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1 Introduction
This article is based on a joint paper [12] with Eiji Yanagida (Tohoku Uni-
versity).

We consider singular solutions of the semilinear parabolic equation

$u_{t}=\Delta u+u^{p}$ , $x\in \mathbb{R}^{N}$ , (1.1)

where $p>1$ is a parameter. It is known that for

$N\geq 3$ , $p>p_{sg}:= \frac{N}{N-2}$ ,

(1.1) has an explicit singular steady state $\varphi_{\infty}(x)\in C^{\infty}(\mathbb{R}^{N}\backslash \{0\})$ with a
singular point $0\in \mathbb{R}^{N}$ that is explicitly expressed as

$\varphi_{\infty}(x)=L|x|^{-m}$ , $m= \frac{2}{p-1}$ , $L^{p-1}=m(N-m-2)$ .

Since this singular steady state is radially symmetric with respect to $0$ , we
may write $\varphi_{\infty}$ as a function of $r=|x|$ . Then $\varphi_{\infty}=\varphi_{\infty}(r)$ satisfies (1.1) in
the distribution sense, and

$( \varphi_{\infty})_{rr}+\frac{N-1}{r}(\varphi_{\infty})_{r}+(\varphi_{\infty})^{p}=0$ , $r=|x|>0$ . (12)

Clearly, the spatial singularity of $u=\varphi_{\infty}$ persists for all $t>0$ , but the
singular point does not move in time.

In [11], we studied the existence of a solution of (1.1) whose spatial sin-
gularity moves in time. More precisely, we define a solution with a moving
singularity as follows.

Definition 1.
(a) The function $u(x, t)$ is said to be a solution of (1.1) with a moving singu-
larity $\xi(t)\in \mathbb{R}^{N}$ for $t\in(O, T)$ , where $0<T\leq\infty$ , if the following conditions
hold:
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(i) $u,$ $u^{p}\in C([0, T);L_{loc}^{1}(\mathbb{R}^{N}))$ satisfy (1.1) in the distribution sense.
(ii) $u(x, t)$ is defined on $\{(x, t)\in \mathbb{R}^{N+1} : x\in \mathbb{R}^{N}\backslash \{\xi(t)\}, t\in(0, T)\}$ , and

is twice continuously differentiable with respect to $x$ and continuously
differentiable with respect to $t$ .

(iii) $u(x, t)arrow\infty$ as $xarrow\xi(t)$ for every $t\in[0, T)$ .

(b) If the conditions $(i)-(iii)$ hold for $T=\infty$ , we call the function $u(x, t)$ a
time-global solution of (1.1) with a moving singularity $\xi(t)$ .

Concerning the existence of a solution with singularities, it is known that
the exponent

$p_{*}:= \frac{N+2\sqrt{N-1}}{N-4+2\sqrt{N-1}}$ , $N>2$ ,

plays a important role. It was shown by V\’eron [14] that $p_{*}$ is related to
the linearized stability of the singular steady state, while it was shown by
Chen-Lin [2] that $p_{*}$ is crucial for the existence of positive solutions with a
prescribed singular set of the Dirichlet problem

$\{$

$\triangle u+u^{p}=0$
$onin$ $\partial\Omega\Omega,$

,$u=0$

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with a smooth boundary $\partial\Omega$ . In fact,
in [2], they proved that if $N\geq 3$ and $p_{sg}<p<p_{*}$ , then for any closed set
$K\subset\Omega$ , there exists a positive solution with $K$ as a singular set. We note
that $p_{*}$ is larger than $p_{sg}$ and is smaller than the Sobolev critical exponent
$p_{S}:=(N+2)/(N-2)$ .

