0000000000
0 16430 2009 0 43-49 43

ON FIRMLY NONEXPANSIVE TYPE MAPPINGS
X IN BANACH SPACES
(\F v N\ZMILHIF 5 FIRMLY NONEXPANSIVE TYPE E{IZDW\T)

FUMIAKI KOHSAKA (#8x 588) AND WATARU TAKAHASHI (%% #5)

ABSTRACT. In this paper, we state the recently obtained strong convergence theorem of
Browder’s type for firmly nonexpansive-type mappings in Banach spaces.

1. INTRODUCTION

The following is Browder’s strong convergence theorem [5] for nonexpansive mappings
in Hilbert spaces; see, for instance, Takahashi [24]:

Theorem 1.1 (Browder [5]). Let H be a Hilbert space, C a nonempty closed convex
subset of H, T a nonexpansive mapping from C into itself such that F(T) is nonempty,
and x € C. Then the following hold:

(1) For each t € (0,1), there ezists a unique u, € C such that
ur =tz + (1 — )T uy;

(2) the net {u;} converges strongly to Pery(z) ast | 0, where Pr(1) denotes the metric
projection from H onto F(T).

This result was extended to accretive operators in Banach spaces by Reich [18] and
Takahashi and Ueda [27].

Recently, the authors [13] proposed the class of firmly nonerpansive-type mappings in
Banach spaces. It is a subclass of D-firm operators introduced by Bauschke, Borwein,
and Combettes [3]. This class contains the classes of firmly nonexpansive mappings in
Hilbert spaces and resolvents of maximal monotone operators in Banach spaces. In [14],
the class of nonspreading mappings in Banach spaces was also introduced. Every firmly
nonexpansive-type mapping is known to be nonspreading. Then fixed point theorems and
convergence theorems for these nonlinear operators were investigated [13,14].

In this paper, we state a strong convergence theorem [15] of Browder’s type for firmly
nonexpansive-type mappings in Banach spaces.

2. PRELIMINARIES

Throughout the paper, every linear space is real. The set of real numbers is denoted by
R. The conjugate space of a Banach space F is denoted by E*. We denote z*(z) by (z, z*)
for all (z,z*) € E x E*. For a sequence {z,} of E, the strong and weak convergence of
{z,} to z € E is denoted by z,, — z and z,, — z, respectively.
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Let E be a Banach space with norm || - || and let S(E) = {z € E : ||z]| = 1}. Then the
duality mapping J from E into 2¥° is defined by

(2.1) Jz = {¢" € E* : (z,2") = ||z||” = ||="||*}

for all z € E. It is known that Jz # @ for all z € E. The space F is said to be smooth if
the limit

22) L e+ tyll = el

t—0 t

exitsts for all z,y € S(E). In this case, the norm of E is said to be Gdteauz differentiable.
The norm of E is also said to be uniformly Gateauz differentiable (resp. uniformly Fréchet
differentiable) if the limit (2.2) converges uniformly in z € S(E) for all y € S(E) (resp.
uniformly in z,y € S(E)). The space E is said to be uniformly smooth if the norm of E
is uniformly Fréchet differentiable.

The space E is said to be strictly convez if ||(z + y)/2|| < 1 whenever z,y € S(E) and
z # y. It is also said to be uniformly convez if for each ¢ € (0, 2], there exists 6 > 0 such
that ||z — y|| > € and z,y € S(E) imply that |[(x +y)/2|| <1 — 4. The space E is said
to have the Kadec-Klee property if x, — x whenever {z,} is a sequence of E such that
T, — z and ||z,|| — ||z||. We know the following; see, for instance, [10,24]:

(1) If E is smooth, then J is single-valued;

(2) if E is strictly convex, then Jz N Jy # @ implies that = = y;

(3) if E is reflexive, then J is onto;

(4) E is uniformly smooth if and only if E* is uniformly convex;

(5) if E is uniformly convex, then E is a strictly convex and reflexive Banach space
with the Kadec—Klee property.

Let E be a smooth Banach space. Following [1,12], let ¢ be a mapping from E x E
into R defined by

(2.3) ¢z, y) = |lzlI* — 2 (z, Ty} + llyll?
for all z,y € E. It is obvious that
(2.4) (lzll = lw)? < ¢z, y) < (=]l + llyl})?

for all z,y € E. If C is a noncmpty closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, then for each z € E, there exists a unique z € C (denoted
by IIcz) such that ¢(z,z) = mingec ¢(y,z). The mapping Ilc is called the generalized
projection [1] from E onto C. Similarly, for each x € E, there exists a unique z € C
(denoted by Poz) such that ||z — z|| = mingec ||ly — z||. The mapping Fc is called the
metric projection from E onto C. It is easy to see that

