量子乱流 -超流動ヘリウムから原子気体ボース・アインシュ タイン凝縮体へ-

大阪市立大学・大学院理学研究科 坪田 誠 (Makoto Tsubota) Department of Physics、 Faculty of Science

Osaka City University

1. はじめに -もう一つのダ・ヴィンチ・コード-

自然界は流れに満ちている。 そしてそのほとんどの流れは、 乱流である。このような乱流 研究の歴史は古く、近代科学 および技術の発展とともにあ ったと言ってよい。最初に乱 流を近代的な視点からとらえ たのはレオナルド・ダ・ヴィ

ンチである。ダ・ヴィンチは水

図 1 ダ・ヴィンチが描いた乱流の スケッチ

から成る乱流のスケッチを残している(図 1)。ダ・ヴィンチ は、単に、乱流は乱れた流れであると言ったのではない。そ の中に構造があり、それを担うのは渦であると指摘したので ある。これは驚異的な観察眼と言わざるを得ない。この「乱 流は渦から成る」というメッセージを「もう一つのダ・ヴィ ンチ・コード(Another Da Vinci Code)」と呼ぼう¹⁾。

ダ・ヴィンチ以降現代に至るまで、乱流に関しては、物理 や数学などの基礎科学から流体工学・航空工学などの応用科 学に至るまで、膨大な研究が積み重ねられてきた^{2)、3)}。20 世紀になってからも、多くの名立たる物理学者が一度は取り 組む問題が乱流であった。事実、ランダウ、ファインマン、 ハイゼンベルグなどは乱流研究でも大きな足跡を残している。 しかし、ファインマンが「乱流は古典物理学の重要な未解決 問題である」と述べているように、乱流は難問であり、その 長い研究の歴史と関連分野の広範性にもかかわらず、十分な 解明がなされたとは言えない。その原因は、乱流が非常に複 雑な、非線形および非平衡の動的現象であるためである。こ のような大自由度の系に対し何らかの粗視化により自由度の 軽減または有効自由度の抽出ができれば良いが、それは困難 である。このとき「もう一つのダ・ヴィンチ・コード」が重 要な鍵と期待されるが、通常流体の乱流の場合、乱流と渦の 関係を理解することは容易ではない。

この「もう一つのダ・ヴィンチ・コード」は、最近、むしろ量子流体が生み出す量子乱流⁴⁻⁶⁾で実現していることが明らかになってきた。本稿は、量子乱流の入門的解説を試みる。 量子乱流は、物性物理学(低温物理学)、流体力学、数理物理 学を横断する非常に興味深い問題である。

2.超流動ヘリウムとボース・アインシュタイン凝縮

低温物理学の世界では液体ヘリウムの超流動の研究が行われてきた⁷⁾。 液体⁴He は 2.17K(ラムダ温度と呼ぶ)以下 の低温でボース・アインシュタイン凝縮を起こし、超流動状 態に転じる。超流動とは、非粘性の流れが安定に存在する状 態を言う。液体⁴He の超流動現象は 1930年代に発見された。 例えば、普通の流体は粘性のため直径ミクロン程度の毛細管 を流れる事はできない。しかしラムダ温度以下になった液体 ⁴He は粘性を失うため、容易に毛細管内を流れるようになる。 当時発見された様々な超流動現象を理解するために、ティサ、 およびランダウは有名な二流体モデルを提唱した。それによ れば、超流動液体⁴He は、非粘性の超流体と粘性を持った常 流体が混合したものとして記述される。両者の混合比は温度 に依存し、ラムダ温度以上では全て常流体であるが、ラムダ 温度以下低温になるにつれて超流体の比率が増し、約 1K 以 下ではほとんど全て超流体となる。

ボース凝縮を起こした系では、各原子の物質波がコヒーレントに重なった巨視的波動関数 $\Psi(\mathbf{r})=\sqrt{n_0(\mathbf{r})}\exp(i\theta(\mathbf{r}))$ が形成され

