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Abstract

When a differentiable Minty variational inequality has a solution, that is
also a solution to the primitive optimization problem. This may lead to argue
that some relation between the existence of solution of the inequlity and the
(generalized) convexity of the primitive function can be established. The pa-
per review some results on this topic, exlporing the case of non differentiable
primitive function and generalized variational inequality of Minty type. Finally
the common convexity assumption of the feasible region is investigated. Key-
words: Minty variat\’ional inequality, generalized convexity, star-shaped sets,
existence of solutions.

1 Introduction

We restrict this survey to the case of real spaces. Some improvement to linear spaces
can be found in [3]. The classical formulation of the Minty Variational Inequality
(for short mvi) involves a function $F$ : $K\subset \mathbb{R}^{n}arrow \mathbb{R}^{n}$ and a nonempty feasible
region $K$ . A solution to mvi is any vector $x^{*}\in K$ such that:

$MVI(F, K)$ $\langle F(x),$ $x^{*}-x\rangle\leq 0$ , $\forall x\in K$ .
where $\langle\cdot,$ $\cdot\rangle$ denotes the inner product defined on $\mathbb{R}^{n}$ . We also say $x^{*}\in MVI(F, K)$

to denote the solution set of the mvi.
When there exists a primitive, Fr\’echet differentiable function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ such that
$F=f’$ , the variational inequality $(MVI(f’, K))$ is said differentiable and provides a
very general and suitable mathematical model for a wide range of problems (see e.g.
[1, 11, 14] and the references therein). Differentiable variational inequalities have
been widely studied in conjunction to the minimization of the primitive function $f$

over the feasible region $K$ (see e.g. [11]). In [10] a vector extension of the variational
inequality is introduced and related to vector optimization. FMrther development
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of vector variational inequalities can be found in [4, 6, 7, 8, 15]. It can be easily
understood that the differentiable mvi states that the directional derivative of $f$ at
$x$ , along the direction $x^{*}-x$ has to be non positive.

Without any specific assumption on $f$ , but differentiability, we have that the
(differentiable) mvi is a sufficient optimality condition over a convex feasible region.
Inspired by this result we wondered if the result may lead to conclude that, when
$MVI(f’, K)$ is solvable, necessarily the primitive function $f$ has some regularity
condition. Supposedly this condition could be some generalized convexity. Indeed
Section 2 proves that, for $n=1$ , the primitive function has to be quasiconvex.
However an example shows that the same is no longer true for $n>1$ . We focus on
this problem under a more general setting which involves Dini type derivatives and
a generalized Minty type variational inequality in Section 3. We prove that $f$ is an
increasing along rays function, which is a generalization of quasiconvexity. Finally,
in Section 4 we explore the role of convexity of the feasible region.

2 Preliminar results

The (primitive) optimization problem we refer to is:
$P(f, K)$ $\min f(x)$ , $x\in K\subseteq \mathbb{R}^{n}$ .
A point $x^{*}\in K$ is a (global) solution of $P(f, K)$ when $f(x)-f(x^{*})\geq 0,$ $\forall x\in K$ .
The solution is strict if $f(x)-f(x^{*})>0,$ $\forall x\in K\backslash \{0\}$ . We denote by $GM(f, K)$ the
set of solutions to $P(f, K)$ . Along this section we may assume that $f$ is defferentiable
over an open set containing $K$ .

The following classical result, known as Minty variational principle (see [10]),
motivates our interest on the problem.

Theorem 1. Let $K\subset \mathbb{R}^{n}$ be convex. If $x^{*}\in K$ is a solution to $MVI(f’, K)$ , then
$x^{*}$ is a global minimizer of $f$ over $K$

Proof: Since $x^{*}$ is a solution of the MVI and $K$ is convex, then we have:

$\langle f’(tx^{*}+(1-t)y),$ $tx^{*}+(1-t)y-x^{*}\rangle\geq 0,$ $\forall t\in[0,1],$ $\forall y\in K$.

