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1. Introduction
In the present paper, we consider the multiple existence of non-

radial positive solutions of coupled Schrodinger system

(P) $\{$

$-\Delta u+\mu_{1}u=u^{3}+\beta uv^{2}$ in $\mathbb{R}^{3}$

in $\mathbb{R}^{3}$

$-\Delta v+\mu_{2}v=v^{3}+\beta u^{2}v$

where $\mu_{1},\mu_{2}>oand\beta\in R$.

Coupled nonlinear $Schr6dinger$ system (P) models many physical
problems. In nonlinear optics, the phenomenon in Kerr-like pho
torefractive media is described by system (P) (cf. [2]). In this case,
the solution $u$and vdenote the components of the beam in Kerr-like
photorefractive media, and the coupling constant $\beta is$ the interac-
tion between two components $u$ and $v$.In case $\beta.>0$ , the interaction
is attractive, while the interaction is repulsive if $\beta<0$.The bimodal
pulse in optical fibers under birefringent effects is also governed by
system (P) (cf. [16]). It is also known that system (P) is a model
for a mixture of two Bose-Einstein condensates(cf. [7]).

Motivated by these physical interest, the existence of solutions
of (P) has been investigated by several authors. In the case that
$\beta>0$ ,problem (P) was studied by Ambrosetti&Colorado[3], Maia,
Montefusco &Pellacci[15] and Lin &Wei[12]. They proved the
existence of least energy solutions $(u,v)$of (P) with $u,v>0$ .By the
result of Troy(cf. [22]), we know that in this case, all positive
solutions $(u,v)$of (P) satisfying
(11) $u(x)arrow 0,v(x)arrow 0$ , as $|x|arrow\infty$

are radially symmetric functions. On the other hand, in case that
$\beta<0$,it is known that there is no least energy solution of (P)(cf.
[12] $)$ .Moreover, positive solutions of (P) satisfying (1.1) is not al-
ways radial. In case that $\beta<0$ and $|\beta|$is small, there are positive
solutions with one component concentrating on the origin and the
other component concentrating around a regular polygon(cf. [14]).
The existence of non radial positive solutions was also considered
in [24] for the case that $\beta<0$ and $\mu_{1}=\mu_{2}$ .In this case, there are
infinitely many nonradial solutions if $\beta<$ -i.Recently, Sirakov[21]
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established the existence of ground state solutions of (P) in the case
that coefficients of nonlinear terms $u^{3}$ and $v^{3}$ in (P) are different.

On the other hand, the existence of sign changing solutions ofnonlinear scalar elliptic problem
(1.2) $-\Delta u+u=|u|^{p-1}u$ , $u\in H_{0}^{1}(\Omega)$

has been investigated by many authors in the last decade. Here $\Omega is$

a domain in $R^{N}(N\geq 3)$ ,and $p\in(1,(N+2)/(N-2)]$ .We refer to [5], [6]
and [17] for related results of sign changing solutions of (1.2).The
existence of sign changing solutions of (P) with $\beta>0was$ considered
in [10]. For the problem (P) with $R^{3}$ replaced by a bounded domain,
we refer to [13] and [19].

In the present paper, we first see the multiple existence of solu-
tions of problem (P) in the case that $\beta>0$ . Next we consider thecase that $\beta<0$and $|\beta|$ is small, i.e. the case that the interaction oftwo solutions are small and repulsive. We will show the multiple
existence of nonradial solutions of (P) in this case with $\mu_{1}\neq\mu_{2}$ .Our
results improve the results in [14].(See Remark 2 and Remark 3).

To state our main results, we need some notations. We denoteby $B_{r}(x)$the open ball in $R^{3}$centered at $x\in R^{3}$with radius $r>0$ .Theinner product in $R^{3}$is denoted by $\langle\cdot,$ $\cdot\rangle_{R^{3}}$ .We put $H=H^{1}(R^{3})$ and $H=$
$H\cross H.We$ set $\mu_{0}=1$ .We denote by $\Vert\cdot\Vert_{\mu_{i}}$ the norm of Hdefined by $\Vert u\Vert_{\mu_{l}}^{2}=$