(2.5) 11c(0) = Pc(0).
If E is a Hilbert space, then IIo(z) = Pc(z) for all z € E. For (z,z) € E x C, the
following hold; see [1,12,24]:
(1) z = H¢(z) if and only if (y — z,Jz — Jz) < 0 for all y € C;
(2) z = Po(z) if and only if (y — 2z, J(z — 2)) < Oforally € C.
Let E be a smooth Banach space, C a nonempty closed convex subset of E, and T a
mapping from C into itself. The set of fixed points of T is denoted by F(T). Then T is
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said to be of firmly nonezpansive type [13] if
(2.6) Tz —Ty,Jz — JTz — (Jy — JTy)) >0

for all z,y € C. If E is a Hilbert space, then J = I (the identity operator on E) and hence
T is of firmly nonexpansive type if and only if it is firmly nonexpansive in the classical
sense, that is,

(2.7) |Tz — Tyl|* < (Tz — Ty, z — y)

for all z,y € C; see, for example, [6,8,9,11,26]. It is easy to verify that the generalized
projection operator /Ic is of firmly nonexpansive type and F(IIc) =C. If r >0, C is a
nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space
E, and A C E x E* is a monotone operator such that D(A) c C ¢ J 'R(J + rA), then
the resolvent @), of A defined by

(2.8) Q= (J+1A) Jz

for all z € C is a firmly nonexpansive-type mapping from C into itself and F(Q,) = A™10;
see [13-15] for more details. The class of firmly nonexpansive-type mappings is included
in the class of D-firm operators [3], where D stands for a Bregman distance. We also
know that T is of firmly nonexpansive type if and only if

(2.9) ¢(Tz,Ty) + ¢(Ty,Tz) + ¢(Tx, z) + $(Ty,y) < ¢(Tz,y) + ¢(Ty, z)

for all z,y € C; see [3,13]. In particular, if a firmly nonexpansive-type mapping T has a
fixed point, then

(2.10) ¢(u,Tz) + ¢(T'z,7) < P(u, )
for all u € F(T') and z € C. The mapping 7 is also said to be nonspreading [14] if
(2.11) (Tz, Ty) + ¢(Ty, Tz) < ¢(Tz,y) + ¢(Ty, z)

for all z,y € C. It is easy to see that every firmly nonexpansive-type mapping is non-
spreading. A point u € C is said to be asymptotic fized point [19] of T if there exists a
sequence {z,} of C such that z, — v and ||z, — Tz,|| — 0. The set of asymptotic fixed
points of 7" is denoted by F (T). The mapping T is also said to be relatively nonexpan-
sive [16,17] if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) F(T) = F(T);

(3) ¢(u,Tz) < ¢(u,z) for all u € F(T) and z € C.

We know the following lemmas:

Lemma 2.1 ([14]). Let E be a strictly conver Banach space with a uniformly Gateaur
differentiable norm, C a nonempty closed conver subset of E, and T a nonspreading
mapping from C into itself. Then F(T) = F(T). Further, if F(T) is nonempty, then T
is relatively nonexpansive.

Lemma 2.2 ([17]). Let E be a smooth and strictly conver Banach space, C a nonempty
closed convex subset of E, and T a mapping from C into itself such that F(T') is nonempty
and ¢(u,Tx) < ¢(u,z) for allu € F(T) and z € C. Then F(T) is closed and convez.

Motivated by the technique in [23,24], the following fixed point theorem for nonspread-
ing mappings in Banach spaces was shown:



46

F. KOHSAKA AND W. TAKAHASHI

Theorem 2.3 ([14]). Let E be a smooth, strictly convez, and reflerive Banach space, C
a nonempty closed conver subset of E, and T a nonspreading mapping from C into itself.
Then F(T) is nonempty if and only if there exists x € C such that {T"z} is bounded.

As a direct consequence of Theorem 2.3, we obtain the following:

Corollary 2.4 ([13]). Let E be a smooth, strictly convez, and reflerive Banach space, C
a nonempty closed convex subset of E, and T a firmly nonexpansive-type mapping from
C into itself. Then F(T) is nonempty if and only if there exists x € C such that {T"z}
is bounded.

The following lemma implies that the class of firmly nonexpansive-type mappings is
coincident with that of resolvents of monotone operators:

Lemma 2.5 ([14]). Let E be a smooth, strictly convez, and reflerive Banach space, C a
nonempty closed convex subset of E, and T a mapping from C into itself. Then T is of
firmly nonexpansive type if and only if there exists a monotone operator A C E x E* such
that D(A) c C C J'R(J + A) and Tz = (J + A)" 'z for allz € C.

3. RESULTS

Using Lemmas 2.1, 2.2 and Corollary 2.4, we can show the following strong convergence
theorem of Browder’s type for firmly nonexpansive-type mappings in Banach spaces:

Theorem 3.1 ([15]). Let E be a smooth, strictly convez, and reflexive Banach space, C a
nonempty bounded closed conver subset of E with 0 € C, and T a firmly nonexpansive-type
mapping from C into itself. Then the following hold:

(1) For eacht € (0,1), there exists a unique u, € C such that
up = (1 — t)Tuy;

(2) if E has the Kadec-Klee property and the norm of E is uniformly Gdteaur dif-
ferentiable, then the net {u;} converges strongly to Pp1)(0) ast | 0, where Pr(r)
denotes the metric projection from E onto F(T).