Hence, we obtain $\langle f’(tx^{*}+(1-t)y),$ $y-x^{*}\rangle\geq 0,$ $\forall t\in[0,1$ [ and $\forall y\in K$ . By a
classical $Meai_{i}$ Value Theorem, we have that, $\forall y\in K,$ ョ$\hat{t}\in$ ] $0,1$ [, such that:

$f(y)-f(x^{*})=\langle f’(\hat{t}x^{*}+(1-t)y),$ $y-x^{*}\rangle$ .

This completes the proof. $\square$

Theorem 1 states that the mvi is a sufficient optimality condition for differen-
tiable function $f$ . We might be interest to check if, under the assumption the mvi
is solvable, then $f$ is quasiconvex. We first recall the definition and a few facts on
this class of function.
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Definition 1. Let $K\subseteq \mathbb{R}^{n}$ be convex. A function $f$ : $Karrow \mathbb{R}$ is quasi-convex if and
only if the (sub-)level sets:

$lev_{\leq c}f:=\{x\in K|f(x)\leq c\}$ , $\forall c\in \mathbb{R}$

are convex.
Proposition 1 ([2]). Let $K\subseteq \mathbb{R}^{n}$ be convex. A differentiable function $f$ : $Karrow \mathbb{R}$

$is$ quasi-convex if and only if, for any couple $x_{1},$ $x_{2}\in K$ , such that $f(x_{1})\leq f(x_{2})$ ,
we have:

$\langle f’(x_{2}),$ $x_{1}-x_{2}\rangle\leq 0$ .

In the simple case of $f$ : $K\subseteq \mathbb{R}arrow \mathbb{R}$ , our claim proves to be true.

Proposition 2. Let $K\subseteq \mathbb{R}$ be convex and $f:\mathbb{R}arrow \mathbb{R}$ . If there exists a solution $x^{*}$

of $MVI(f’, K)$ , then $f$ is quasi-convex.

Proof: From $MVI(f’, K)$ we see that the function is nondecreasing on each halfline
with origin at $x^{*}$ , and hence is quasi-convex.

However the same result is no longer true when $n>1$ .

Example 1. Let $f:\mathbb{R}^{2}arrow \mathbb{R}$ be defined as $f(x_{1}, x_{2})=(x_{1}x_{2})^{2}$ The feasible region
is $K=\mathbb{R}^{2}$ , hence convex. Although $x^{*}=(O, 0)$ is a solution to $mvi$ :

$\langle\{\begin{array}{l}2x_{1}x_{2}^{2}2x_{l}^{2}x_{2}\end{array}\},$ $\{\begin{array}{ll}0- x_{l}0- x_{2}\end{array}\}\rangle\leq 0$

the function $f$ is clearly not quasiconvex.

Remark 1. One can notice that sublevel sets of $f$ in Example 1 are not convex,
but star-shaped.

3 A more general setting of the problem

First we try to consider also the case of non differentiable optimization problem
$P(f, K)$ . To do so, we recall that the lower Dini directional derivative of $f$ at the
point $x\in K$ in the direction $u\in \mathbb{R}^{n}$ is defined as an element of $\overline{\mathbb{R}}$ $:=\mathbb{R}\cup\{\pm\infty\}$ by:

$f_{-}’(x,u)= \lim_{arrow}$ $inf\frac{f(x+tu)-f(x)}{t}$ .

Now it is straightforward to introduce the following generalized mvi, for $x^{*}\in K$ :

$MVI(f_{-}’, K)$ $f_{-}’(y, x^{*}-y)\leq 0$ , $\forall y\in K$ .
Again, a solution to the inequality is denoted by $x^{*}\in MVI(f_{-}’, K)$ .
In order to extend the result in Proposition 2, we look for some kind of generalized

convexity of $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ which, for $n=1$ , may reduce to ordinary quasyconvexity.
This is the case of the notion of Increasing Alogn Rays (IAR) functions, popularized,
among others, by Rubinov (see e.g. [13]). As convex functions are defined over
convex sets, IAR functions involves star-shaped (st-sh in the following) sets.
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Definition 2. A set $K$ is said to be star-shaped at $x\in K$ if and only if, $\forall y\in K$

and $\forall t\in[0,1]$ , we have $z:=x+t(y-x)\in K$ .