68

る。ここで $n_0(\mathbf{r}$)は凝縮体の密度、 $\theta(\mathbf{r})$ は位相である。このよう なコヒーレントな巨視的波動関数(秩序変数)の運動と、有 限温度では熱的励起の運動が共存することが超流動流体力学 の特徴である。熱的励起が常流体に対応し、全流体から常流 体を差し引いた部分が超流体になる。超流体および常流体の 運動方程式は、それぞれ、完全流体のオイラー方程式、およ び粘性流体のナビエ・ストークス方程式と同等であり、後述 の量子渦が存在しないとき二流体は独立である。超流動速度 場は $\Psi(\mathbf{r})$ の位相をポテンシャルとして $\mathbf{v}_s(\mathbf{r}) = (\hbar/m) \nabla \theta(\mathbf{r})$ と表され (ここでmはボース粒子の質量である)、rot $\mathbf{v}_s(\mathbf{r}) = 0$ となるポ テンシャル流れ(渦無し流れ)である。しかし超流体中に欠 陥が存在する場合はその限りでは無い。巨視的波動関数が空 間座標の一価関数であるという要請から、超流動速度場の循 環 $\Gamma = \oint \mathbf{v}_s(\mathbf{r}) \cdot d\mathbf{r}$ は循環量子 $\kappa = h/m$ を単位として量子化される。

と言う。 量子 渦 はオンサーガー⁸⁾、フ ァインマン ⁹⁾によって予言され、ヴァ イネンにより発見された。

量子渦が存在すると、その常流体と の相互作用を介して、超流体と常流体 は独立でなくなる。そしてこのような 量子渦が作る超流動速度場の乱流を、 量子乱流(または超流動乱流)と言う。

量子乱流(または超流動乱流)と言う。 図 2 このことは、驚くべき乱流の簡単化の ング

図 2 量子乱流中の渦タ ングル

可能性を示している。すなわち、普通の乱流(これを以下、 古典乱流と呼ぶ)では、それを構成する渦は不安定で生成消 滅を繰り返し、個々の渦の強さを表す循環は保存量ではなく、 連続的な任意の値をとり時間的に変動する。この場合、乱流 にとって渦の存在がどれほど不可欠かつ本質的かは自明でな い。ところが、量子乱流は、全て同一の、保存量としての循 環をもつ安定な位相欠陥である量子渦によって構成される。 これは、物質が原子によって構成されるように、乱流も最小 単位の渦によって構成されると言う意味で、要素還元的な見 方を乱流に導入できる可能性を示す。「もう一つのダ・ヴィン チ・コード」が量子流体でこそ期待できると言ったのは、こ うした事情のためである。

超流動ヘリウムの乱流が発見されて約半世紀が経過した。 ところが最近まで、古典乱流と量子乱流の対比は考えられた 事がなかった。1990年代の後半から量子乱流の研究は新しい 段階に突入し、世界的にも大きな潮流を形成しつつある⁶⁾。

3. 新世代の量子乱流研究

前節で述べたような認識を背景に、90年代の後半から、世界中で続々と画期的な実験研究が行われた。これらは、(i)量子渦が主役であり、(ii)量子乱流と古典乱流の比較を念頭に置き、さらには(iii)古典乱流に無い新奇の乱流現象を明らかにすると言う意味で、新世代の量子乱流研究と呼ぶに相応しい。 3-1 エネルギースペクトル

乱流のような多自由度の動的 現象を考える場合、統計則に注 目することは重要である。レイ ノルズ数が高く、十分発達した 一様等方な乱流において統計則 を研究することの重要性は、 1930 年代にテイラーによって 指摘された。これが近代的な乱 流研究の幕開けである・1941年、 コルモゴロフ^{10)、11)}は、エネル ギースペクトルのコルモゴロフ 則を提唱する。