The following is a direct consequence of Theorem 3.1 and Lemma 2.5:

Theorem 3.2 ([15]). Let E be a smooth, strictly convez, and reflerive Banach space and
C a nonempty bounded closed convex subset of E with 0 € C. Let r be a positive real
number, A C E x E* a monotone operator such that D(A) ¢ C ¢ J 'R(J + rA), and
Qrx = (J+71A) Yz for all z € C. Then the following hold:

(1) For each t € (0,1), there exists a unique uy € C such that
up = (1 — 8)Qru;

(2) if E has the Kadec-Klee property and the norm of E is uniformly Gateaux differ-
entiable, then the net {u;} converges strongly to Ps-1(0) as t | 0, where Py-1¢
denotes the metric projection from E onto A™'0.

Corollary 3.3. Let E be a smooth, strictly convez, and reflerive Banach space and A C
E x E* a mazimal monotone operator such that D(A) is bounded and 0 € D(A), where
D(A) denotes the norm closure of D(A). Let r be a positive real number and Q,z =

(J +rA)"YJz for all z € D(A). Then the following hold:
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(1) For each t € (0,1), there exists a unique u; € D(A) such that

uy = (1 — )Qrus;

(2) if E has the Kadec—Klee property and the norm of E is uniformly Géteauz differ-
entiable, then the net {u;} converges strongly to Ps-19(0) as t | 0, where P41,
denotes the metric projection from E onto A™'0.

Proof. We know that D(A) is closed and convex. In fact,
(3.1) ltlgl Jhr=zx

for all z € © D(A), where T6.D(A) denotes the closed convex hull of D(A) and J, is
defined by J; = (I +tJ 'A)"! for all t > 0; see [2,25] for more details. Thus we have
€ D(A) C D(A). This implies that € D(A) = D(A) and hence D(A) is closed and
convex.

Since A is maximal monotone, we know that R(J + rA) = E* see [2,7,22,25]. Putting

C = D(A), we know that C is a bounded closed convex subset of E with 0 € C,

(3.2) DA CCCE=J'E"=J'R(J+rA),
and Q) is a firmly nonexpansive-type mapping from C into itself. Thus, by Theorem 3.2,
we obtain the conclusion. O

Let E be a Banach space and f a function from F into (—o00,00]. Then f is said to be
proper if the effective domain D(f) = {z € E : f(z) € R} of f is nonempty. It is said to
be conver if

(3.3) floz + (1 -a)y) < af(z)+ (1 - a)f(y)

whenever z,y € E and a € (0,1). It is also said to be lower semicontinuous if {r € E :
f(z) <r}isclosed in F for all r € R. Let z € E be given. Then a point z* € E* is said
to be a subgradient of f at z if

(3.4) f(@)+(y—=z,2%) < f(y)

for all y € E. The set of subgradients of f at z is said to be the subdifferential of f at x
and denoted by 8f(x). The mapping 8f C E x E* is called the subdifferential mapping
of f.

Using Corollary 3.3, we can also show the following corollary:

Corollary 3.4 ([15]). Let E be a smooth, strictly convez, and reflerive Banach space, T
a positive real number, and f a proper lower semicontinuous convez function from E into
(=00, 00] such that D(f) is bounded and 0 € D(f). Then the following hold:

(1) For each t € (0,1), there exists a unique uy € D(f) such that

u = (1—1)-arg ggg{f(y) + -2-1;¢(y, ut)};

(2) if E has the Kadec-Klee property and the norm of E is uniformly Gateauz differ-
entiable, then the net {u;} converges strongly to P(0) ast | 0, where P denotes
the metric projection from E onto argminycg f(y).
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Proof. Brgndsted and Rockafellar’s theorem [4] implies that D(0f) is norm dense in D(f),

that is, D(f) € D(0f); see also [25]. This gives us that D(3f) = D(f). Rockafellar’s
theorem [20,21] also ensures that the subdifferential df of f is maximal monotone; see
also [25]. We also know that

(3.5) Q,r = arg Eéié‘ {f(y) + g;rb(y, :v)}

for all z € C = D(f), where Q.z = (J +rdf)™'J for all z € C; see, for instance,
[12,25]. It is also known that (8f)~!(0) = argminyeg f(y) and D(0f) C D(f). Thus, by
Corollary 3.3, we obtain the conclusion. O

We do not know the answers to the following problems:
Problem 3.5. Is it possible to prove Theorem 3.1 without assuming that C is bounded?
Problem 3.6. Is it possible to prove Theorem 3.1 for a net of the form: z € C and
(3.6) uy =tz + (1 — t)Tu,
for all ¢t € (0,1)7

Problem 3.7. Is it possible to obtain an analogous result of Browder’s strong convergence
theorem for nonspreading mappings in Banach spaces?
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