Definition 3. For any set $K\subseteq \mathbb{R}^{n}$ the kernel of $K$ is defined as the set:

$kerK:=\{x\in K:y\in K,$ $t\in[0,1])\Rightarrow x+t(y-x)\in K\}$ .

Remark 2. i) A nonempty set $K$ is star-shaped if $kerK\neq\emptyset$ .

ii) The set $kerK$ is convex for any arbitrary st-sh set $K$ .

iii) We assume by definition that the empty set is st-sh.

Definition 4. A function $f$ defined on $\mathbb{R}^{n}$ is called increasing along rays at a point
$x^{*}$ (for short, $f\in IAR(x^{*})$ ) if the restriction of this function on the ray $\mathbb{R}_{x^{*},x}=$

$\{x^{*}+\alpha x|\alpha\geq 0\}$ is increasing for each $x\in \mathbb{R}^{n}.$ (A function $g$ of one real variable is
called increasing if $t_{2}\geq t_{1}$ implies $g(t_{2})\geq g(t_{1}).)$

Deflnition 5. Let $K\subseteq \mathbb{R}^{n}$ be a st-sh set and $x^{*}\in ker$ K. A function $f$ defined on
$K$ is called increasing along rays at $x^{*}$ (for short, $f\in IAR(K,$ $x^{*})$ ), if the $rest_{7’}iction$

of this function on the intersection $\mathbb{R}_{x^{*},x}\cap K$ is increasing, for each $x\in K$ .

The following result characterize the class of IAR functions of one real variable.
One can easily check that $K\subseteq \mathbb{R}$ is st-sh if and only if it is convex.

Proposition 3. Let $f$ : $K\subseteq \mathbb{R}arrow \mathbb{R},$ $K$ convex. $f\in IAR(K, x^{*})$ if and only if it is
quasi-convex with a global minimum over $K$ at $x^{*}$ .

The function in Example 1 is easily seen to be $IAR(\mathbb{R}^{2},$ $(0,0))$ , although it is
clearly not quasiconvex. Therefore, the class of IAR functions at $x^{*}$ is broader then
that of quasi-convex functions with a global minimum at $x^{*}$ .

The next result gives some basic properties of functions which are increasing
along rays.

Proposition 4. Let $K\subseteq \mathbb{R}^{n}$ be a st-sh set, $x^{*}\in kerK$ and $f\in IAR(K, x^{*})$ . Then:

i$)$ $x^{*}$ is a solution of $P(f, K)$ ;

ii) No point $x\in K,$ $x\neq x^{*}$ , can be a $st_{7}\dot{v}ct$ local solution of $P(f, K)$ .

iii) $x^{*}\in ker$ argmin$(f, K)$ .

Proof:
i $)$ Let $x\in K$ and set $z(t)=x^{*}+t(x-x^{*}),$ $t\in[0,1]$ . Since $x^{*}\in kerK$ , then

$z(t)\in K,$ $\forall t\in[0,1]$ and since $f\in IAR(K, x^{*})$ , we have $f(z(t))\geq f(x^{*})=$

$f(z(O)),$ $\forall t\in[0,1]$ , and in particular $f(z(1))=f(x)\geq f(x^{*})$ . Since $x\in K$ is
arbitrary, then $x^{*}$ is a global minimizer of $f$ over $K$ .
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ii) Let $x$ and $z(t)$ as above. Since $f\in IAR(K, x^{*})$ , it easily follows $f(z(t))\leq$

$f(x)=f(z(1)),$ $\forall t\in[0,1]$ . If $U$ is an arbitrary neighborhood of $x$ , then for
$t$ “near enough” to 1, we have $z(t)\in U$ and so $x$ cannot be a strict local
minimizer for $f$ over $K$ .

iii) Let $x\in$ argmin$(f, K),$ $x\neq x^{*}$ . Since $z(t)\in K$ , we have $f(z(t))\leq f(x),$ $\forall t\in$

$[0,1]$ and readily follows that for every $t\in[0,1],$ $z(t)\in$ argmin $(f, K)$ .