$\int_{\mathbb{R}^{3}}(|\nabla u|^{2}+\mu_{i}|u|^{2})dxforu\in H$and $i\in\{0,1,2\}$ .For simplicity of notations,
we put $|u(x)|_{\mu_{i}}^{2}=|\nabla u(x)|^{2}+\mu_{1}|u(x)|^{2}$ for $u\in H$and $x\in R^{3}$ .For each function
$u\in H,we$ set $u^{+}(x)= \max\{u(x),0\},u^{-}(x)=\max\{-u(x),0\}$ .For each $p\geq i,we$

denote by $|\cdot|_{p}$the norm of the space $L^{p}(R^{3})$ .The Hilbert space His
equipped with the norm defined by $\Vert \mathcal{U}\Vert^{2}=\Vert u\Vert_{\mu_{1}}^{2}+\Vert v\Vert_{\mu_{2}}^{2}$for $u=(u,v)\in$
H.We recall that for each $i\in\{0,1,2\}$ ,problem

$(P_{i})$ $\{\begin{array}{ll}-\Delta u+\mu_{i}u = u^{3} in \mathbb{R}^{3}u(x) > 0 in\mathbb{R}^{3}u(x) arrow 0 as |x|arrow\infty\end{array}$

has a radial solution, denoted by $u_{i}$ (cf. [8], [11]).The function $u_{t}$is
the unique smooth solution of $(P_{i})$ up to translation. Moreover
we know that $U_{1}$satisfies $i_{i}(u_{i})=c_{i}= \min\{I(v) : v\in s_{i}\},whereI_{i}$ is the
functional associated with problem $(P_{i})defined$ by

(1.3) $I_{i}(v)= \frac{1}{2}\Vert v\Vert_{\mu\iota}^{2}-\frac{1}{4}|v^{+}|_{4}^{4}$ for $v\in H$

and $s_{i}$ is the set defined by

$S_{i}=\{v\in H$ : $\Vert v\Vert_{\mu\iota}^{2}=|v^{+}|_{4}^{4}\}$ for $i=1,2$.
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For each $x\in R^{3}$and $i\in\{0,1,2\},we$ put $U_{i,x}(\cdot)=U_{i}(\cdot-x).It$ is also known
that
(1.4) $|U_{i}(x)|_{\mu_{l}}|x|\exp(\sqrt{\mu_{i}}|x|)arrow c>0$, as $|x|arrow\infty$ for $i\in\{0,1,2\}$ .

(cf. [11]). For each $u\in L^{4}(R^{3}),we$ put $\hat{u}(x)=\int_{B_{1}(x)}|u(x)|^{4}$ dxfor $x\in$

$R^{3}$ .Then from $(1.4),we$ can choose $R_{0}>osuch$ that

(1.5)
$\hat{U}_{i}(z)<\frac{|\hat{U}.|_{\infty}}{3}$

for all $z\in \mathbb{R}^{3}\backslash B_{R_{0}}(0)$ and $i\in\{1,2\}$ .

Since we consider the case that $\mu_{1}\neq\mu_{2},we$ may assume without any
loss of generality that $\mu_{2}<\mu_{1}.We$ can now state our main results.

THEOREM 1. Suppose that the following condition holds:
$0<2\sqrt{\mu_{2}}<\sqrt{\mu_{1}}$ .

Then there exists $\beta_{0}>osuch$ that for each $\beta\in(0,\beta_{0})$ ,problem $(P)$possesses
at least one ground state solution $u_{0}\in H^{1}(R^{3})\cross H^{1}(R^{3})and$ one nonra-
dial sign changing solution $u\in H^{1}(R^{3})\cross H^{1}(R^{3})$ .

THEOREM 2. Suppose that $\sqrt{\mu_{1}/\mu_{2}}$is irmtional. Then for each $i\in$

$\{2,4,6,8,12,20\},there$ nists $\beta_{i}\in(-1,0)such$ that for each $\beta\in(\beta_{i},0),there$

erists a positive solution $u_{i}\in Hof(P)such$ that $ic_{1}+c_{2}<\Phi(U_{i})<ic_{1}+$

