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We are interested in the existence of the solutions of the parabolic equa-
tions with initial data which are not bounded at space infinity.

In [4] Giga and the author considered a nonnegative blowing up solution
of the semilinear parabolic equation of the form

$u_{t}=\triangle u+f(u)$ , $x\in R^{N},$ $t>0$

with nonlinear terms $f$ and nonnegative initial data $u_{0}$ satisfying that $f$ is
positive, nondecreasing and convex in $(0, \infty),$ $\int_{1}^{\infty}ds/f(s)<\infty$ and there
are sequences $\{x_{n}\}\subset R^{N}$ and $\{r_{n}\}\subset R_{+}$ with $\lim_{narrow\infty}|x_{n}|=\infty$ and
$\lim_{narrow\infty}r_{n}\geq 0$ such that

$\lim_{narrow\infty}\frac{b_{n}}{r_{n}^{2}f(b_{n})}s$ small enough

with $b_{n}= \inf\{u_{0}(x) : |x-x_{n}|\leq r_{n}\}$ . They showed that the solutions do not
exist even locally in time.

We consider the initial value problem for a quasilinear parabolic equation
of the form

$\{\begin{array}{ll}u_{t}=\Delta u^{m}+u^{p}, x\in R^{N}, t\in(O, T),u(x, 0)=u_{0}(x), x\in R^{N}.\end{array}$ (1)

Here we assume that $N\geq 1,1\leq m<p$ .
We are interested in the problem whether there is a local-in-time solution

of (1) when an initial datum $u_{0}$ is continuous and grows at the space infinity,
for example $\lim_{|x|arrow\infty}u_{0}(x)=\infty$ .
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We consider the weak solution $u$ in $R^{N}\cross[0, T)$ of (1) such that $u\in$

$C(R^{n}\cross[0, \tau))$ for each $\tau\in(0, T)$ , and for any bounded domain $\Omega\in R^{N}$ with
smooth boundary $\partial\Omega,$ $0<\tau<T$ and nonnegative $\phi(x, t)\in C^{2,1}(\Omega\cross[0, T))$

which vanishes on the boundary $\partial\Omega$ ,

$\int_{\Omega}u(x, \tau)\phi(x, \tau)dx-\int_{\Omega}u(x, 0)\phi(x, 0)dx$

$= \int_{0}^{\tau}\int_{\Omega}\{u\partial_{t}\phi+u^{m}\Delta\phi+u^{p}\phi\}dxdt-\int_{0}^{\tau}\int_{\partial\Omega}u^{m}\partial_{\nu}\phi dSdt$, (2)

where $\nu$ denote the outer unit normal to the boundary. Note that the solu-
tion of (1) may be nonunique. Define $\tau*=T^{*}(u_{0})$ as the supremum of all
existence times of these solutions.

In this paper we shall prove that $\tau*=0$ when the initial data $u_{0}$ is
growing at the space infinity. In other words there is even no local-in-time
solution such that for any $\tau>0$ the weak solution does not exist for $t\in(O, \tau)$ .
We say this phenomenon $\tau*=0$ an instant blow-up. We are able to prove
that the instant blow-up occurs for more general initial data $u_{0}$ .

Theorem. Assume that $u_{0}\in C(R^{N})$ is nonnegative. Assume that there
are sequences $\{x_{n}\}_{n=1}^{\infty}\subset R^{N}$ an$d\{r_{n}\}_{n=1}^{\infty}\subset R_{+}$ with $\lim_{narrow\infty}|x_{n}|=\infty$ and
$\lim_{narrow\infty}r_{n}\geq 0$ such that

$\lim_{narrow\infty}r_{n}^{2}b_{n}^{\rho-m}>\frac{1}{\epsilon}$ (3)

for some $\epsilon\in(0,1/c)f$ where $b_{n}= \inf\{u_{0}(x) : |x-x_{n}I \leq r_{n}\}$ and $c>0$ is th $e$

first eigenvalue $of-\triangle$ in a unit ball with the Dirichlet boundary condition.
Then $\tau*=0,$ $i.e.$ , the instant blow-up occurs provided that only nonnegative
solutions are considered.

The proof of Theorem depends on a classical Kaplan’s argument [6] to
show the existence of blow-up which uses principal eigenfunctions of the
Laplace operator with the Dirichlet condition.