Moreover we make use of a foundamental characterization of IAR functions
proved in [16].

Proposition 5. Let $K\subseteq \mathbb{R}^{n}$ be a st-sh set, $x^{*}\in kerK$ and $f$ be a function defined
on K. Then $f\in IAR(K, x^{*})$ if and only if for each $c\in \mathbb{R}$ with $c\geq f(x^{*})$ , we have
$x^{*}\in kerlev\leq cf$ .

According to Definition 1, Proposition 5 presents the class of IAR functions as
a straightforward generalization of quasiconvex functions (with a minimizer at $x^{*}$ ).

Finally we make use also of some continuity assumption. We denote rays starting
at $x^{*}\in \mathbb{R}^{n}$ as the set $R_{x^{*},x}:=\{x(t)\in \mathbb{R}^{n} : x(t)=(1-t)x^{*}+tx, t\geq 0\}$ , where
$x\in \mathbb{R}^{n}$ .

Deflnition 6. Let $K\subseteq \mathbb{R}^{n},$ $x^{*}\in kerK$ and let $f$ be a function defined on an open
set containing K. The function $f$ is said to be radially lower semicontinuous in $K$

along rays starting at $x^{*}$ , if for each $x\in K$ , the restriction of $f$ on the interval
$R_{x^{*},x}\cap K$ is lower semicontinuous.

We will use the abbreviation $f\in RLSC(K, x^{*})$ to denote that $f$ satisfies the
previous definition.

The following result is proved in [5] and applies in other proofs.

Theorem 1 (Mean Value Theorem). Let $x^{*}\in kerK,$ $f\in RLSC(K, x^{*}),$ $y\in K$ ,
and $t>0$ such that $y+t(x^{*}-y)\in K.$ Then there exists a number $\alpha\in$ ] $0,$ $t]$ , such
that:

$f(y+t(x^{*}-y))-f(y)\leq tf_{-}’(y+\alpha(x^{*}-y), x^{*}-y)$ .

Theorem 2. Let $K\subseteq \mathbb{R}^{n}$ be a st-sh set and $x^{*}\in kerK$ .

i$)$ If $x^{*}$ solves $MVI(f_{-}’, K)$ and $f\in RLSC(K, x^{*})_{f}$ then $f\in IAR(K, x^{*})$ .

ii) Conversely, if $f\in IAR(K, x^{*})$ , then $x^{*}$ is a solution of $MVI(fL, K)$ .

Proof:
i $)$ Let $x^{*}$ be a solution of $MVI(fL, K),$ $y\in K$ and $y+t_{2}(x^{*}-y),$ $y+t_{1}(x^{*}-y)$

be points in $\mathbb{R}_{x^{*},x}\cap K$ with $t_{2}>t_{1}\geq 0$ . By Theorem 1:

$f(y+t_{2}(x^{*}-y))-f(y+t_{1}(x^{*}-y))\leq(t_{2}-t_{1})f_{-}’(y+\alpha(x^{*}-y), x^{*}-y)\leq 0$,

with $\alpha\in$ ] $t_{1},$ $t_{2}]$ . Hence, it is proved $f\in IAR(K, x^{*})$ .
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ii) Assume that $f\in IAR(K, x^{*})$ and let $y\in K$ . For every $t\in[0,1]$ , we have:
$f(y+t(x^{*}-y))=f(x^{*}+(1-t)(y-x^{*}))\leq f(y)$ and hence:

$\frac{f(y+t(x^{*}-y))-f(y)}{t}\leq 0$ .