$2c_{2}$ and $u_{i}has$ the form
(1.6) $\mathcal{U}_{i}=(U,V)=(\sum_{j=1}^{i}U_{1_{2}x_{j}}+u,U_{2}+v)$

where $\{x_{1},x_{2},\cdots,x_{i}\}foms$ a regular i-polyhedra in $R^{3}$ in case $i\neq 2$and
$x_{1}=-x2$ in case that $i=2$ , and $u,v\in Hsuch$ that $\Vert(u,v)\Vert is$ so small that

(1.7) $\hat{U}(z)<\frac{1}{2}|\hat{U}|_{\infty}$ for $z \in \mathbb{R}^{3}\backslash (\bigcup_{j=1}^{t}B_{Ro}(x_{j}))$ and

$\hat{V}(z)<\frac{1}{2}|\hat{V}|_{\infty}$ for $z\in \mathbb{R}^{3}\backslash B_{R_{0}}(0)$ .

REMARK 1. The $e\varphi ression(1.6)ofu_{1}=(u,v)is$ unique when $\Vert(u,v)\Vert is$

so small that condition (1.asholds, i.e., for each $U_{i},(x_{1},x_{2},\cdots,x_{i})is$

uniquely determined.

REMARK 2. The assertion of Theorem 1 implies that for $\beta<0$with
$|\beta|sufficiently$ small, problem $(P)$possesses at least $6nonmdial$ positive
solutions. In [14], the existence of positive solutions of $(P)of$ the
form $(1.\theta)was$ established in the case that $\{x_{1,2}x,\cdots,x_{i}\}fo s$ regular
cube or tetrahedra under the assumption

$\sqrt{\frac{\mu_{1}}{\mu_{2}}}<\{\xi_{3}^{3}$ $forthecubeforthetetm$
hedra.
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Our argument employed in this paper does not require the ratio of
$\sqrt{\mu_{1}}$and $\sqrt{\mu_{2}}$ .

THEOREM 3. $S_{\sim}uppose$ that $\sqrt{\mu_{1}/\mu_{2}}$is irrational. Then for each $k\in$

$N,there$ exists $\beta_{k}\in(-1,0)su_{\sim}ch$ that for each $\beta\in(\tilde{\beta}_{k},0),the$ problem
$(P)has$ a positive solution $\mathcal{U}_{k}such$ that $kc_{1}+C2<\Phi(\tilde{\mathcal{U}}_{k})<kc1+2c2$ and

$\tilde{\mathcal{U}}_{k}has$ the form
(1.8) $\tilde{\mathcal{U}}_{k}=(U,V)=(\sum_{j=1}^{k}U_{1_{I}x_{j}}+u,U_{2}+v)$

where $\{x_{1},x_{2}, \cdots,x_{k}\}\subset R^{3}form$ a regular k-polygon in a two dimen-
sional subspace of $R^{3}$ , and $u,v\in Hsuch$ that $\Vert(u,v)\Vert$ is so small that

$\hat{U}(z)<^{1}\vec{2}|\hat{U}|_{\infty}$ for $z \in \mathbb{R}^{3}\backslash (\bigcup_{j=1}^{k}B_{R_{0}}(x_{j}))$ and $\hat{V}(z)<\frac{1}{2}|\hat{V}|_{\infty}$ for $z\in \mathbb{R}^{3}\backslash B_{Ro}(0)$ .

REMARK 3. The existence of positive solutions of $(P)of$ the form
$(1.8)was$ proved in [14] in the case that the spacial dimension is
2and $\mu_{1},\mu_{2}$satisfy

$\sqrt{\frac{\mu_{1}}{\mu_{2}}}<\sin\frac{\pi}{k}$ .

We give a sketch of the proof of Theorem 2 for the case $i=2$ . The
proofs of Theorem 2 for $i\neq 2$ and the proof of Theorem 3 are slight
modifications of that of the case $i=2$ of Theorem 2. The detail of
the proofs can be found in [9].