In [1] among other results there is one about a sufficient condition on
initial data for nonexistence of a local-in-time nonnegative solution for $u_{t}=$

$\triangle u^{m}+u^{p}/(1+|x|)^{\alpha}$ with $m\geq 1,$ $p>1$ and $\alpha\in R$ . In the case of $\alpha=0$ the
condition leads

$\sup_{x\in R^{n}}\int_{B(x,1)}u_{0}(y)dy=\infty$ . (4)

In [1] this is explicitly mentioned for $1<p<m+2/N$ . However, their proof
is still valid for all $p>1$ . By the way their main interest is the existence of
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solution; for example they proved the local existence when

$\sup_{x\in R^{N}}\int_{B(x,1)}u_{0}(y)dy<\infty$

for $1<p<m+2/N$ . The condition (3) is not included in the condition
of their result for $p>m+2/N$ . In fact, if $u_{0}\geq b_{n}$ on $B(x_{n}, r_{n}))$ then
$\lim_{narrow\infty}b_{n}r_{n}^{N}=\infty$ is a sufficient condition for (4) (not a necessary condition).
Our condition leads $\lim_{narrow\infty}r_{n}^{2}b_{n}^{p-m}$ is large enough. This shows that our
condition for $p>m+2/N$ is not included in their condition.

In [1] they also prove the local existence for $p\geq m+2/N$ when $u_{0}$ fulfills

$\sup_{x\in R^{n}}\int_{B(x,1)}u_{0}^{q}(y)dy<\infty$

for some $q>N(p-m)/2$ . In our nonexistence result $u_{0}$ satisfies

$\sup_{x\in R^{n}}\int_{B(x,1)}u_{0}^{q}(y)dy\geq\lim_{narrow\infty}\int_{B(x_{n},1)}u_{0}^{q}(y)dy\geq\lim_{narrow\infty}\epsilon^{-\underline{\Delta}}\overline{p}\overline{m}r_{n}^{N-\frac{2q}{p-m}}=\infty$

for any $q>N(p-m)/2$ , where $\epsilon$ is used in (3).
In [4] Theorem was proved in the case $m=1$ . They studied the instant

blow-up by using not only the eigenfunction method in [6] same as this paper
but also the energy method in [7] and [2].

In the rest of the paper Theorem will be proved by using the Kaplan’s
argument [6].

Lemma. ($c.f$. $[3$, Lemma 4.2]) Let $v$ be the solu tion of the integral equation
of the form

$v(t)-v(0)= \int_{0}^{t}h(v(s))ds$ (5)

in $[0,\acute{T}_{0})$ with $h$ satisfying $h\in C^{1}[0, \infty)$ and $h’\geq 0$ . Let $\overline{v}$ be a nonnegative
$m$easurable function on $[0, T_{0})$ . $Ass$ume that $\tilde{v}$ satisfies

$\overline{v}(t)-\tilde{v}(t_{0})\geq(\leq)\int_{t_{0}}^{t}h(v(s))(s)ds$ for $t_{0},$ $t\in[0, T_{0})$ with $t_{0}\leq t$ . (6)

Assume that $0(0)\geq(\leq)v(O)$ . Then

$\tilde{v}(t)\geq(\leq)v(t)$ for $t\in[0, T_{0})$ .
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Proof. We shall only prove the case $\tilde{v}(t)-\tilde{v}(t_{0})\geq\int_{t_{0}}^{t}\tilde{v}^{p}(s)ds$ since the proof
of the other case is parallel. Since $\tilde{v}(0)\geq v(O)$ , the estimate (6) together
with (5) yields

$\tilde{v}(t)-v(t)\geq\int_{0}^{t}(h(\tilde{v}(s))-h(v(s)))ds$ .

By the mean value theorem we observe that

$\tilde{v}(t)-v(t)\geq/o^{t}c(s)(\tilde{v}(s)-v(s))ds$ ,

where

$c(s)= \int_{0}^{1}h’(\theta v(s)+(1-\theta)\tilde{v}(s))d\theta$ .

We set $\psi_{\epsilon}(t)=\tilde{v}(t)-v(t)+\epsilon$ with $\epsilon>0$ , and observe that $\psi_{\epsilon}(t)$ satisfies

$\psi_{\epsilon}\geq\int_{0}^{t}c(s)\psi_{\epsilon}(s)ds+\epsilon(1-\int_{0}^{t}c(s)ds)$ .