定常な一様等方乱流のエネル ギースペクトルは図 3(a)のよう な特徴を持つ。これは、ある大 きなスケール(低波数)で流体 に注入されたエネルギーが、異な る波数モード間の非線形相互作用

により小さなスケール(高波数)に輸送され、最終的に粘性 により散逸するという、エネルギーの流れを表している。こ こで波数領域は、低波数側から、エネルギー保有領域、慣性 領域、エネルギー散逸領域に分けられる。エネルギー保有領 域では、何らかの外力により、ある波数 k_0 において注入率 ϵ でエネルギーが流体に注入される。エネルギー散逸領域では、 コルモゴロフ波数 $k_{\kappa} = (\epsilon/\nu^3)^{1/4}$ において散逸率 ϵ でエネルギー が散逸される。

乱流に特有な自己相似性が現れるのは、中間の慣性領域である。ここでは、粘性散逸は効かず、エネルギー注入も無く、エネルギーは保存されたまま低波数から高波数へ、輸送率 ϵ で輸送される。この領域が自己相似的であり、エネルギースペクトル E(k)が $k \ge \epsilon$ のみによって決まるとすれば、有名なコルモゴロフのマイナス3分の5乗則 $E(k)=C\epsilon^{2/3}k^{-5/3}$

が得られる。ここで C はコルモゴロフ定数と呼ばれ、物質に よって定まる 1 のオーダーの普遍定数である。この慣性領域 の自己相似性は、しばしば、図 3(b)のような、リチャードソ ン・カスケード過程によって説明される。 大スケールから小 スケールへのエネルギーの輸送は、このように大きな渦が自 己相似的に小さな渦に分裂することによって、象徴的に表さ れる。この描像はいかにももっともらしいが、このカスケー ド過程は、露に観測されたことがなく、あくまで概念的なも のに過ぎない。それは、古典流体中では渦の同定が困難だか らである。

90 年代後半から、超流動⁴He において、逆向きに回転する 円板間で生成される乱流¹²⁾で、また格子の背後に作られる乱流¹³⁾において、相次いでコロモゴロフ則が確認された。

有限温度で超流体と常流体の両方が存在する場合のエネ ルギースペクトルの理解は容易でない。ここでは十分低温で 常流体が存在しない、純粋な超流体の場合について述べる。 現在まで、量子乱流のエネルギースペクトルを数値的に調べ た研究は3つある。まず、フランスのノラ達¹⁴⁾は、巨視的波 動関数が従う Gross-Pitaevskii(GP)方程式による量子乱流の エネルギースペクトルを数値的に求めた。それは一時的にコ ルモゴロフ則を示すように見えるが、時間が経過するとすぐ にそこから逸脱する。次いで、荒木、坪田達¹⁵⁾は渦糸法によ りやはり量子乱流のエネルギースペクトルを調べ、コルモゴ ロフ則が成り立つことを示した(渦糸モデルは、古典流体力学 では理想化された toy model だが、量子流体力学では前述の 理由により、現実的なモデルとなる)。さらに、小林と坪田は GP 方程式により、滅衰乱流¹⁴⁾および定常乱流¹⁵⁾を作り、い ずれの場合もコルモゴロフ則が成り立つことを見いだした。 GP 方程式のエネルギースペクトルを考察するとき、これが圧 縮性流体を記述することに注意しなければならない。エネル ギーを圧縮成分と非圧縮成分に分け、非圧縮成分が量子渦の リチャードソンカスケードを反映したコルモゴロフスペクト

ルを示すのである。

図 4 定常渦タングル(a)とエネルギース ペクトル(b)

3-2 速度に依存しない量子乱流遷移

通常の乱流遷移は流速、すなわちレイノルズ数を増すことで起こる。フィンランドのクルシウス達¹⁸⁾は、超流動³HeのB相において、流速ではなく、むしろ温度によって決まる乱流遷移を発見した。液体³Heは、液体⁴Heとは異なり、フェ