In [11], for $p_{sg}<p<p_{*}$ , we established the time-local existence, unique-
ness and comparison principle for a solution with a moving singularity of the
Cauchy problem (1.1) with the initial condition

$u(x, 0)=u_{0}(x)$ in $\mathbb{R}^{N}$ , (1.3)

where $u_{0}\in L_{loc}^{1}(\mathbb{R}^{N})$ is a nonnegative function. Given the motion $\xi(t)$ of a
singularity and the initial data $u_{0}(x)$ satisfying some conditions, it can be
shown that for some $T>0$ , there exists a solution of (1.1) and (1.3) with a
moving singularity $\xi(t)$ . However, in [11], the global existence of a solution
with a moving singularity is not discussed.
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The aim of this article is to find a time-global solution with a moving
singularity. To this aim, we first consider a forward self-similar solution of
the form

$u=(t+1)^{-1/(p-1)}\varphi((t+1)^{-1/2}x-a)$ , (1.4)

where $a\in \mathbb{R}^{N}$ is a given point. If $\varphi(z)$ satisfies

$\triangle_{z}\varphi+\frac{z+a}{2}\cdot\nabla_{z}\varphi+\frac{1}{p-1}\varphi+\varphi^{p}=0$ , $z\in \mathbb{R}^{N}$ , (1.5)

in the distribution sense, then $u$ defined by (1.4) may satisfy (1.1) in the

distribution sense. Moreover, if

(Al) $\varphi(z)$ is defined on $\mathbb{R}^{N}\backslash \{0\}$ and is twice continuously differentiable,

and

(A2) $\varphi(z)arrow\infty$ as $zarrow 0$ ,

then $u$ defined by (1.4) may become a time-global solution with a singularity
at $\xi(t)=(t+1)^{1/2}a$ .

Equation (1.5) with $a=0$ is called the Haraux-Weissler equation, which
was introduced in [5], and has been extensively studied by many people.
Among others, the Haraux-Wiessler equation is often used to study the large
time behavior of global solutions to the Cauchy problem [7, 8], and to study
solutions of (1.1) with singular initial data [9, 10, 13].

In order to state our result, we define $\Lambda$ to be a set of $p>p_{sg}$ such that
the equality

$(-m+i)(N-m+i-2)+pm(N-m-2)=j(N+j-2)$ (1.6)

holds for some
$i\in\{1,2, \ldots, [m]\}$ and $j\in\{0,1,2, \ldots, i\}$ ,

where $[m]$ denotes the largest integer not greater than $m$ . Clearly $\Lambda$ is a
finite set.

Concerning the existence of a forward self-similar solution with a moving

singularity, we have the following result.

Theorem 1. Let $N\geq 3$ . Suppose that $p\not\in\Lambda$ and

$p_{sg}<p<\{\begin{array}{ll}p_{*} if N\leq 10,\frac{N+2}{N-1} if N>10.\end{array}$ (1.7)
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Then there exists a constant $\delta>0$ such that for any $|a|<\delta$ , there exists a
solution of (1.5) satisfying (Al), (A2). Moreover, the function $u$ defined by
(1.4) satisfies (1.1) in the distribution sense.

This theorem shows that we have a time-global solution of (1.1) with a
singularity at $\xi(t)=(t+1)^{1/2}a$ .

In this article, we study only a time-global solution with a moving sin-
gularity. When a solution with a moving singularity does not exist globally
in time, it is interesting to ask what happens at the maximal existence time.
This question will be a future work.

This article is organized as follows: In Section 2 we carry out formal
analysis for a solution of (1.5) that is obtained by perturbing the singular
steady state. In section 3 we describe the sketch of proof of Theorem 1.

