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In this rcport we consider a stationary flow of a viscous incompressible
fluid whose velocity field $U$ takes the form

(0.1) $U(x_{1}, x_{2_{J}}x_{3})=u_{\lambda}(x_{1}, x_{2}, x_{3})+u(x_{1},x_{2})$ .

Here the velocity field $u_{\lambda}$ expresses an asymmetric background straining
flow and is given by

$u_{\lambda}(x_{1}, x_{2}, x_{3})=(- \frac{1+\lambda}{2}x_{1}, -\frac{1-\lambda}{2}x_{2}, x_{3})$,

with a fixed parameter $\lambda\in[0,1)$ . The parameter $\lambda$ represents the asym-
metry of the background straining flow. The solenoidal velocity field $u$

expresses a two dimensional perturbation flow:

$u(x_{1}, x_{2})=(u_{1}(x_{1}, x_{2}), u_{2}(x_{1}, x_{2}), 0)$ , $\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}=0$ .

We assume that the velocity field $U$ solves the stationary Navier-Stokes
equations:

(NS) $\{\begin{array}{l}-\Delta U+(U, \nabla)U+\nabla P=0, x\in \mathbb{R}^{3},\nabla\cdot U=0, x\in \mathbb{R}^{3}.\end{array}$

Here $\Delta=\sum_{i=1_{i}^{\frac{\partial^{2}}{\partial x}T}}^{3}$ , $(U, \nabla)=\sum_{i=1}^{3}U_{i^{\frac{\partial}{\partial x_{i}}}}$ , and $\nabla\cdot U=\sum_{i=1\vec{\partial x}}^{3\partial U}:$ . We
write $\partial_{i}$ instead of $\frac{\partial}{\partial x_{i}}$ for simplicity. The function $P$ represents a pressure
field of the fluid.

We are interested in the behavior of thc vorticity field. Taking the
rotation of $U=u_{\lambda}+u$ , we see that the vorticity $\Omega=\nabla\cross U$ is given by

(0.2) $\Omega(x_{1}, x_{2}, x_{3})=(0,0, \omega(x_{1}, x_{2}))$

where $\omega=\partial_{1}u_{2}-\partial_{2}u_{1}$ . If $\omega$ is smooth and integrable, and $u$ decays at
infinity, then the velocity field $u$ is recovered from thc vorticity field $\omega$
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via the Biot-Savart law:

(0.3) $u=K*\omega$ ,

where the convolution kernel $K$ is givcn by

(0.4) $K(x)= \frac{1}{2\pi}\frac{x^{\perp}}{|x|^{2}},$ $x^{\perp}=(-x_{2}, x_{1})$ .

The valuc $\int_{\mathbb{R}^{2}}\omega(x)dx$ is called the total circulation and its absolute
value is called the vortex Reynolds number. Let $\alpha\in \mathbb{R}$ be a given real
number. We consider the vorticity field $\omega$ whose total circulation is $\alpha$ .
Since $U$ satisfies (NS), we see that $\omega$ solves the following equation

$(B_{\lambda,\alpha})$ $\{\begin{array}{l}(\mathcal{L}+\lambda \mathcal{M})\omega-B(\omega,\omega)=0, x\in \mathbb{R}^{2},\int_{\mathbb{R}^{2}}\omega(x)dx=\alpha,\end{array}$

where

(0.5) $\mathcal{L}=\Delta+\frac{x}{2}\cdot\nabla+1$ ,

(0.6) $\mathcal{M}=\vec{2}1_{(x_{1}\partial_{1}-x_{2}\partial_{2})}$ ,

(0.7) $B(f, h)=(K*f, \nabla)h$ .

Conversely, if $\omega$ is a solution to $(B_{\lambda,\alpha})$ , then we can show that $u_{\lambda}+K*\omega$

gives a solution to (NS) with a suitably determined pressure $P$ . We call
solutions to $(B_{\lambda,\alpha})$ the Burgers vortices.

Let $G$ be thc two dimensional Gauss kernel:

(0.8) $G(x)= \frac{1}{4\pi}e^{-\frac{|x|^{2}}{4}}$

Thcn by direct calculations, we see that $G$ satisfies
$\mathcal{L}G=0,$ $(K*G, \nabla)G=0$ .