2. Preliminaries
Throughout the rest of this paper, we assume that $\sqrt{\mu_{1}/\mu_{2}}$ is

irrational.
For each $u,v\in H=H^{1}(R^{3}),we$ put $\langle u,v\rangle=\int_{\mathbb{R}^{3}}$ uv.We denote by

$\langle\cdot,\cdot)_{\mu_{i}}$ the inner product of $H$defined by $\langle u,v\rangle_{\mu\iota}=\int_{R^{3}}(\nabla u\cdot\nabla v+\mu_{i}uv)$for
$u,v\in H$and $i\in\{0,1,2\}$ . The inner product of $H$is defined by $\langle \mathcal{U}_{1},\mathcal{U}_{2}\rangle_{E\mathbb{I}}--$

$(U_{1},U_{2}\rangle_{\mu_{1}}+\langle V_{1},V_{2})_{\mu_{2}}$ for $U_{1}=(U_{1},V_{1}),U_{2}=(u_{2},v_{2})\in H$ .For each $u\in L^{4}(R^{3}),we$

put $\Omega(u)=\{x\in \mathbb{R}^{3}$ : $\hat{u}(x)\geq\frac{|\hat{u}|}{2}n\}$and

$\mathcal{B}(u)=\frac{\int_{\Omega(u)}x(\hat{u}(x)^{1\hat{u}}-\lrcorner_{2}\simeq)dx}{\int_{\Omega(u)}(\hat{u}(x)-\underline{|\hat{u}}1P)dx}$.

The mapping $B$ is called generalized barycenter, which is introduced
in [18](cf. also [4]). By Sobolev’s embedding theorem([l]), for
$p\in[2,6]$there exists $m_{p}>osuch$ that

$|z|_{Lp(B_{r}(0))}\leq m_{p}(|\nabla z|_{L^{2}(B_{r}(0))}^{2}+\mu_{i}|z|_{L^{2}(B_{r}(0))}^{2})^{1/2}$
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for $r>1,z\in H^{1}(B_{r}(0))$ ,and $i\in\{0,1,2\}$ .For each $a\in R$,and a functional $F$ ;

$Harrow R,we$ denote by $F^{a}$the level set defined by $F^{a}=\{v\in \mathbb{H}:F^{a}(v)\leq a\}$ .The
same notation is used for functionals defined on $H$.

It is easy to see that for each $u\in H\backslash \{0\}$with $u^{+}\not\equiv 0_{2}there$ exists a
unique positive number tsuch that $tu\in s_{*}\cdot(cf. [25])$ . It follows from
the definitions of $u_{i}$that $U_{i}(x)=\sqrt{\mu_{i}}U_{0}(\sqrt{\mu}x)$ on $R^{3}$ .Then one can see
that
(2.1) $c_{1}=\sqrt{\mu_{1}}c0>c_{2}=\sqrt{\mu_{2}}c_{0}$ .
Let $i\in\{0,1,2\}$ .It is known that $\{U_{i,x}:x\in \mathbb{R}^{3}\}$ is a nondegenerate critical
set of $I_{i}$ (cf. [23]). More precisely, we have there exists $\lambda>osuch$ that

(2.2) $\Vert u\Vert_{\mu_{i}}^{2}-3\langle U_{i}^{2}u,u\rangle\geq\lambda\Vert u\Vert_{\mu}^{2}$ . for all $u\in\{U.,$ $\frac{\partial U_{i}}{\partial x_{1}},$ $\frac{\partial U_{i}}{\partial_{X2}},$
$\frac{\partial U_{i}}{\partial x_{3}}\}^{\perp}$

We define a functional $\Phi:Harrow R$ associated with problem (P) by

$\Phi(\mathcal{U})=\frac{1}{2}(\Vert U\Vert_{\mu_{1}}^{2}+\Vert V\Vert_{\mu_{2}}^{2})-\frac{1}{4}(|U^{+}|_{4}^{4}+|V^{+}|_{4}^{4})-\frac{\beta}{2}\int_{R^{3}}(U^{+})^{2}(V^{+})^{2}$

$=\Phi_{1}(\mathcal{U})+\Phi_{2}(\mathcal{U})$ for $\mathcal{U}=(U,V)\in \mathbb{H}$,

where
$\Phi_{1}(\mathcal{U})=\frac{1}{2}\Vert U\Vert_{\mu_{1}}^{2}-\frac{1}{4}|U^{+}|_{4}^{4}-\frac{\beta}{4}\int_{R^{3}}(U^{+})^{2}(V^{+})^{2}$

and
$\Phi_{2}(\mathcal{U})=\frac{1}{2}\Vert V\Vert_{\mu_{1}}^{2}-\frac{1}{4}|V^{+}|_{4}^{4}-\frac{\beta}{4}\int_{R^{3}}(U^{+})^{2}(V^{+})^{2}$ .