2 Formal expansion at a singular point
In this section, we consider the formal expansion of a solution $\varphi(z)$ of (1.5)
satisfying (Al) and (A2). Assuming that the solution resembles the singular
solution $\varphi_{\infty}(z)$ around $0$ , we may naturally expand $\varphi(z)$ as

$\varphi(z)=Lr^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega)r^{i}+v(z)r^{m}\}$ , (2.1)

where
$r=|z|$ , $\omega=\frac{z}{r}\in S^{N-1}$ , $k=[m]$ ,

and the remainder term $v$ satisfies

$v(z)=o(|z|^{-m})$ a$s$ $|z|arrow 0$ . (2.2)

Substituting (2.1) into (1.5), and using

$\Delta=\partial_{rr}+\frac{N-1}{r}\partial_{r}+\frac{1}{r^{2}}\Delta_{S^{N-1}}$

and the Taylor expansion, we compare the coefficients of $r^{-m+i-2}$ for $i=$
$0,1,$

$\ldots,$
$k$ . Here $\triangle_{S^{N-1}}$ is the Laplace-Beltrami operator on $S^{N-1}$ . Then we

obtain
$r^{-m-2}$ ; $(Lr^{-m})_{rr}+ \frac{N-1}{r}(Lr^{-m})_{r}+(Lr^{-m})^{p}=0$ ,
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$r^{-m-1}$ ; $\triangle_{S^{N-1}}b_{1}+\{(-m+1)(N-m-1)+pm(N-m-2)\}b_{1}=\frac{m}{2}(a\cdot\omega),$ $(2.3)$

$r^{-m}$ ; $\triangle_{S^{N-1}}b_{2}+\{(-m+2)(N-m)+pm(N-m-2)\}b_{2}$

$= \frac{(m-1)}{2}(a\cdot\omega)b_{1}+\frac{1}{2}\{a\cdot\nabla_{S^{N-1}}b_{1}-(a\cdot\omega)(\nabla_{S^{N-1}}b_{1}\cdot\omega)\}(2.4)$

$- \frac{p(p-1)}{2}L^{p-1}b_{1}^{2}$ ,

$r^{-m+i-2};\Delta_{S^{N-1}}b_{i}+\{(-m+i)(N-m+i-2)+pm(N-m-2)\}b_{i}$
(2.5)

$=G_{i}(\omega;b_{1}, b_{2}, \ldots, b_{i-1}, a)$ $(i=3,4, \ldots, k)$ ,

where for each $i=3.4,$ $\ldots,$
$k$ , the function $G_{i}(\omega;b_{1}, b_{2}, \ldots , b_{i-1}, a)$ on $S^{N-1}$

is determined by $b_{1},$ $b_{2},$
$\ldots,$

$b_{i-1}$ and $a$ .
The equality for $r^{-m-2}$ always holds by (1.2). From other equalities, we

have the above system of inhomogeneous elliptic equations for $b_{i}$ on $S^{N-1}$ .
By these equations, $b_{1},$ $b_{2},$

$\ldots$ are determined sequentially.
Let us consider the solvability of (2.3), (2.4) and (2.5). It is well known

(see e.g. [1]) that for every $j=0,1,2,$ $\ldots$ , the eigenvalues of $-\Delta_{S^{N-1}}$ are
given by

$\mu_{j}=j(N+j-2)$ , $j=0,1,2,$ $\ldots$ ,

and the eigenspace $E_{j}$ associated with $\mu_{j}$ is given by

$E_{j}=$ { $f|_{S^{N-1}}$ : $f$ is a harmonic homogeneous polynomial of degree $j$ }.

Therefore, unless (1.6) holds, the operators in the left-hand side of (2.3),
(2.4) and (2.5) are invertible. Moreover, we consider $G_{i}(\omega;b_{1}, b_{2}, \ldots, b_{i-1}, a)$

in details and obtain next lemma.

Lemma 1. If $p\not\in\Lambda$ , then for any $a\in \mathbb{R}^{N}$ , there exist $b_{1}(\omega;a),$ $b_{2}(\omega;a),$
$\ldots 2$

$b_{k}(\omega;a)\in C^{\infty}(S^{N-1})$ such that (2.3), (2.4) and (2.5) hold. Moreover,

$\Vert b_{i}(\cdot;a)\Vert_{C^{\infty}(S^{N-1})}arrow 0$ as $|a|arrow 0$ (2.6)

for all $i=1,$ $\ldots,$
$k$ .