Thus $\alpha G$ solves $(B_{\lambda,\alpha})$ for $\lambda=0$ . This exact solution was found by
Burgers [1], and it is called the axisymmetric Burgers vortex. When $\lambda\in$

$(0,1)$ a solution to $(B_{\lambda_{\}\alpha})$ is called the asymunetric Burgers vortex. In this
case we can not expect the explicit representation as in the axisymmetric
case $\lambda=0$ . So the existence of solutions to $(B_{\lambda,\alpha})$ itself is an important
problem and this is the main interest here.

The Burgers vortices have been used as a model of concentrated vor-
ticity fields in turbulence. It is numerically observed that the region of
intense vorticity fields in three dimensional turbulence tends to form a lot
of tube-like structures, and that each vortex-tube is well described by the
Burgers vortices. Erom this physical point of view, they have been numer-
ically studicd mainly in the case of large vortex Reynolds numbers, since
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the vortex Reynolds number is considered to represent the magnitude
of thc vorticity; see Robinson-Saffman [18], Kida-Ohkitani [10], Moffatt-
Kida-Ohkitani [12], Prochazka-Pullin [16], Prochazka-Pullin [17]. One
of the most interesting features of their numerical results is that as the
vortex Reynolds number is increasing, the Burgers vortices tend to be
more circular even when the asymmetry parameter is not zero. Bascd on
their numerical results, Robinson and Saffman conjectured in [18] that
the asymmetric Burgers vortices would rigorously exist for any $\lambda\in[0,1)$

at least whcn $\frac{\lambda}{1+|\alpha|}$ is sufficiently small. In [12] the above property of the
Burgers vortices is explained by obtaining a formal asymptotic expansion
at large vortex Reynolds numbers. First mathcmatical approach to this
problem was done by Gallay and Wayne in [6] and [7]. In [7] the existence
of the Burgers vortices is provcd in the Gaussian weighted $L^{2}$ space for
any I $\alpha|$ if the asymmetry parameter $\lambda$ is sufficiently small $( \lambda<<\frac{1}{2})$ . In
[7] the asymptotic expansion at large $|\alpha|$ indicated by [12] is rigorously
verified. For not sufficiently small $\lambda\in(0,1)$ the problem becomes more
complicated because the operator $\lambda \mathcal{M}$ breaks the symmetry of the equa-
tion strongly. As far as the author knows, the only mathematical results
in this case are the results by [6] in which it is proved that the Burgers
vortices exist in the polynomial weighted $L^{2}$ space when $|\alpha$ I is sufficiently
small depending on $\lambda\in[0,1)$ . So the above conjecture by Robinson and
Saffman was still open.

In this report some recent developments of mathematical studies for
the Burgers vortices are introduced. Especially, in [14, 15] it is proved
that the Burgers vortices cxist for each asymmetry parameter $\lambda\in[0,1)$

and all circulation numbers $\alpha$ , which gives the affirmative answer to
Robinson-Saffman’s question. Moreover, Moffatt-Kida-Ohkitani $s$ asymp-
totic expansion at large vortex Reynolds numbers ([12]) are rigorously
verified for any $\lambda\in[0,1)$ . The stability of the Burgers vortices is also
an important question, but still it is not well understood mathmatically.
We give a remark on these issues in Remark 2.

To state our results precisely, let us introduce function spaces. Let $G_{\lambda}$

be the function defined by

(0.9) $G_{\lambda}(x)= \frac{1-\lambda}{4\pi}\exp(-\frac{1-\lambda}{4}|x|^{2})$ .

Let $X_{\lambda},$ $Y_{\lambda}$ be the complex Hilbert spaces defined as follows.
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(0.10) $X_{\lambda}=\{w\in L^{2}(\mathbb{R}^{2})$ I $G_{\lambda}^{-\frac{1}{2}}w\in L^{2}(\mathbb{R}^{2}),$
$\int_{\mathbb{R}^{2}}wdx=0$ ,

$<w_{1},$ $w_{2}>x_{\lambda}= \int_{R^{2}}G_{\lambda}^{-1}(x)w_{1}(x)\overline{w_{2}(x)}dx\}$ ,

(0.11) $Y_{\lambda}=\{w\in X_{\lambda}|\partial_{i}w\in X_{\lambda},$ $i=1,2$ ,

$<w_{1)}w_{2Y_{\lambda}}>= \int_{R^{2}}G_{\lambda}^{-1}(x)(w_{1}(x)\overline{w_{2}(x)}+\nabla w_{1}(x)\cdot\nabla\overline{w_{2}(x)})dx\}$ .