We set

$t_{1}= \sup\{t>0;\int_{0}^{t}c(s)ds<\frac{1}{2}\}$ .

Then, for $t\in[0, t_{1}]$ we have

$\psi_{\epsilon}(t)\geq\int_{0}^{t}c(s)\psi_{\epsilon}(s)ds+\frac{\epsilon}{2}$ . (7)

We shall argue by contradiction to prove $\psi_{\epsilon}(t)\geq 0$ . Suppose that $\psi_{\epsilon}(t)<0$

for some $t\in[0, t_{1}]$ . Then $\psi_{\epsilon}(\tau)=0$ for

$\tau=\inf\{t\in[0, t_{1}];\psi_{\epsilon}<0\}$ . (8)

This $\tau$ must be positive. Indeed, since $\tilde{v}$ is nondecreasing by (6) and $v$ is
continuous, $\psi_{\epsilon}(0)>\epsilon$ implies $\tau>0$ .

Since $\int_{0}^{\tau}c(s)\psi_{\epsilon}(s)ds\geq 0$ and (8) imply $\psi_{\epsilon}(\tau)\leq 0$ , we get a contradiction
by (7). We thus proved that

$\psi_{\epsilon}(t)\geq 0$ .

Since this holds for all $\epsilon>0$ , we get $\tilde{v}(t)\geq v(t)$ for $t\in[0, t_{1}]$ . (If $\tilde{v}(t)<v(t)$

for some $t$ , there exist $\epsilon>0$ such that $\psi_{\epsilon}<0$ for such $t.$ )
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Next, since $\tilde{v}(t)\geq v(t)$ for $t\in[0, t_{1}]$ , we observe that

$\psi_{\epsilon}\geq\int_{t_{1}}^{t}c(s)\psi_{\epsilon}(s)ds+\epsilon(1-\int_{t_{1}}^{t}c(s)ds)$ .

We set

$t_{2}= \sup\{t>t_{0};\int_{t_{1}}^{t}c(s)ds<\frac{1}{2}\}$

and observe that

$\psi_{\epsilon}\geq\int_{t_{1}}^{t}c(s)\psi_{\epsilon}(s)ds+\frac{\epsilon}{2}$

for $t\in[t_{1}, t_{2}]$ . By the same argument one can prove $\psi_{\epsilon}\geq 0$ for all $\epsilon>0$ , and
$\tilde{v}(t)\geq v(t)$ for $t\in[t_{1}, t_{2}]$ .

We repeat this argument and conclude that

$\tilde{v}(t)\geq v(t)$

for all $t\in[0, T_{0})$ . By the same argument, we find if

$\tilde{v}(t)-\tilde{v}(t_{0})\leq\int_{t_{O}}^{t}\tilde{v}^{p}(s)ds$ for

then

$t_{0},$ $t\in[0, T_{0})$ with $t_{0}\leq t$ ,

$\tilde{v}(t)\leq v(t)$ for $t\in[0, T_{0})$ .

ロ

Proof of Theorem. Let $\{r_{n}\}_{n=1}^{\infty},$ $\{x_{n}\}_{n=1}^{\infty}$ and $\{b_{n}\}_{n=1}^{\infty}$ be as in Theorem sat-
isfying (3). Set $\lambda_{n}>0$ denote the principal eigenvalue of-A with Dirichlet
problem in $B(O, r_{n})$ , and let $\phi_{n}(x)\geq 0$ denote the corresponding positive
eigenfunction normalized by $\int_{B(0,r_{n})}\phi_{n}(x)dx=1$ . By scaling it is easy to
observe that

$\lambda_{n}=\frac{c}{r_{n}^{2}}$ (9)

with $c$ defined in Theorem. Define

$G_{n}(t)= \int_{B(x_{n},r_{n})}u(x, t)\phi_{n}(x-x_{n})dx$ .
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Let $\nu_{n}(x)$ denote the outward unit normal to $B(O, r_{n})$ at $x\in\partial B(0, r_{n}).$ By
(2) and the fact that $\phi_{n}=0$ and $\partial\phi_{n}/\partial\nu_{n}\leq 0$ on $\partial B(O, r_{n})$ with the unit
normal vector $\nu_{n}$ , we obtain

$G_{n}(t) \geq G_{n}(0)+\int_{0}^{t}\int_{B(x_{n},r_{n})}(-\lambda_{n}u^{m}(x, s)\phi(x)+u^{p}(x, s)\phi(x))dxds$ .