By this lemma, in order to show the existence of a solution of (1.5), it
suffices to consider $v(z)$ . By taking $b_{i}(\omega)$ as in Lemma 1, (1.5) is satisfied if
$v(z)$ satisfies

$\Delta v+\frac{z+a}{2}\cdot\nabla v+\frac{m}{2}v+F(v, z)=0$ on $\mathbb{R}^{N}$ , (2.7)
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where $F(v, z)$ is determined by $b_{1},$ $b_{2},$
$\ldots,$

$b_{k}$ and $a$ . After tedious computa-
tions, we notice that

$F(v, z)= \frac{pL^{p-1}}{r^{2}}v+o(r^{-2})$ as $zarrow 0$ .

Therefore, as $aarrow 0,$ $(2.7)$ reduces to

$\triangle v+\frac{z}{2}\cdot\nabla v+\frac{m}{2}v+\frac{pU^{-1}}{r^{2}}v=0$ on $\mathbb{R}^{N}$ , (2.8)

In order to consider the existence of solutions of (2.7), we first consider
the equation

$\Delta v+\frac{z}{2}\cdot\nabla v+\frac{\mu}{2}v+\frac{l}{r^{2}}v=0$ on $\mathbb{R}^{N}$ (2.9)

with parameters $\mu$ and $l$ . We define $\lambda_{1}(l)$ and $\lambda_{2}(l)$ by

$\lambda_{1}(l):=\frac{N-2-\sqrt{(N-2)^{2}-4l}}{2}$ ,

$\lambda_{2}(l):=\frac{N-2+\sqrt{(N-2)^{2}-4l}}{2}$ .

By a similar method to [3, Lemma 3.1 $(i)$ ], we obtain the following lemma.

Lemma 2. If

$0<l< \frac{(N-2)^{2}}{4}$ and $\lambda_{1}(l)<\mu<\lambda_{2}(l)+2$ ,

then (2.9) has a mdial solution $v(|z|;\mu, l)$ with the following properties:

(i) $\lim_{rarrow 0}r^{\lambda_{1}(l)}v=1$ and $\lim_{rarrow 0}(r^{\lambda_{1}(l)}v)_{r}=0$ .

(ii) $v>0$ and $(r^{\lambda_{1}(l)}v)_{r}<0$ for all $r>0$ .
(iii) For each $r_{0}>0$ , there exists $c_{-}(r_{0})>0$ such that $v(r)\geq c_{-}(r_{0})r^{-\mu}$ for

$r>r_{0}$ .

(iv) There exists $c_{+}>0$ such that $v(r)\leq c_{+}r^{-\mu}$ for all $r>0$ .
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Applying Lemma 2, we see that there exists a positive radial solution
$v(|z|)$ of (2.8) if

$0<pL^{p-1}< \frac{(N-2)^{2}}{4}$ (2.10)

and
$\lambda_{1}<m<\lambda_{2}+2$ , (2.11)

where $\lambda_{1}$ and $\lambda_{2}$ are defined by

$\lambda_{1}:=\frac{N-2-\sqrt{(N-2)^{2}-4pL^{p-1}}}{2}$ ,

$\lambda_{2}:=\frac{N-2+\sqrt{(N-2)^{2}-4pU^{-1}}}{2}$ .

We note that for $N\geq 3$ and $p_{sg}<p<p_{*}$ , the constants $\lambda_{1}<\lambda_{2}$ are positive
roots of

$\lambda^{2}-(N-2)\lambda+pL^{p-1}=0$ .