We also define the subspace of $X_{\lambda}$

(0.12) $W_{\lambda}=\{w\in X_{\lambda}|,$
$G_{\lambda}^{-\frac{1}{2}}x_{i}w\in L^{2}(\mathbb{R}^{2})i=1,2$ ,

$<w_{1},$ $w_{2}>W_{\lambda}= \int_{\mathbb{R}^{2}}G_{\lambda}^{-1}(x)(w_{1}(x)\overline{w_{2}(x)}+|x|^{2}w_{1}(x)\overline{w_{2}(x)})dx.\}$

The space $X_{0}$ (and also $Y_{0}$ ) are used in [7], [13], and [14]. Let $\mathcal{G}_{\lambda}$ be
the function given by

(0.13) $\mathcal{G}_{\lambda}(x)=\frac{\sqrt{1-\lambda^{2}}}{4\pi}e^{-\frac{1+\lambda}{4}x_{1}^{2}-\frac{1-\lambda}{4}x_{2}^{2}}$.

Note that $(\mathcal{L}+\lambda \mathcal{M})\mathcal{G}_{\lambda}=0$ and $\int_{R^{2}}\mathcal{G}_{\lambda}(x)dx=1$ hold. The first main
result is as follows.

Theorem 1 (Existence of asymmetric Burgers vortices; [15]). Let $\lambda\in$

$[0,1)$ and $\alpha\in \mathbb{R}$ . Then there is a (real valued) solution $\omega_{\lambda,\alpha}$ to $(B_{\lambda_{2}\alpha})$

such that $\omega_{\lambda,\alpha}-\alpha \mathcal{G}_{\lambda}\in Y_{\lambda}\cap W_{\lambda}$ .

The above theorem is proved in [15] by a suitable application of the
Schauder fixed point theorem. The key idea is to reduce $(B_{\lambda,\alpha})$ to an
evolution equation by introducing the scaling variables $x=\perp\sqrt{\tau}$ and apply
the results of Carlen-Loss [2] in order to obtain a priori If estimates for
solutions. Its argument is not so complicated, but instead, we do not
have detailed informations on the solutions. Especially, the method used
in the proof of Theorem 1 is less helpful if one wants to explain why the
asymmetric Burgers vortex tends to be circular when the vortex Reynolds
numbcr is large. So we need a completely different approach in the study
of the Burgcrs vortices for large $|\alpha|$ .

Let $n\in \mathbb{Z}$ and let $\mathbb{P}_{n}$ be the orthogonal projection defined by

.

$\mathbb{P}_{n}w$ $=w_{n}(r)e^{in\theta}$ , $w_{n}(r)= \frac{1}{2\pi}\int_{0}^{2\pi}w(r\cos\theta,r\sin\theta)e^{-in\theta}d\theta$.

Wc set
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(0.14)
(0.15)

$\mathbb{P}_{n}X_{\lambda}=\{\mathbb{P}_{n}w|w\in X_{\lambda}\}$ ,
$\mathbb{P}^{e}X_{\lambda}=\oplus_{n\in \mathbb{Z}}\mathbb{P}_{2n}X_{\lambda}$.

It will be useful to define the subspace of all “ non-radially” symmetric
functions:
(0.16) $\mathbb{P}_{0}^{\perp}X_{\lambda}=\{\mathbb{P}_{0}^{\perp}w|w\in X_{\lambda}, \mathbb{P}_{0}^{\perp}=I-\mathbb{P}_{0}\}$ .