Put

$h_{n}(s)=\{\begin{array}{ll}-\lambda_{n}s^{m}+s^{p}, s\geq(\frac{m\lambda_{n}}{p})^{\frac{1}{p-m}},-\lambda_{n}(\frac{m\lambda_{n}}{p})^{\frac{m}{p-m}}+(\frac{m\lambda_{n}}{p})^{\overline{p}\overline{m}}\underline{R}, 0\leq s\leq(\frac{m\lambda_{n}}{p}I^{\frac{1}{p-m}},\end{array}$ (10)

similarly as in $[$5 $]$ . Sinoe $h_{n}$ is convex, we obtain

$G_{n}(t) \geq G_{n}(0)+\int_{0}^{t}h_{n}(G_{n}(s))ds$ . (11)

by Jensen’s inequality. Let us consider the system of ordinary differential
equations

$\{\begin{array}{l}g_{n}’(t)=h_{n}(g_{n}(t)),g_{n}(0)=G_{n}(0)\geq b_{n}.\end{array}$ (12)

Define $T_{g_{n}}= \sup\{t\geq 0:g_{n}(t)<\infty\}$ and $T_{G}$. $= \sup\{t\geq 0:G_{n}(t)<\infty\}$ .
Since $g_{n}$ satisfies

$g_{n}(t)=g_{n}(0)+ \int_{0}^{t}h_{n}(g_{n}(s))ds$ ,

and from Lemma, we obtain $G_{n}\geq g_{n}$ and $T_{g_{n}}\geq T_{G_{n}}$ .
Consider the solutions of (1) with the initial data $b_{n}$ . The maximal exis-

tence times of the solutions denoted by $T^{*}(b_{n})$ is estimated as

$T^{*}(b_{n})= \int_{b_{n}}^{\infty}\frac{d\xi}{\xi^{p}}$ .

Note that $\lim_{narrow\infty}T^{*}(b_{n})=0$ . From (3) we may assume that there exist
$n_{0}\geq 0$ such that

$\frac{1}{r_{n}^{2}b_{n}^{p-m}}<\epsilon$
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for $n\geq n_{0}$ and $\epsilon\in(0,1/c)$ . From (9) we see that

$\lambda_{n}b_{n}^{m}<c\epsilon b_{n}^{p}$ ,

and

$\lambda_{n}\xi^{m}<c\epsilon\xi^{p}$ (13)

for $\xi\geq b_{n}$ and $n\geq n_{0}$ . Since $b_{n}\geq(m\lambda_{n}/p)^{1/(p-m)}$ by (13), we have

$T_{g_{n}}= \int_{b_{n}}^{\infty}\frac{d\xi}{h_{n}(\xi)}=\int_{b_{n}}^{\infty}\frac{d\xi}{-\lambda_{n}\xi^{m}+\xi^{p}}$

for $n\geq n_{0}$ by (13). Thus we see that

$\frac{T^{*}(b_{n})}{T_{g_{n}}}=\frac{\int_{b_{n}}^{\infty}d\xi/\xi^{p}}{\int_{b_{n}}^{\infty}d\xi/(-\lambda_{n}\xi^{m}+\xi^{p})}>\frac{\int_{b_{n}}^{\infty}d\xi/\xi^{p}}{\int_{b_{n}}^{\infty}d\xi/\{(1-c\epsilon)\xi^{p}\}}>1-c\epsilon$ (14)

for $n\geq n_{0}$ . Thus we obtain

$\lim_{marrow\infty}\frac{T^{*}(b_{n})}{T_{g_{n}}}\geq 1-c\epsilon>0$.

Noting that $\lim_{narrow\infty}T^{*}(b_{n})=0$ , we see that $\lim_{narrow\infty}T_{g_{n}}=0$ . Again we get
$T_{G_{n}}arrow 0$ as $narrow\infty$ . By the definition of the weak solution we have $\tau*=0$ .
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