Since the gradient term in (2.7) and the higher order term of $F$ do not
affect the well-posedness for small $|a|$ , we must assume (2.10) and (2.11) for
the solvability of (2.7). The inequalities (2.10) hold if and only if $p$ satisfies
$p_{sg}<p<p_{*}$ for $N\geq 3$ or

$p>p_{JL}:= \frac{N-2\sqrt{N-1}}{N-4-2\sqrt{N-1}}$

for $N>10$ . Here the exponent $p_{JL}$ was first introduced by Joseph-Lundgren
[6] and is known to play an important role for the dynamics of solutions of
(1.1). If $p>p_{JL}$ , then $\lambda_{1}<m$ does not hold so that (2.2) may not be
true. Hence we exclude the case $p>p_{JL}$ . On the other hand, in the case
$p_{sg}<p<p_{*},$ $(2.11)$ holds if and only if (1.7) holds.

Based on the above formal analysis, we will focus on the case (1.7).

3 Sketch of Proof of Theorem 1

In this section, taking into account of the formal analysis in the previous
section, we describe the sketch of proof of Theorem 1.

The sketch of proof of Theorem 1 is divided into three steps. Roughly
speaking, we first construct a suitable supersolution and subsolution of (1.5)
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satisfying (A2). Next, we construct a sequence of approximate solutions and
find a convergent subsequence. Then we show that the limiting function is
indeed a solution of (1.5) satisfying (Al) and (A2), and the function $u$ defined
by (1.4) satisfies (1.1) in the distribution sense.

3.1 Construction of a supersolution and a subsolution
In this subsection, we construct a supersolution and a subsolution of (1.5)
satisfying (A2).

We first note that if $p\not\in\Lambda$ , then by Lemma 1,

$b_{1}(\omega;a),$ $b_{2}(\omega;a),$
$\ldots,$

$b_{k}(\omega;a)\in C^{2}(S^{N-1})$

are obtained by solving (2.3), (2.4) and (2.5). If $p$ satisfies (1.7), we can take
$l$ such that

$0<pL^{p-1}<l< \frac{(N-2)^{2}}{4}$ , $\lambda_{1}(l)<m<\lambda_{2}(l)+2$, $[m-\lambda_{1}]=[m-\lambda_{1}(l)]$ ,

and replace $k$ defined in Section 2 with $k:=[m-\lambda_{1}]$ . We set

$M(a):= \sup_{\omega\in S^{N-1}}\{\max_{i}(|b_{i}(\omega;a)|, |\nabla_{S^{N-1}}b_{i}(\omega;a)|)\}$ .

By (2.6), we have $M(a)arrow 0$ as $aarrow 0$ . We also take $\epsilon_{0}$ so small that

$0<\epsilon_{0}<l-pL^{p-1}$ .

Let $B_{R}$ denote a ball centered at $0$ with radius $R>0$ . First we construct
a supersolution and a subsolution of (1.5) in $B_{R}$ by using (2.7). By (2.1), we
have

$\triangle_{z}\varphi+\frac{z+a}{2}\cdot\nabla_{z}\varphi+\frac{m}{2}\varphi+\varphi^{p}=L\{\triangle v+\frac{z+a}{2}\cdot\nabla v+\frac{m}{2}v+F(v, z)\}$ .
$|$

Hence

$\overline{\varphi}(z)=Lr^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}+$ Of$(z)r^{m}\}$

is a supersolution of (1.5) if and only if $\overline{v}$ is a supersolution of (2.7). Similarly,

$\underline{\varphi}(z)=Lr^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}+\underline{v}(z)r^{m}\}$
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is a subsolution of (1.5) if and only if $\underline{v}$ is a subsolution of (2.7).
We will show that $\overline{v}$ $:=C_{1}v(|z|;m, l)$ is a supersolution of (2.7) on $B_{R_{1}}$

for some $R_{1}=R_{1}(C_{1}, a)>0$ . We take $R_{1}$ such that

$L^{p-1}r^{-m-2}[ \{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}+Civ(|z|;m, l)r^{m}\}^{p}$

$-1- \sum_{j=1}^{k}\{r^{j}\sum_{l=1}^{j}\sum_{i_{1}+\cdots+i_{l}=j,i_{1},\ldots,i_{l}\geq 1}A(p,j)b_{i_{1}}(\omega;a)\cdots b_{i_{l}}(\omega;a)\}]$

$\leq C_{1}(pL^{p-1}+\frac{1}{2}\epsilon_{0})r^{-2}v(|z|;m, l)$ in $B_{R_{1}}$ ,

and
$R_{1}arrow\infty$ as $|a|arrow 0,$ $C_{1}arrow 0$ .