ルミ粒子である³He原子が p 波三重項クーパー対を形成・凝 縮 して、ミリケルビンの 超 低 温 域 で 超 流 動 に な る ⁷⁾ 。この 異 方的超流体では多数の秩序変数の存在を反映して、多彩な量 子渦やテクスチャーが存在する。超流動⁴Heとは異なり、超 流動³He では核磁気共鳴(NMR)により量子渦の構造や本数を 観 測 す る こ と が で き る(こ の よ う な 観 測 が 可 能 に な る の は「 量 子渦」だからであることを強調しておく)。クルシウス達は超 流動³Heを入れた回転円筒容器中にわずかな本数の量子渦を 注入しその時間発展を調べたところ、約 0.6T。を境に劇的な 変化を観測した(ここで T。は超流動転移温度である)。 高温 側では、注入された渦は回転軸に平行にそろい、単に渦格子 を形成するだけであった。しかし低温側では渦は不安定にな り 再 結 合 を 繰 り 返 し て 分 裂 し 、 約 千 本 に も 増 殖 し た 。 温 度 を 下げると渦に働く相互摩擦が減少し、それがこの劇的な不安 定性を生む原因になっている。この挙動は坪田達の数値計算 により確認されている¹⁹⁾。

3-3 振動物体が作る量子乱流

ドイツのショッペ達²⁹⁾は、超流動⁴He 中で、超伝導で磁気 浮上させた半径 100 ミクロンの固体球を振動させ、その駆動 力がある臨界値を超えると、球の応答(振動速度)が大きく 変化することを観測した。これは常流体の効果ではなく、超 流体の応答が変化したものであることがわかっている。この 後、国内外の複数のグループが超流動⁴He、または³He 中で 振動細線、または振動格子を用いた実験を行った²¹⁻²⁵⁾。いず れも振動物体の形状等種々の条件は異なるものの、注目すべ き共通の物理が観測された。

(i) 振動物体の応答が変化する臨界速度は、数十 mm/sec のオ ーダーである。これを超えると、駆動力を増してもそれが有 効に物体の振動速度を上げることができなくなる。言い換え れば、駆動によって注入したエネルギーが、物体の振動以外 のどこかに逃げてしまっている(ただしこの臨界速度は、³He の場合は約二十分の一になる)。

(ii) この応答の変化は、駆動力を徐々に増した過程と減じた

過程の間で、ヒステリシスを示す。 この現象の全貌はまだ明らか になっていないが、もともと超 流体中に残っている量子渦の応 答が変化したことは確実と考え られている。これらの物体に、 最初どのような形状で量子渦が 付着しているかは明らかではな い。しかし、坪田達の量子渦糸 の数値計算 26 によれば(図 5)、 物体の振動振幅が小さいときは、 量子渦は単にケルビン波を共鳴 励起して振動するだけだが、振 動振幅が増すと量子渦の振動が 大振幅・非線形になり、多数の 再結合を起こして渦輪の放出を 始め、振動物体は量子渦タング ルに覆われるようになる。この ことが事の本質であるとは思わ れるが、(ii)のヒステリシスの原 因も含めて、まだ十分な解明が なされたとは言えない。 3-4 量子乱流の可視化

ここ数年の著しい発展に量子 乱流の可視化がある。アメリカ のラスロップ達は、超流動⁴He 中にミクロンサイズの固体水素 粒子を注入し、レーザーによる 可視化を行った²⁷⁾。図6のaは ラムダ温度以上の場合で、水素 粒子はただランダムに分布して がしてある。ところがラム ダ温度以下の超流動状態になる

図 5 球に付着した残余渦が交流流れ場を受けて渦タングルに発展する様子²⁶⁾。

渦の可視化 27)。

と、水素粒子が線状に配列するようになる(b、c)。これは量 子渦に芯に水素粒子が捕獲されたものである。図 6d は回転状 態で、量子渦の回転軸方向に整列し格子を形成していること がわかる。さらに同グループは量子渦の再結合も観測し²⁸⁾、 それが循環量子 κによるスケーリング則に従うことを論じて いる。