For a givcn $h\in Y_{\lambda}$ we define an integro-differential operator $\Lambda_{h}$ on $Y_{\lambda}$

as
(0.17) $\Lambda_{h}f=B(h, f)+B(f, h)$ .
In fact, we can see that $\mathbb{P}^{e}X_{\lambda}$ is invariant under the action of $\Lambda_{h}$ if $h$

belongs to $\mathbb{P}^{e}X_{\lambda}$ . Let $w_{\infty}\in Y_{0}\cap W_{0}$ be the function which satisfies the
equation

(0.18) $\mathcal{M}G=\Lambda_{G}w_{\infty}$ .
The existence of $w_{\infty}$ is proved in [7]; see also [12]. Especially, $w_{\infty}$ is

uniquely determined in $\mathbb{P}_{-2}X_{\lambda}\cup \mathbb{P}_{2}X_{\lambda}$ .
The second result is the existence and the asymptotic behavior of the

Burgers vortices for large vortex Reynolds numbers.
Theorem 2 (Asymptotics expansion at large circulations; [14, 15]). Let
$\lambda\in[0,1)$ . Then there is a positive number $\Theta_{1}=\Theta_{1}(\lambda)\geq 0$ such that
for any $\alpha\in \mathbb{R}$ with $|\alpha|\geq\Theta_{1}$ there exists a (real valued) solution $\omega_{\lambda_{2}\alpha}$ of

$(B_{\lambda,\alpha})$ satisfying $\omega_{\lambda,\alpha}-\alpha G\in \mathbb{P}^{e}X_{\lambda}$ and

(0.19) $|| \omega_{\lambda,\alpha}-\alpha G-\lambda w_{\infty}||_{Y_{\lambda}\cap W_{\lambda}}\leq\frac{\lambda M(\lambda)}{1+|\alpha|}$ ,

where the constant $M(\lambda)$ depends only on $\lambda$ . The constants $\Theta_{1}(\lambda)$ and
$M(\lambda)$ are taken as
(0.20) $\lim_{\lambdaarrow 1}\Theta_{1}(\lambda)=\lim_{\lambdaarrow 1}M(\lambda)=\infty$ .

When I $\alpha|$ is large, we also have the uniqueness around $\alpha G+\lambda w_{\infty}$ as
follows.

Theorem 3 (Uniqueness at large circulations; [14, 15]). Let $\lambda\in[0,1)$ .
Then for any $\tau>0$ there is a positive number $\Theta_{2}=\Theta_{2}(\lambda, \tau)\geq\Theta_{1}$ such
that for any $\alpha$ with $|\alpha|\geq\Theta_{2}$ , there enists at most one solution of $(B_{\lambda_{2}\alpha})$

in the $bdl$

$\mathcal{B}_{\tau}=\{f\in L^{2}(\mathbb{R}^{2})|f-\alpha G\in \mathbb{P}^{e}X_{\lambda}, ||f-\alpha G-\lambda w_{\infty}||_{Y_{\lambda}\cap W_{\lambda}}\leq\tau\}$.

For each $\lambda\in[0,1)$ the constant $\Theta_{2}(\lambda, \tau)$ is taken as
(0.21) $\lim_{\tauarrow\infty}\Theta_{2}(\lambda, \tau)=\infty$ .
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Remark 1 (Large-Reynolds-numbcr asymptotics). As stated previously,
Moffatt, Kida, and Ohkitani indicated in [12] that the asymmetric Burg-
ers vortex would be expanded around $\alpha G+\lambda w_{\infty}$ when $\frac{\lambda}{1+|\alpha|}$ is sufficicntly
small for any $\lambda\geq 0$ . This expansion was rigorously recovered by Gallay
and Wayne in [7] when $\lambda$ is sufficiently small. Theorem 2 shows that
for any $\lambda\in[0,1)$ there is a solution which satisfies the above expansion.
Unfortumatcly, we do not know whether or not the solution constructed
in Theorem 1 satisfies (0.19) and coincides with the solution obtained in
Theorem 2.

In order to prove Theorem 2 and Theorem 3, we first expand $(B_{\lambda,\alpha})$

around $\alpha G+\lambda w_{\infty}$ . Then we get the equation for $w=\omega-\alpha G-\lambda w_{\infty}$ :

(0.22) $(\mathcal{L}-\alpha\Lambda_{G}+\lambda \mathcal{M})w=B(w, w)+\lambda\Lambda_{w_{\infty}}w+\lambda f_{\lambda}$ .
The function $f_{\lambda}$ is defined as

(0.23) $f_{\lambda}=-\mathcal{L}w_{\infty}+\lambda(B(w_{\infty}, w_{\infty})-\mathcal{M}w_{\infty})$ .

