for small |a| and large C,,

Liain

k
Q. = Lr—m{l + Z bi(w; a)r' — Cg'rm“)‘l(’)}
i=1

is a subsolution of (1.5) on Q~ for small |a| and large C,.
Next, we construct a supersolution and a subsolution near infinity. By
direct calculation, we see that

zﬁout = Lr™™ + CST—q

is a supersolution of (1.5) on RY \ Bpg, for some R3 = R3(C3,a) > 0. More-
over, we may assume

2(g — M)(g = )Ag)
q—m

1/2
R3—>R,,,:={ } as |a| — 0, C3 — 0.

Clearly ¢ = 0 is a subsolution of (1.5) on R¥.

Finally, we connect these supersolutions and subsolutions in the interme-
diate region. We first assume a = 0. Then, from Lemma 2 (i), (ii), (iv), if
Ci, Cs and C;/Cs5 are sufficiently small, we can take R3 < Ry < R; such
that ,,, < @, for r < R4 and @,, > P, for r > R4. Hence,

P = min{z—p—z’n J zﬁout}

is a supersolution of (1.5) with a = 0.
By the continuity and Lemma 2 (i), for each small |a|, there exists Q%
such that Br, C @t C Bpg, and

Pin < Powr If 2€ QT is near 9NT,
Bin > Poyr  if 2 € QT is near 8Q7.
Then
— ¢z’n if z€ Q+,
T e i 2O

is a supersolution of (1.5) for small |a|. Clearly,

Q. if zeQ7,
(p = —n .
- 0 if z¢& Q"

is a subsolution of (1.5) for small |a|.
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3.2 Construction of approximate solutions

In this subsection, by using the supersolution and subsolution given in the
previous subsection, we construct a series of approximate solutions that is
convergent in an appropriate function space.

Define a sequence of annular domains

Anzz{zERN: %<|z|<n} (n=1,2,...).

For each n, let ¢,(z) be a classical solution of

1
-Vgon+;-_—1gon+<pﬁ=0 in An,

On =@ on OA,.

Then, by the standard elliptic theory [4], the Ascoli-Arzeld theorem and a
diagonal procedure, we obtain a subsequence {cp%n) }n such that

(n)

oy — ¢ uniformly in A; as n — o0

for each j, and the limiting function ¢(z) satisfies

p € CRY\{0}), ¢<¢<Pin RY\ {0}.

3.3 Completion of the proof

In this subsection, we show that the limiting function ¢(z) obtained as above
is indeed a solution of (1.5) satisfying (Al) and (A2), and the function u
defined by (1.4) satisfies (1.1) in the distribution sense.

First, by ¢ < ¢ < P and the Lebesgue theorem, we can show that the
function ¢ satisfies (1.5) in the distribution sense. Next, by ¢ < ¢ < @
and the standard elliptic theory [4], the function ¢ has the desired properties
(A1) and (A2). Therefore, it is shown that the function ¢ is the solution of
(1.5) satisfying (A1) and (A2).

Since ¢(z) satisfies (1.5) in the distribution sense and (Al), it follows
from the definition of u that u satisfies (1.1) in RY x (0,00) \ Up<t<oot ((t +
1)1/2q,t)}. Thus, by ¢ < ¢ < % and simple calculation, we can show that
the function u satisfies (1.1) in the distribution sense.
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