4. 中性原子気体の量子渦と量子乱流

1995 年レーザー冷却による中性原子気体ボース凝縮の実現 は、物性物理学の世界に新風を吹き込んだ²⁹⁾。この系は、希 薄気体であるが故に、超流動⁴He に比べて原子間相互作用が 弱く、平均場近似が定量的に正しくなる。さらに、相互作用 の強さと符号がフェッシュバッハ共鳴により変調できること、 原子密度や位相の可視化が可能であるなど、それまでの物性 物理の系が持たない、著しい特徴を持っている。ここではそ のような特徴が遺憾なく発揮された量子渦の物理について述 べる。「もう一つのダ・ヴィンチ・コード」はこの系でも十分 に生きていることがおわかりいただけるであろう。 4-1 回転する BEC における量子渦格子

中性原子気体ボース凝縮の実現後、この系が果たして超流動性を示すか否かが大きな関心となった。ボース凝縮と超流動は本来に別の概念であって、一方が他方の必要条件でも十 分条件でもない。

実際にボース凝縮体をかき 混ぜることにより、量子渦の 格子が観測された^{30、31)}。こ のような回転体に対する応答 は量子流体力学独特のもので ある。古典流体の場合は、任

図 7 回転するボース凝縮体での 量子渦の格子 ³⁰⁾

意の回転角速度に対して剛体回転を行うが、量子流体は循環の量子化のために、任意の回転角速度に対して量子渦の複数 作ることで応答するのである。笠松、坪田、上田は、回転下 の GP 方程式の数値解析を行い、回転が開始してから量子渦 格子が形成するまでの動的過程 を明らかにした³²⁾。通常ボース 凝縮体は調和振動子型の捕獲ポ テンシャルに捕獲されているが、 回転が加わると、その外側の希 薄領域に発生した位相欠陥(幽 霊渦)が凝縮体表面に押し寄せ、 表面の不安定を引き起こす。や がて回転角速度に対応した個数 の量子渦が凝縮体内に侵入し、 最約に格子を形成する。この挙 動は先行する実験結果とよく一致 した³³⁾。

図 8 回 転 す る ボ ー ス 凝 縮 体 の 量 子 渦 格 子 形 成 。

4-2 原子気体ボース凝縮体の量子乱流

量子渦の作る典型的な共同現象と言えば、流れ下の渦タン グル(量子乱流)と回転下の渦格子である。超流動ヘリウムの 世界では、どちらも徹底的に研究されてきたが、原子気体ボ ース凝縮体のほとんど全ての渦の研究は、格子に限定されて おり、量子乱流は考えられたことが無かった。その大きな理 由の一つは、原子気体ボース凝縮体は、捕獲ポテンシャルに 捕獲された有限系であるため「流す」ことができないからで ある。しかし、最近、小林と坪田は、直交する二軸歳差回転 を課すことにより、この系で乱流を作ることができることを GP 方程式の解析により示した³⁴⁾。実はこのアイデアは、既 に水に対して用いられていたのだが³⁵⁾、当初、小林と坪田は そのことを知らなかった。得られた乱流の定常状態では、エ ネルギースペクトルのコルモゴロフ則が確認された。実験に よる実現が期待される。

5. 終わりに

量子乱流は現在、世界的にも多くの研究者が注目しており、 今後ますます分野の枠を超えた研究が盛んになると思われる。 本稿で述べたように、量子乱流の研究は、超流動へリウムか ら中性原子気体ボース凝縮体にまで広がりつつある。何より も、渦を通じて乱流を理解するという、古典乱流では必ずし も実現しなかった「もう一つのダ・ヴィンチ・コード」を、 乱流に仕掛けることができる。それは、ダ・ヴィンチ以来 500 年の大きな謎に肉薄することを可能にするかもしれない.