It is known that $f_{\lambda}\in Y_{0}\cap W_{0}\cap \mathbb{P}^{e}X_{0}$ and $\mathbb{P}_{0}f_{\lambda}=0$ ; see [14, Corollary
2.3]. In next section we will see that $\mathbb{P}^{e}X_{\lambda}$ is invariant under the equations
(0.22).

Let us state the difficulty of this problem and rough idea to overcome
it. The most important step to solve (0.22) is to consider the linearized
problem

(0.24) $\mathcal{L}_{\lambda,\alpha}w:=(\mathcal{L}-\alpha\Lambda_{G}+\lambda \mathcal{M})w=f$ .

The main difficulty comes from the operator $\lambda \mathcal{M}$ , since it leads to
a slow spatial decay in $x_{2}$ direction and also breaks the symmetry of
the equation. If $\lambda<\frac{1}{2}$ , we can find solutions of (0.24) in the Gaussian
weighted $L^{2}$ space $X_{0}$ $(X_{\lambda}$ for $\lambda=0)$ at least for large $|\alpha|$ ; see [7] and
[14]. The only reason we can rigorously treat the equation (0.24) even for
large $|\alpha|$ in $X_{0}$ is that $\Lambda_{G}$ is skew-symmetric in $X_{0}$ which is discovered
by Gallay and Wayne in [5]. The skew-symmetry of $\Lambda_{G}$ enables us to
give uniform (or better) estimates for linearized operators $(\mathcal{L}-\alpha\Lambda_{G})^{-1}$

or $(\mathcal{L}-\alpha\Lambda_{G}+\lambda \mathcal{M})^{-1}$ at large $|\alpha|$ . To explain this, let us recall the
argument used in [5] or [7]; see also [13], [14]. Let $h\in X_{0}$ be the solution
of the equation $(\mathcal{L}-\alpha\Lambda_{G})h=f$ for $f\in X_{0}$ . Then we have

${\rm Re}<f,$ $h>x_{0}$ $=$ ${\rm Re}<(\mathcal{L}-\alpha\Lambda_{G})h,$ $h>X_{O}$

$=$ $-{\rm Re}<(-\mathcal{L})h,$ $h>x_{0}$

$=$ $-||(-\mathcal{L})^{\frac{1}{2}}h||_{X_{0}}^{2}$

$\leq$ $- \frac{1}{2}||h||_{X_{0}}^{2}$ ,
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by the self-adjointness of $\mathcal{L}$ with $- \mathcal{L}\geq\frac{1}{2}$ (see [7]) and the skew-symmetry
of $\Lambda$ in $X_{0}$ . Thus wc have
(0.25) $||h||_{X_{0}}\leq 2||f||_{X_{0}}$ ,

which gives the uniform estimate for $h=(\mathcal{L}-\alpha\Lambda_{G})^{-1}f$ . In fact, it seems
to be quite difficult to obtain this uniform estimate directly without using
the skew-symmetry of $\Lambda_{G}$ .

If $\lambda\geq\vec{2}1$ , we can no longer expect that solutions belong to $X_{0}$ , because
of the loss of a spatial decay by the operator $\lambda \mathcal{M}$ . So we are forced
to deal with the equations (0.24) in other function spaces which allow
functions with slower spatial decays. However, in general, the operator $\Lambda$

is not skew-symmetric in such spaces. Mathemaically, this causes serious
difficulties to establish useful estimates for solutions of the linearized
problem for not small $\alpha$ . Especially, we need to control the term $\alpha\Lambda_{G}$

without the skew-symmetry of $\Lambda_{G}$ itself.
To overcome this difficulty, we look for a linear operator which makes

$\Lambda$ skew-symmetric by its right action.

Definition 0.1 (Definition of a right skew-symmetrizer). Let $X$ be a
Hilbert space and $A$ be a linear operator in $X,$ $D(A)\subset X$ . Then we call
a linear operator $T$ in $X$ a right skew-symmetrizer of $A$ if the operator
AT, $D(AT)=\{f\in D(T) Tf\in D(A)\}$ is skew-symmetric, $i.e$.,

$<ATf,$ $h>x+<f,$ $ATh>_{X}=0$

for $f,$ $h\in D(AT)$ . We say $A$ is right $skew- symmetr\dot{v}zable$ in $X$ if there
is a $7\dot{\tau}ght$ skew-symmetrizer $T$ of $A$ in $X$ .