Since it follows from tedious calculation that $\overline{v}=C_{1}v(|z|;m, l)$ is a superso-
lution of (2.7) in $B_{R_{1}}$ for small $|a|$ ,

$\overline{\varphi}_{in}:=Lr^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}+C_{1}v(|z|;m, l)\}$

is a supersolution of (1.5) on $B_{R_{1}}$ for small $|a|$ .
We will construct a subsolution as follows. For sufficiently large $C_{2}>0$ ,

there exist a domain $\Omega^{-}$ and a constant $R_{2}=R_{2}(C_{2}, a)>0$ such that

$0\in\Omega^{-}\subset B_{R_{2}}$ , $R_{2}arrow 0$ as $|a|arrow 0,$ $C_{2}arrow\infty$

and

$1+ \sum_{--1}^{k}b_{i}(\omega;a)r^{i}-C_{2}r^{m-\lambda_{1}(l)}\geq 0$ in $\Omega^{-}$ ,

$1+ \sum_{i=1}^{k}b_{i}(\omega;a)r^{i}-C_{2}r^{m-\lambda_{1}(l)}=0$ on $\partial\Omega^{-}$ ,

$L^{p-1}r^{-m-2}[ \{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}-C_{2}r^{m-\lambda_{1}(l)}\}^{p}$

$-1- \sum_{j=1}^{k}\{r^{j}\sum_{l=1}^{j}\sum_{i_{1}+\cdots+i_{l}=j,i_{1},\ldots,i_{l}\geq 1}A(p,j)b_{i_{1}}(\omega;a)\cdots b_{i_{l}}(\omega;a)\}]$

$\geq-C_{2}(pL^{p-1}+\frac{1}{2}\epsilon_{0})r^{-\lambda_{1}(l)-2}$ in $\Omega^{-}$
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Since it follows from tedious calculation that $\underline{v}=-C_{2}r^{-\lambda_{1}(l)}$ is a subsolution
of (2.7) on $\Omega^{-}$ for small $|a|$ and large $C_{2}$ ,

$\underline{\varphi}_{in}:=Lr^{-m}\{1+\sum_{i=1}^{k}b_{i}(\omega;a)r^{i}-C_{2}r^{m-\lambda_{1}(l)}\}$

is a subsolution of (1.5) on $\Omega^{-}$ for small $|a|$ and large $C_{2}$ .
Next, we construct a supersolution and a subsolution near infinity. By

direct calculation, we see that

$\overline{\varphi}_{out}:=Lr^{-m}+C_{3}r^{-q}$

is a supersolution of (1.5) on $\mathbb{R}^{N}\backslash B_{R_{3}}$ for some $R_{3}=R_{3}(C_{3}, a)>0$ . More-
over, we may assume

$R_{3} arrow R_{*}:=\{\frac{2(q-\lambda_{1})(q-\lambda_{2})}{q-m}I^{1/2}$ a$s$ $|a|arrow 0,$ $C_{3}arrow 0$ .

Clearly $\varphi\equiv 0$ is a subsolution of (1.5) on $\mathbb{R}^{N}$ .
Finally, we connect these supersolutions and subsolutions in the interme-

diate region. We first assume $a=0$ . Then, from Lemma 2 (i), (ii), (iv), if
$C_{1},$ $C_{3}$ and $C_{1}/C_{3}$ are sufficiently small, we can take $R_{3}<R_{4}<R_{1}$ such
that $\overline{\varphi}_{in}<\overline{\varphi}_{out}$ for $r<R_{4}$ and $\overline{\varphi}_{in}>\overline{\varphi}_{out}$ for $r>R_{4}$ . Hence,