Taking $\lim$ inf as $tarrow+O$ , we obtain that $x^{*}$ solves $MVI(f_{-)}’K)$ .

Any continuity of $f$ was not explicitly assumed in Proposition 2, while it is
necessary in Theorem 2, as the following example proves.

Example 2. Let $K=\mathbb{R}_{1}x^{*}=0$ and consider the function $f$ : $\mathbb{R}arrow \mathbb{R}$ defined as:

$f(x)=\{\begin{array}{l}1, if x\neq 23, if x=2\end{array}$

Then $f\not\in RLSC(K, 0)$ and it holds $f_{-}’(y, -y)\leq 0,$ $\forall y\in \mathbb{R}$ , but $f\not\in IAR(K, 0)$ .
Moreover, the classical Minty Variational Principle can be extended to the gen-

eralized mvi $MVI(F_{-}’, K)$ as a consequence of Theorem 2 and Proposition 4
Corollary 1. Let $x^{*}\in kerK$ and let $f\in RLSC(K, x^{*})$ . If $x^{*}$ solves Minty $VI(fL, K)$ ,
then $x^{*}$ solves $P(f, K)$ .

4 The shape of the feasible region

In the previous section, Theorem 2 requires that the feasible region is star-shaped
and the solution $x^{*}$ belongs to its kernel. We now show that such requirements are
quite natural for mvi. Indeed, when $f\in RLSC(f, K)$ , a $sol\dot{u}tion$ to $MVI(f_{\sim}’, K)$

exists only when $K$ is st-sh and no solution can be outside $kerK$ .
To prove this result, we find easier to extend our problem by involving the

function $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}$ which is defined as $\overline{f}(x)=\{\begin{array}{ll}f(x), x\in K+\infty, x\in \mathbb{R}^{n}\backslash K\end{array}$ It is quite

obvious that $f$ and $\overline{f}$ coincide over $K$ . Moreover we can define the (generalized) mvi
with respect to the Dini derivative of $\vec{f}$ as
GMVI$(\overline{f}’, \mathbb{R}^{n})$ $\overline{f}_{-}’(x, x^{*}-x)\leq 0,$ $\forall x\in \mathbb{R}^{n}$ .
We say $x^{*}\in \mathbb{R}^{n}$ is a solution to GMVI$(f^{\overline{/}}, E)$ when the inequality is satisfied any
time the directional derivative $f_{-}^{\overline{\prime}}(x, x^{*}-x)$ has sense. Since in $\mathbb{R}\cup\{\pm\infty\}$ the
operation $+\infty-(+\infty)$ is not defined, we accept that $\overline{f}_{-}’(x, u)$ has no sense when
$f(x)=+\infty$ and there exists an interval $(x, x+\epsilon u)=\{x+tu:0<t<\epsilon\}$ with
$\epsilon>0$ contained in $\mathbb{R}^{n}\backslash$ dom $\vec{f}$ (recall that dom $\overline{f}=\{x\in \mathbb{R}^{n}$ : $\overline{f}(x)\in \mathbb{R}\}$ ). We can
also extend problem $P(f, K)$ , by means of $\overline{f}$, to

$\min\overline{f}(x)$ , s.t. $x\in \mathbb{R}^{n}$ (1)

Next proposition gives the relation between these pairs of problems. The proof can
be found in [3].
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Proposition 6. Let $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}\cup t+\infty$ } be a given function and let $K;=$ dom $\overline{f}$

and $f:=\overline{f_{|K}}$ (the restriction of $\overline{f}$ on $K$). Then GMVI $(f^{\overline{/}}, \mathbb{R}^{n})$ has a solution
$x^{*}\in K$ if and only if $x^{*}$ solves $MVI(f’, K)$ . Similarly, problem (1) has a global
(local) minimizer $x^{*}\in K$ if and only $x^{*}$ is a global (local) minimizer for problem
$P(f, K)$ .