Then a direct computation shows

$\langle\nabla\Phi(\mathcal{U}),$ $\mathcal{V}\rangle_{\mathbb{H}}=\langle(\nabla_{u}\Phi(\mathcal{U})\nabla_{v}\Phi(\mathcal{U})),$ $(\begin{array}{l}WZ\end{array})\rangle_{\mathbb{H}}$

$=\langle-\Delta U+\mu_{1}U-(U^{+})^{3}-\beta U^{+}(V^{+})^{2},$ $W\rangle$

$+\langle-\Delta V+\mu_{2}V-(V^{+})^{3}-\beta(U^{+})^{2}V^{+},$ $Z\rangle$

for $U=(U,V),V=(w,z)\in H.We$ put

$\mathcal{M}_{+}=\{(U,V)\in \mathbb{H}\backslash \{0\}:\Vert U\Vert_{\mu_{1}}^{2}=|U^{+}|_{4}^{4}+\beta\int_{R^{\theta}}(U^{+})^{2}(V^{+})^{2}$,

$\Vert V\Vert_{\mu_{2}}^{2}=|V^{+}|_{4}^{4}+\beta\int_{R^{8}}(U^{+})^{2}(V^{+})^{2}\}$.

Then one can see that $u=(u,v)\in M+$ is a critical point of $\Phi$if and
only if $u$is a positive solution of problem (P). From the definition,
we have
(2.3) $\Phi_{1}(\mathcal{U})=\frac{1}{4}\Vert U\Vert_{\mu_{1}}^{2},\Phi_{2}(\mathcal{U})=\frac{1}{4}\Vert V\Vert_{\mu_{2}}^{2}$ and $\Phi(\mathcal{U})=\frac{1}{4}(\Vert U\Vert_{\mu_{1}}^{2}+\Vert V\Vert_{\mu_{2}}^{2})$

for $u=(u,v)\in M_{+}.We$ also have that for each $U=(u,v)\in M_{+},there$ ex-
ists $(s,t)\in R^{+}\cross R^{+}$ such that $(sU,tV)\in M_{+}.In$ fact, for each $u=(U,V),U\not\equiv$
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$0,v\not\equiv 0,(sU,tV)\in M+$if and only if

$(\begin{array}{l}s^{2}t^{2}\end{array})=A^{-1}(\Vert_{V}^{U}\Vert_{\mu_{2}}^{2}\#^{1})$

where

$A=(|U^{+}|_{4}^{4} \beta\int_{\mathbb{R}^{3}}(U^{+})^{2}(V^{+})^{2}|V^{+}|_{4}^{4})\cdot$

Since $\beta\in(arrow 1,0)$ ,we have by the Schwartz’s inequality that $A^{-1}$existsand then there exists a unique solution $(s,t)\in R^{+}xR^{+}$ .For given
$U=(U,V)\in Hwithu\not\equiv 0,v\not\equiv 0,we$ put $NU=N(U,V)=(N_{1}U,N_{2}V)=$
$(sU,tV)\in M+\cdot$

Now to prove Theorem 1 for the case that $i=2_{)}$ we define $H_{2}\subset$

$H,H_{2}\subset H$ and $M_{2}\subset M_{+}$ by
$H_{2}=\{u\in H:u(x)=u(-x)$ for $x\in \mathbb{R}^{3}\}$ , $\mathbb{H}_{2}=H_{2}\cross H_{2}$ ,

and
$\mathcal{M}_{2}=\mathcal{M}_{+}\cap \mathbb{H}_{2}$ .

Since $\sqrt{\mu_{1}/\mu_{2}}$ is irrational, we can choose $\delta_{2}\in(0,c_{2})$ so small that
(2.4) $c_{1}+kc_{2}\not\in[2c_{1}+c_{2}-\delta_{2},2c_{1}+c_{2}+\delta_{2}]$ for all $k\in N$ .