Then the following lemma is essential.

Lemma 0.1 ([15]). There is a right skew-symmetrizer $T$ of the operator
$\Lambda_{G}$ in $\mathbb{P}^{e}X_{\lambda}$ . Moreover, $T$ satisfies the following:

(1) $T-I$ is compact in $\mathbb{P}^{e}X_{\lambda}$ ,
(2) $T$ is injective in $\mathbb{P}^{e}X_{\lambda}$ ,

By the Fredholm alternative theorem, $T$ has the bounded inverse on
$\mathbb{P}^{e}X_{\lambda}$ . So we consider $v=T^{-1}w$ instead of the solution $w$ of (0.24) itself.
$\mathbb{R}om$ the rclations

$(\mathcal{L}+\lambda \mathcal{M})w$ $=$ $(\mathcal{L}+\lambda \mathcal{M})v+(\mathcal{L}+\lambda \mathcal{M})(T-I)v$ ,
$\alpha\Lambda_{G}w$ $=\alpha\Lambda_{G}Tv$ ,

we obtain the equation for $v$ :

(0.26) $(\mathcal{L}+\lambda \mathcal{M}-\alpha\Lambda_{G}T)v=-(\mathcal{L}+\lambda \mathcal{M})(T-I)v+f$.

By the skew-symmetry of $\Lambda_{G}T$ and the characterization of $Ker\Lambda_{G}T$ ,
we can show that the linear problem $(\mathcal{L}-\alpha\Lambda_{G}T+\lambda \mathcal{M})v=f$ is uniquely
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solvable in $\mathbb{P}^{e}X_{\lambda}$ if $|\alpha|$ is sufficiently large. Thc term $-(\mathcal{L}+\lambda \mathcal{M})(T-I)v$

can be regarded as lower order, since $T-I$ is compact. Using these facts,
we can show that the equation (0.26) is uniquely solvable in ? $X_{\lambda}$ and
so is true for (0.24) by the rclation $w=Tv$ . Then thc nonlinear problem
(0.22) will be solved by pcrturbation arguments as in [14].

To solve (0.26) we need to investigate the linear operator $\mathcal{L}+\lambda \mathcal{M}-$

$\alpha\Lambda_{G}T$ . For this purpose, we decompose $\mathcal{L}$ as

(0.27) $\mathcal{L}=\mathcal{L}_{\lambda}+W$ ,

where

(0.28) $\mathcal{L}_{\lambda}=\Delta+\frac{1-\lambda}{2}x\cdot\nabla+1-\lambda$ , $\mathcal{N}=\frac{x}{2}\cdot\nabla+1$ .

The reason why we decompose $\mathcal{L}$ as above is that the operator $\mathcal{L}_{\lambda}$ is
self-adjoint in $X_{\lambda}$ with the spectrum $\sigma(\mathcal{L}_{\lambda})=\{-\frac{(1-\lambda)n}{2}|n=1,2, \cdots\}$

and that both $\mathcal{L}_{\lambda}$ and $\mathcal{N}$ map $\mathbb{P}_{n}X_{\lambda}\cap D(\mathcal{L}_{\lambda})$ to $\mathbb{P}_{n}X_{\lambda}$ . Especially, we can
see by direct calculations that each of $\mathcal{L}_{\lambda},$ $\mathcal{M}$ , and $\mathcal{N}$ maps $\mathbb{P}^{e}X_{\lambda}\cap D(\mathcal{L}_{\lambda})$

to $\mathbb{P}^{e}X_{\lambda}$ .
In order to derive better properties of $\mathcal{L}_{\lambda_{1}\alpha}$ or $\mathcal{L}+\lambda \mathcal{M}-\alpha\Lambda_{G}T$ for

large $|\alpha|$ , it is important to characterize the kernel of $\Lambda_{G}$ or $\Lambda_{G}T$ . By a
simple observation, it turns out that the kernel of $\Lambda_{G}$ or $\Lambda_{G}T$ in $\mathbb{P}^{e}X_{\lambda}$

coincides with the subspace consisting of all radially symmetric functions
in $X_{\lambda}$ , i.e.,

(0.29) $Ker\Lambda_{G}=Ker\Lambda_{G}T=\mathbb{P}_{0}X_{\lambda}$ .