Some properties can be defined on $\overline{f}$ from those of $f$ .

Deflnition 7. Let $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be a given function. Then we say that $\overline{f}$ has
the RLSC property $(\overline{f}\in RLSC)$ , if and only if $\overline{f}\in RLSC(\mathbb{R}^{n}, x^{*})\forall x^{*}\in \mathbb{R}^{n}$ .

Deflnition 8. Let $K\subseteq \mathbb{R}^{n}$ and $x^{*}\in \mathbb{R}^{n}$ . We say that $K$ is radially closed along
the rays starting at $x^{*}$ when $K\cap R_{x^{*},x}$ is closed in $R_{x^{*},x}$ , any ray starting at $x^{*}$ .
We say, that $K$ is radially closed if and only if the previous property holds for every

$x^{*}\in \mathbb{R}^{n}$ .

Proposition 7 ([3]). Let $\overline{f}$ : $\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be a given function and $K$ $:=$ dom $\overline{f}$

be radially closed. Then $\overline{f}\in RLSC$ if and only if $f\in RLSC(K, x^{*})_{f}\forall x^{*}\in K$ .

In [3] we proved as well the Minty Variational Principle applied to $\vec{f}$ .

Theorem 3. Let $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be a given function, and $K;=$ dom $\tilde{f}$ be
radially closed. If $x^{*}\in$ dom $\overline{f}$ is a solution of GMVI $(\overline{f}_{-}’, \mathbb{R}^{n})$ and $\vec{f}$ has the RLSC
property, then $\overline{f}\in IAR(\mathbb{R}^{n}, x^{*})$ . Conversely, if $x^{*}\in$ dom $\overline{f}$ and $\overline{f}\in IAR(\mathbb{R}^{n}, x^{*})_{f}$

then $x^{*}$ is a solution of GMVI$(\overline{f}’, \mathbb{R}^{n})$ .

Hence we can state the following result, which prove that, when the generalized
mvi has a solution, then the feasible region is star-shaped and the solution itself is
in the kernel of $K$ .

Theorem 4. Let $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be a $l.s.c$ . function and $K$ $:=$ dom $\overline{f}$ be closed.
Assume that GMVI $(\overline{f}_{-}’, \mathbb{R}^{n})$ has at least one solution $x^{*}\in K$ . Then

i$)$ all the level sets of $\overline{f}$ are st-sh and contain $x^{*}$ in their kemels;

ii) the set $GM(\overline{f}, \mathbb{R}^{n})$ of the global minimizers of (1) is st-sh with $x^{*}\in kerGM(\overline{f}, \mathbb{R}^{n})$ ;

iii) $K$ is st-sh with $x^{*}\in kerK$ ;

iv) the set of solutions $x^{*}\in K$ of GMVI$(\overline{f}’, \mathbb{R}^{n})$ is a convex and closed subset of
$kerGM(\overline{f}, \mathbb{R}^{n})$ .

Examples in [3] suggest the inclusions described in Theorem 4 are strict. The
coincidence can be proved assuming that $f$ is quasiconvex.

Theorem 5. Let $\overline{f}:\mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\}$ be a quasiconvex function having the RLSC
property and $K$ $:=$ dom $\overline{f}$ be mdially closed and convex. Then the set GMVI $(\overline{f}’, \mathbb{R}^{n})$

and the set $GM(\overline{f}, \mathbb{R}^{n})$ of global minimizers of problem (1) coincide.
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Proof: Because of Theorem 4, we only need to prove that each $x^{*}\in GM(\overline{f}, E)$ is a
solution of GMVI$(\overline{f}’, E)$ . We can prove that $\overline{f}\in IAR(E, x^{*})$ , to apply Theorem 3.
By contradiction, let $x\in E$ be such that $\overline{f}(x(t_{1}))>\overline{f}(x(t_{2}))$ for some $0\leq t_{1}<t_{2}$ ,
$x(t)=(1-t)x^{*}+tx$ . Let $c=\overline{f}(x(t_{2}))$ . Since $x^{*}\in GM(\overline{f}, E),\overline{f}(x^{*})\leq\vec{f}(x(t_{2}))=c$ .
$Henceboth\overline{f}(x^{*})od’ f(x(t_{2}))\in 0$