The following Lemmata are crucial for our argument.
LEMMA 1. (1) There enists $\beta_{1}\in(-1,0)such$ that for each $\beta\in(\beta_{1},0)and$

each critical point $u\in M_{2}\cap\Phi^{2c+2c2}1$ of $\Phi$ ,

$\Phi(\mathcal{U})\in\bigcup_{i\geq 1_{t}j\geq 1[ic_{1}+jc_{2}-\delta_{2}/2,i_{C_{1}}+jc_{2}+\delta_{2}}/2]$ .
(2) Let $\beta\in(\beta_{1},0)and\{\mathcal{U}_{n}\}\subset M_{2}such$ that $\lim_{narrow\infty}\nabla\Phi(u_{n})=0$and $\lim_{narrow\infty}\Phi(u_{n})=$

$2c_{1}+c_{2}+\epsilon with_{\mathcal{E}}\in(0,\delta_{2}/2)$ . Then there exists a convergence subsequence
$\{\mathcal{U}_{n}:\}\subset\{\mathcal{U}_{n}\}$ .

LEMMA 2. For given $\epsilon>0,there$ exists $\beta_{e}\in(\beta_{1},0)such$ that for each
$\beta\in(\beta_{e},0)and$ for each $x\in R^{3}\backslash \{0\}$ ,

(2.5) $\Phi(\mathcal{N}(U_{1,x}+U_{1,-x},U_{2}))<2c_{1}+c_{2+\mathcal{E}}$

$a$
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3. Sketch of the Proof of Theorem 2 for $i=2$ .
Throughout this section we assume that $\beta\in(\beta_{1},0).We$ put

$b_{R}(U)= \int_{R^{\theta}\backslash B_{R}(0)}|U|_{\mu_{1}}^{2}$

and

for $U\in H$ and $R>0$

$\Lambda_{2,\epsilon}(R)=\{\mathcal{U}=(u,v)\in\Phi^{2c_{1+C2+g}}\cap \mathcal{M}_{2}:b_{R}(U)\geq 8c_{1}-\min\{\frac{1}{2m_{4}^{4}},c_{1}\}\}$

for each $\epsilon>0$ and $R>0$ .

PROPOSITION 1. For $\epsilon>osufficiently$ small, there emsts $(R_{\epsilon},\delta_{\epsilon},\alpha_{\epsilon},\gamma_{\epsilon})\in$

$(\mathbb{R}^{+})^{4}such$ that $\lim_{\epsilonarrow 0}\delta_{e}=\lim_{\epsilonarrow 0}\alpha_{\epsilon}=\lim_{\epsilonarrow 0}\gamma_{\epsilon}=0$ and each $U=(u,v)\in\Lambda_{2,\epsilon}(R_{\epsilon})has$

the form
(3.1) $\mathcal{U}=(\alpha(U_{1,x}+U_{1,-x})+u,\gamma U_{2}+v)$

where $\alpha\in(1-\alpha_{\epsilon},1+\alpha_{\epsilon}),\gamma\in(1-\gamma_{\epsilon},1+\gamma_{\epsilon})$ ,

(3.2) $|x|\geq R_{\epsilon}$ , $x=B(U|_{B_{R_{0}}(x)})$ , $\hat{U}(z)<\frac{1}{2}|\hat{U}|_{\infty}$ for $z \in \mathbb{R}^{3}\backslash \bigcup_{i=\pm 1}B_{Ro}(ix)$
,

(3.3) $\hat{V}(z)<\vec{2}1|\hat{V}|_{\infty}$ for $z\in \mathbb{R}^{3}\backslash B_{R_{O}}(0)$ ,

and
(3.4) $(u, v)\in\{U_{1,x}, U_{1,-x}\}^{\perp}\cross\{U_{2}\}^{\perp}$ with $t|u\Vert_{\mu}^{2_{1}}+\Vert v\Vert_{\mu}^{2_{2}}\leq\delta_{\epsilon}$ .

REMARK 4. By (3.2) and the definition of $B,one$ can see that for
each $u\in\Lambda_{2\epsilon)}(R_{\epsilon}),(x,-x)\in R^{3}xR^{3}$ in (3.1) is uniquely $detem\iota ined$, and
the mapping $u\in\Lambda_{2,\epsilon}(R_{\epsilon})arrow(x,-x)\in R^{3}\cross R^{3}$ is continuous. We define a
continuous mapping $\eta:\Lambda_{2,e}(R_{\epsilon})arrow R^{+}by$

(3.5) $\eta(\mathcal{U})=|x|$ for $\mathcal{U}\in\Lambda_{2,e}(R_{\epsilon})$ .