This is useful and essential in our proof, since the decomposition of so-
lutions into radially symmetric parts and non-radially symmetric parts
matches the structure of the symmetry-breaking term $\lambda \mathcal{M}v$ or the non-
linear term $B(v, v)$ . For example, if $v$ is radially symmetric, then $\mathcal{M}v$

belongs to $\mathbb{P}_{0}^{\perp}X_{\lambda}$ and $B(v, v)=0$ .
We can show that $\mathcal{L}_{\lambda,\alpha}$ is invertible for large $\alpha$ and its inverse has

better estimates as $|\alpha|$ is increasing. More precisely, the operator norms
of $\mathcal{L}_{\lambda,\alpha}^{-1}\mathbb{P}_{0}^{\perp}$ and $\mathbb{P}_{0}^{\perp}\mathcal{L}_{\lambda,\alpha}^{-1}$ are estimated as small for large $|\alpha|$ , where $\mathbb{P}_{0}^{\perp}=$

$I-\mathbb{P}_{0}$ . The solution to (0.22) is constructed by decomposing it into
the radially symmetric part $(\mathbb{P}_{0}X_{\lambda})$ and the non-radially symmetric part
$(\mathbb{P}_{0}^{\perp}X_{\lambda})$ . Unfortunately, we do not have better estimates for $\mathbb{P}_{0}\mathcal{L}_{\lambda,\alpha}^{-1}\mathbb{P}_{0}$

even if $|\alpha|$ is large. But since the radially symmetric part of solutions to
(0.22) is esscntially expressed by the non-radially symmetric part of them,
we can establish necessary a priori estimates for solutions to (0.22) when
the vortex Reynolds number $|\alpha|$ is sufficiently large; see [15] for details.

Finally, we give a remark on the stability of the Burgers vortices.
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Remark 2 (Mathematical results on the stability of Burgers vorticcs).
Since the axisymmetric Burgcrs vortex $\alpha G$ gives the nontrivial cxact so-
lution to three dimensional Navier-Stokes equations, its stability problem
has attractcd many rescarchers. In Giga-Kambe [9] it is proved that if
the $L^{1}$-norm of initial data is sufficiently small, then the solution of the
non-stationary equation associated with $(B_{\lambda_{2}\alpha})$ with $\lambda=0$ converges to
$\alpha G$ where $\alpha$ is the total circulation of initial vorticity (note that the total
circulation is conserved under the equation $(B_{\lambda,\alpha}))$ . Their result is cx-
tended by Carpio [3] and Giga-Giga [8] in which the global stability of the
axisymmetric Burgers vortex (with respect to two dimensional perturba-
tions) is obtained when the vortex Reynolds number is sufficiently small.
Although the global stability for not small vortex Reynolds numbers had
rcmained open for years, the affirmative answer is given by Gallay-Wayne
[5]. The rate of convergence is also discussed there. As indicated by [16],
it is important to consider the influence on the stability by a fast rotation
$|\alpha|>>1$ . In [13] the spectrum of $\mathcal{L}-\alpha\Lambda_{G}$ in $X_{0}$ is studied and the rate
of convergence to axisymmetric Burgers vortices is improved when the
vortex Reynolds number is sufficiently large.

As for the asymmetric Burgers vortices, as far as the author knows, the
mathematical understanding of their stability has not yet been achieved
much. Gallay-Wayne [7] proved the local stability of asymmetric Burg-
ers vortices when $\lambda$ is sufficiently small. In Gallay-Wayne [6] the local
stability with respect to three dimensional perturbations is obtained for
$\lambda\in[0,1)$ when $|\alpha|$ is sufficiently small. In [14] it is proved that the asym-
metric Burgers vortices are locally stable with respect to two dimensional
pcrturbations when $\lambda\in[0, \})$ and $|\alpha|$ is sufficiently large. However it is
still open whether or not the local stability of asymmetric Burgers vor-
tices holds in general. In particular, when $\lambda\in[\frac{1}{2},1)$ we do not know
whether thc asymmetric Burgers vortices obtained in Theorem 2 are lo-
cally stable or not even in the case of sufficiently large $|\alpha|$ . Finally, the
global stability is not obtained so far in any asymmetric case $\lambda\in(0,1)$ .
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