$\overline{\varphi}:=\min\{\overline{\varphi}_{in}, \overline{\varphi}_{out}\}$

is a supersolution of (1.5) with $a=0$ .
By the continuity and Lemma 2 (i), for each small $|a|$ , there exists $\Omega^{+}$

such that $B_{R_{3}}\subset\Omega^{+}\subset B_{R_{1}}$ and

$\overline{\varphi}_{in}<\overline{\varphi}_{out}$ if $z\in\Omega^{+}$ is near $\partial\Omega^{+}$ ,

$\overline{\varphi}_{in}>\overline{\varphi}_{out}$ if $z\not\in\Omega^{+}$ is near $\partial\Omega^{+}$ .
Then

$\overline{\varphi}:=\{\begin{array}{ll}\overline{\varphi}_{in} if z\in\Omega^{+},\overline{\varphi}_{out} if z\not\in\Omega^{+}\end{array}$

is a supersolution of (1.5) for small $|a|$ . Clearly,

$\underline{\varphi}:=\{$ $\frac{\varphi}{0}in$ $ififz\in\Omega^{-}z\not\in\Omega^{-}’$

is a subsolution of (1.5) for small $|a|$ .
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3.2 Construction of approximate solutions
In this subsection, by using the supersolution and subsolution given in the
previous subsection, we construct a series of approximate solutions that is
convergent in an appropriate function space.

Define a sequence of annular domains

$A_{n}:= \{z\in \mathbb{R}^{N}:\frac{1}{n}<|z|<n\}$ $(n=1,2, \ldots)$ .

For each $n$ , let $\varphi_{n}(z)$ be a classical solution of

$\{\begin{array}{l}\triangle\varphi_{n}+\frac{z+a}{2}\cdot\nabla\varphi_{n}+\frac{1}{p-1}\varphi_{n}+\varphi_{n}^{p}=0 in A_{n},on \partial A_{n}.\end{array}$

$\varphi_{n}=\underline{\varphi}$

Then, by the standard elliptic theory [4], the Ascoli-Arzel\‘a theorem and a
diagonal procedure, we obtain a subsequence $\{\varphi_{n}^{(n)}\}_{n}$ such that

$\varphi_{n}^{(n)}arrow\varphi$ uniformly in $A_{j}$ as $narrow\infty$

for each $j$ , and the limiting function $\varphi(z)$ satisfies

$\varphi\in C(\mathbb{R}^{N}\backslash \{0\})$ , $\underline{\varphi}\leq\varphi\leq\overline{\varphi}$ in $\mathbb{R}^{N}\backslash \{0\}$ .

3.3 Completion of the. proof

In this subsection, we show that the limiting function $\varphi(z)$ obtained as above
is indeed a solution of (1.5) satisfying (Al) and (A2), and the function $u$

defined by (1.4) satisfies (1.1) in the distribution sense.
First, by $\underline{\varphi}\leq\varphi\leq\overline{\varphi}$ and the Lebesgue theorem, we can show that the

function $\varphi$ satisfies (1.5) in the distribution sense. Next, by $\varphi\leq\varphi\leq\overline{\varphi}$

and the standard elliptic theory [4], the function $\varphi$ has the desired properties
(Al) and (A2). Therefore, it is shown that the function $\varphi$ is the solution of
(1.5) satisfying (Al) and (A2).

Since $\varphi(z)$ satisfies (1.5) in the distribution sense and (Al), it follows
from the definition of $u$ that $u$ satisfies (1.1) in $\mathbb{R}^{N}\cross(0, \infty)\backslash \bigcup_{0<t<\infty}\{((t+$

$1)^{1/2}a,$ $t)\}$ . Thus, by $\underline{\varphi}\leq\varphi\leq\overline{\varphi}$ and simple calculation, we can show that
the function $u$ satisfies (1.1) in the distribution sense.

1
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