We also need the following Proposition.
PROPOSITION 2. There nists $M_{0}>0$ satisfy $ing$ that $for_{\mathcal{E}}>0$ suff ciently

small,
$\Phi(\mathcal{U})\geq 2c_{1}+c2-\beta M_{0}e^{-2\sqrt{\mu_{2}}|x|}$ for each $\mathcal{U}\in\Lambda_{2,\epsilon}(R_{\epsilon})$ ,

where $x\in R^{3}$ such that uhas the $fom(3.1)$.
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Now for $x\in R^{3}\backslash \{0\},we$ define a class $\Gamma_{2}(x)\subset C([0,1],M_{2})by$

$\Gamma_{2}(x)=\{p\in C([0,1],\mathcal{M}_{2}):p(0)=\mathcal{N}(U_{1},U_{2}),p(1)=\mathcal{N}(U_{1_{2}x}+U_{1_{\dagger}-x},U_{2})\}$

and put
$c_{2}(x)= \inf_{p\in\Gamma_{2}(x)}\sup_{t\in[0\rangle 1]}\Phi(p(t))$

.

We also note that from the definitions of Nand $\Phi$,we have that $N(U_{1)x}+$

$u_{1,-x},u_{2})-(U_{1_{J}x}+u_{1,-x},u_{2})arrow o$ in Hae $|x|arrow\infty$ and then
(3.6) $\lim_{|x|arrow\infty}\Phi(\mathcal{N}(U_{1_{2}x}+U_{1,-x},U_{2}))=2I_{1}(U_{1})+I_{2}(U_{2})=2c_{1}+c_{2}$ .

Based on the preliminary results above, we can prove Theorem2 for $i=2$.

PROOF OF THEOREM 2. Let $\epsilon\in(0,\delta_{2}/2)$ sufficiently small. Let $\beta\in(\beta_{\epsilon},0)$ . Tocomplete the proof, it is sufficient to show that there exists $\delta>0$ and
$R>osuch$ that
(3.7) $2c_{1}+c_{2}+\delta<c_{2}(x)<2c_{1}+c_{2}+\delta_{2}/2$ for $|x|>R$ .
In fact, if the inequalities above hold, we have by (3.6) that we can
choose $x\in R^{3}$ such that $|x|>Rand$

$\Phi(N(U_{1,x}+U_{1,-x},U_{2}))<2c_{1}+c_{2}+\delta$ .
That is $\Phi(p(1))<c_{2}(x)$ for all $p\in\Gamma_{2}(x)$ .We also have $\Phi(p(0))<\underline{7}_{C_{1}}+$

$c_{2}$ . Then since the Palais-Smail condition holds by (2) of $Lemm4$a 1
on $\Phi^{(2c_{1}+c_{2},2c_{1+C}}2+\delta_{2}/2)$,we have by a standard mountain pass argument
that there exists a critical point $uof\Phi$ with $\Phi(U)=c_{2}(x)$ .

Fkom the definition of $\epsilon$ and Lemma 2, one can see the pass $p\in$

$\Gamma_{2}(x)$ defined by
$p(s)=\mathcal{N}(U_{1_{1}sx}+U_{1,-sx},U_{2})$ , $s\in[0,1]$

satisfies $\max_{s\in[0_{t}1]}\Phi(p(s))\leq 2c_{1}+c_{2}+\epsilon$ .Then the second inequality of (3.7)
holds. We now show that the first inequality of (3.7) holds. We first
see that there exists $\overline{R}>2R_{\epsilon}$ such that,