lev
$\leq c\overline{f}_{S}while_{i}(1.-\frac{t}{t}2\perp)x^{*}+t_{2}t\lrcorner x(t_{2})=x(t_{1})\not\in 1ev_{c}\vec{f}\square$This contradicts the quasiconvexity assumption.

We close this survey exploring the relations between the mvi we introduced in
Section 3 and the one in Section 2. When $f$ is differentiable over an open set
containing $K$ and $K$ is a convex set, the two problems actually coincide. However,
if $K$ is just st-sh, but not convex, one can find solutions to $MVI(f’, K)$ which are
not solution to GMVI$(f_{-}^{\overline{\prime}}, \mathbb{R}^{n})$ .
Example 3. Let $f$ : $\mathbb{R}^{2}arrow \mathbb{R},$ $f(x_{1}, x_{2})=x_{2}^{2_{f}}$ and $K=\{(x_{1}, x_{2})$ ; $x_{1}\geq 1$ or $(x_{1}\geq$

$-1$ and $|x_{2}|\leq 1)\}$ . It is easy to check that the solution set of $MVI(f’, K)$ is $\{x\in$
$\mathbb{R}^{2}$ : $x_{1}\geq-1,$ $x_{2}=0\}$ and the solution set of the corresponding GMVI$(f^{\overline{\prime}}, \mathbb{R}^{2})$

$($with $\overline{f}(x)=+\infty$ for $x\not\in K)$ is $\{x\in \mathbb{R}^{2} : x_{1}\geq 1, x_{2}=0\}$ .
According to Theorem 4, solutions of GMVI$(\overline{f}_{-}’, \mathbb{R}^{n})$ are also solutions of $P(f, K)$ .

However, Example 3 leave the possibility that solutions of $MVI(f’, K)$ may not be
solutions of $P(f, K)$ .
Example 4. Let $f$ : $\mathbb{R}^{2}arrow \mathbb{R}$ be defined as $f(x_{1}, x_{2})=x_{1}x_{2}(x_{1}+x_{2})- \frac{1}{3}(x_{1}+x_{2}-1)^{2}$

and let $K=\{[(-1,0), (0,1)]\cup[(0,1), (0,4)]\}$ . The set $K$ is $s$ t-sh with $kerK=\{(0,1)\}$
and $MVI(f’, K)$ has the unique solution $x^{*}=(-1,0)\not\in ker$ K. This point does not
belong to the set $GM(f, K)$ which is the singleton $\{(0,4)\}$ .

The result of Example 4 is a very special case, indeed.
Proposition 8. If $MVI(f’, K)$ admits at least one solution $x^{*}\in kerK_{f}$ then each
solution of $MVI(f’, K)$ is a solution of the related minimization problem.

Proof: Bu contradiction, assume $\overline{x}\neq x^{*}$ is a solution of $MVI(f’, K)$ . Since $x^{*}\in$

$kerK$ solves $MVI(f’, K)$ then also $x^{*}$ solves GMVI$(f’, K)$ and $f\in IAR(K, x^{*})$ .
Hence $f$ is increasing along the ray $R_{x^{*},x}\cap K$ . However, also $\overline{x}$ solves $MVI(f’, K)$ .
Hence it can be easily seen that $f$ is increasing along the ray $R_{\overline{x},x^{*}}\cap K$ . This implies
that all points along the segment wih enpoints $x^{*}$ and $\overline{x}$ are minimizers of $f$ over
$K$ .

Remark 3. Example 4 proves that Minty Variational Principle) without the con-
vexity of the feasible region may not hold. The last proposition can be seen as a
weaker version of the principle.
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