引用文献

1)ダン・ブラウン(越前敏弥訳):『ダ・ヴィンチ・コード』(角川書店、2004)
2)U. Frisch: TURBULENCE (Cambridge University Press、1995).
3)木田重雄、柳瀬眞一郎:『乱流力学』(朝倉書店、1999)
4)坪田誠/西森拓:『量子渦のダイナミクス/砂丘と風紋の動力

学』(培風館、2008)

5)M. Tsubota: J. Phys. Soc. Jpn. 77 (2008) 111006.

6)Progress in Low Temperature Physics, ed. W. P. Halperin and M. Tsubota (Elsevier, 2008) Vol. 16.

7) 山 田 一 雄 、 大 見 哲 巨 :『 超 流 動 』 (培 風 館 、 1995)

8) L. Onsager: Nuovo Cimento Suppl. 6 (1949) 249.

9)R. P. Feynman: Progress in Low Temperature Physics, ed. C. J. Gorter (North-Holland, 1955) Vol. I, p.17.

10)A. N. Kolmogorov: Dokl. Akad. Nauk SSSR 30 (1941) 299 [reprinted in Proc. R. Soc. A 434 (1991) 9].

11)A. N. Kolmogorov: Dokl. Akad. Nauk SSSR 32 (1941) 16 [reprinted in Proc. R. Soc. A 434 (1991) 15].

12) J. Maurer and P. Tabeling: Europhys. Lett. 43 (1998) 29.

13)S. R. Stalp, L. Skrbek and R. J. Donnelly: Phys. Rev. Lett. 82 (1999) 4831.

14)C. Nore, et al.: Phys. Fluids 9 (1997) 2544.

15)T. Araki, M. Tsubota and S. K. Nemirovskii: Phys. Rev. Lett. 89 (2002) 145301.

16)M. Kobayashi and M. Tsubota: Phys. Rev. Lett. 94 (2005) 065302.

17) M. Kobayashi and M. Tsubota: J. Phys. Soc. Jpn. 74 (2005) 3248. 18) A. P. Finne, T. Araki, B. Blaauwgeers, V. B. Eltsov, N. B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota and G. E. Volovik: Nature 424 (2003) 1022. 19) A. P. Finne, V. B. Eltsov, G. Eska, R. Hänninen, J. Kopu、 M. Krusius, E. V. Thuneberg and M. Tsubota: Phys. Rev. Lett. 96 (2006) 085301. 20) J. Jager, B. Schuderer and W. Schoepe: Phys. Rev. Lett. 74 (1995) 566. 21)H. A. Nichol, et al.: Phys. Rev. Lett. 92 (2004) 244501. 22)S. N. Fisher, et al.: Phys. Rev. Lett. 86 (2001) 244. et al.; Phys. Re. Lett. 100 (2008) 045301. 23) R. Goto, 24)D. I. Bradley, et al.: Phys. Rev. Lett. 95 (2005) 035302. 25)D. I. Bradley, et al.: Phys. Rev. Lett. 96 (2006) 035301.C. 26)R. Hänninen, M. Tsubota. W. F. Vinen: Phys. Rev. B75 (2007) 064502. 27)G. P. Bewley, D. P. Lathrop, K. R. Sreenivasan: Nature 441 (2006) 588. 28) M. S. Paoletti, M. E. Fisher, D. P. Lathrop: arXive: 0810.552. 29) C. J. Pethick and H. Smith: Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2002). 30) K.W. Madison et al.: Phys. Rev. Lett. 84 (2000) 806. 31) J. R. Abo-Shaeer et al.: Science 292 (2001) 476. K. Kasamatsu and M. Ueda: Phys. Rev. A65 32)M. Tsubota, (2002) 023603.33)K. W. Madison et al.: Phys. Rev. Lett. 86 (2001) 4443. 34) M. Kobayashi and M. Tsubota: Phys. Rev. A76 (2007) 045603. 35) S. Goto et al.: Phys. Fluids 19 (2007) 061705.

78