(3.8) $b_{R}.(U) \geq 8c_{1}-\min\vec{2}1\{\frac{1}{2m_{4}^{4}},$ $c_{1}\}$ for $\mathcal{U}=(U, V)\in\Lambda_{2,\epsilon}(R_{\epsilon})$ with $\eta(U)\geq\overline{R}$ ,

where $\eta$ is the function defined by (3.5). By Proposition 1, each
$U=(U,V)\in\Lambda_{2_{t}\epsilon}(R_{\epsilon})$has the form
(3.9) $\mathcal{U}=(\alpha(U_{1_{1}x}+U_{1,-x})+u,\gamma U_{2}+v)$
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with $\alpha\in(1-\alpha_{\epsilon},1+\alpha_{\epsilon}),\gamma\in(1-\gamma_{\epsilon}, 1+\gamma_{\epsilon})$and $(u,v)\in\{u_{1,x},u_{1,-x}\}^{\perp}\cross\{u_{2}\}^{\perp}$ with
$\Vert u\Vert_{\mu_{1}}^{2}+\Vert v\Vert_{\mu_{2}}^{2}\leq\delta_{\epsilon}$ . Since $\lim_{\epsilonarrow 0}\delta_{\epsilon}=\lim_{earrow 0}\alpha_{\epsilon}=0$ ,we may assume that
$\epsilon>0is$ sufficiently small that

(3.10) $8 \alpha_{e}^{2}c_{1}-\delta_{\epsilon}>8c_{1}-\frac{1}{2}\min\{\frac{1}{2m_{4}^{4}},c_{1}\}$ .

Then noting that
$b_{R_{\ell}}(U) \geq\alpha^{2}\Vert U_{1,x}+U_{1,-x}\Vert_{\mu_{1}}^{2}-\Vert u\Vert_{\mu_{1}}^{2}-2\int_{B_{R_{\epsilon}}(0)}|U_{1_{1}x}+U_{1,-x}|_{\mu_{1}}^{2}$

and
$\Vert U_{1,x}+U_{1,-x}\Vert_{\mu}^{2_{1}}arrow 8c_{1}$ and $\int_{B_{R}.(0)}|U_{1,x}+U_{1,-x}|_{\mu}^{2_{1}}arrow 0$ , as $|x|arrow\infty$ ,

we find by (3.10) that there exists $\overline{R}$ such that for each $U=(u,v)\in$
$\Lambda_{2,\epsilon}(R_{\epsilon})$with $\eta(U)\geq\overline{R},(3.8)$ holds. Now we choose $x\in R^{3}$ so large that
$|x|>\overline{R}$ .Then

$b_{R}.( \mathcal{N}_{1}(U_{1,x}+U_{1,-x}))\geq 8c_{1}-\frac{1}{2}\min\{\frac{1}{2m_{4}^{4}},c_{1}\}$ .

Let $p=(p_{1},p_{2})\in\Gamma_{2}(x)$such that $\sup_{t\in[0,1]}\Phi(p(t))\leq 2c_{1}+c_{2}+\epsilon$ .From the
definition,

$\eta(p_{1}(1))=\eta(\mathcal{N}_{1()}U_{1_{2}x}+U_{1-x}))>\overline{R}$ and $b_{R}.(p_{1}(1)) \geq 8c_{1}-\frac{1}{2}\min\{\frac{1}{2m_{4}^{4}},c_{1}\}$ .

On the other hand, recalling that $\Phi_{2}(U)\geq c_{2}$ ,we have that $\Phi_{1}(U)\leq$

$\frac{7}{4}c_{1}$ .Then by the definition of $\epsilon,b_{R}.(p_{1}(0))<7c_{1}\leq 8c_{1}-\min\{\frac{1}{2m_{\dot{4}}},c_{1}\}$ , there

$\eta(p_{1}(t))<\overline{R}.Thereforebythecontinuityofeavethatthereexistsexistst\in(0,1)suchthatb_{R}.(p_{1}(t))=8c_{1}-\min_{\eta,W}\{\frac{1}{2m^{4},h^{4}},c_{1}\}.Thenby(3.8)$
,

$t_{0}\in(0,t)$such that $\eta(p_{1}(t_{0}))=\overline{R}.By$ Proposition 2, we have
$\Phi(p(t_{0}))\geq 2c_{1}+c_{2}+\beta M_{0}e^{-2\sqrt{\mu_{2}}\overline{R}}$.

Therefore we obtain that $\sup_{t\in[0,1]}\Phi(p(t))>2c_{1}+c2+\beta M_{0}e^{-2\sqrt{\mu_{2}}\overline{R}}$.Thus by
the mountain pass theorem(cf. [20]), we find that there exists

$\square a$

critical point $u$of $\Phi with\Phi(U)=c_{2}(x)$ .
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