Existence and Multiplicity of Solutions for a Coupled Nonlinear Shrödinger System

Norimichi Hirano

Graduate School of Environment and Information Sciences, Yokohama National University

1. Introduction

In the present paper, we consider the multiple existence of nonradial positive solutions of coupled Schrödinger system

(P) $\begin{cases} -\Delta u + \mu_1 u = u^3 + \beta u v^2 & \text{in } \mathbb{R}^3 \\ -\Delta v + \mu_2 v = v^3 + \beta u^2 v & \text{in } \mathbb{R}^3 \end{cases}$

where $\mu_1, \mu_2 > 0$ and $\beta \in R$.

Coupled nonlinear Schrödinger system (P) models many physical problems. In nonlinear optics, the phenomenon in Kerr-like photorefractive media is described by system (P) (cf. [2]). In this case, the solution *u* and *v* denote the components of the beam in Kerr-like photorefractive media, and the coupling constant β is the interaction between two components *u* and *v*. In case $\beta > 0$, the interaction is attractive, while the interaction is repulsive if $\beta < 0$. The bimodal pulse in optical fibers under birefringent effects is also governed by system (P) (cf. [16]). It is also known that system (P) is a model for a mixture of two Bose-Einstein condensates(cf. [7]).

Motivated by these physical interest, the existence of solutions of (P) has been investigated by several authors. In the case that $\beta > 0$,problem (P) was studied by Ambrosetti & Colorado[3], Maia, Montefusco & Pellacci[15] and Lin & Wei[12]. They proved the existence of least energy solutions (u, v) of (P) with u, v > 0.By the result of Troy(cf. [22]), we know that in this case, all positive solutions (u, v) of (P) satisfying

(1,1)
$$u(x) \longrightarrow 0, v(x) \longrightarrow 0, \quad \text{as } |x| \longrightarrow \infty$$

are radially symmetric functions. On the other hand, in case that $\beta < 0$, it is known that there is no least energy solution of (P)(cf. [12]). Moreover, positive solutions of (P) satisfying (1.1) is not always radial. In case that $\beta < 0$ and $|\beta|$ is small, there are positive solutions with one component concentrating on the origin and the other component concentrating around a regular polygon(cf. [14]). The existence of non radial positive solutions was also considered in [24] for the case that $\beta < 0$ and $\mu_1 = \mu_2$. In this case, there are infinitely many nonradial solutions if $\beta < -1$. Recently, Sirakov[21]

established the existence of ground state solutions of (P) in the case that coefficients of nonlinear terms u^3 and v^3 in (P) are different.

On the other hand, the existence of sign changing solutions of nonlinear scalar elliptic problem

(1.2)
$$-\Delta u + u = |u|^{p-1} u, \qquad u \in H_0^1(\Omega)$$

has been investigated by many authors in the last decade. Here Ω is a domain in $\mathbb{R}^{N}(N \geq 3)$, and $p \in (1, (N+2)/(N-2)]$. We refer to [5], [6] and [17] for related results of sign changing solutions of (1.2). The existence of sign changing solutions of (P) with $\beta > 0$ was considered in [10]. For the problem (P) with \mathbb{R}^{3} replaced by a bounded domain, we refer to [13] and [19].

In the present paper, we first see the multiple existence of solutions of problem (P) in the case that $\beta > 0$. Next we consider the case that $\beta < 0$ and $|\beta|$ is small, i.e. the case that the interaction of two solutions are small and repulsive. We will show the multiple existence of nonradial solutions of (P) in this case with $\mu_1 \neq \mu_2$. Our results improve the results in [14]. (See Remark 2 and Remark 3).

To state our main results, we need some notations. We denote by $B_r(x)$ the open ball in R^3 centered at $x \in R^3$ with radius r > 0. The inner product in R^3 is denoted by $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$. We put $H = H^1(R^3)$ and H = $H \times H$. We set $\mu_0 = 1$. We denote by $\|\cdot\|_{\mu_i}$ the norm of H defined by $\|u\|_{\mu_i}^2 =$ $\int_{\mathbb{R}^3} (|\nabla u|^2 + \mu_i |u|^2) dx$ for $u \in H$ and $i \in \{0, 1, 2\}$. For simplicity of notations, we put $|u(x)|_{\mu_i}^2 = |\nabla u(x)|^2 + \mu_1 |u(x)|^2$ for $u \in H$ and $x \in R^3$. For each function $u \in H$, we set $u^+(x) = \max\{u(x), 0\}, u^-(x) = \max\{-u(x), 0\}$. For each $p \ge 1$, we denote by $|\cdot|_p$ the norm of the space $L^p(R^3)$. The Hilbert space H is equipped with the norm defined by $\|\mathcal{U}\|^2 = \|u\|_{\mu_1}^2 + \|v\|_{\mu_2}^2$ for $U = (u, v) \in$ H. We recall that for each $i \in \{0, 1, 2\}$, problem

$$(P_i) \qquad \begin{cases} -\Delta u + \mu_i u = u^3 & \text{ in } \mathbb{R}^3 \\ u(x) > 0 & \text{ in } \mathbb{R}^3 \\ u(x) \longrightarrow 0 & \text{ as } |x| \longrightarrow \infty \end{cases}$$

has a radial solution, denoted by $U_i(\text{cf. } [8], [11])$. The function U_i is the unique smooth solution of (P_i) up to translation. Moreover we know that U_i satisfies $I_i(U_i) = c_i = \min\{I(v) : v \in S_i\}$, where I_i is the functional associated with problem (P_i) defined by

(1.3)
$$I_i(v) = \frac{1}{2} \|v\|_{\mu_i}^2 - \frac{1}{4} |v^+|_4^4 \quad \text{for } v \in H$$

and S_i is the set defined by

$$S_i = \left\{ v \in H : \|v\|_{\mu_i}^2 = |v^+|_4^4 \right\}$$
 for $i = 1, 2$.

For each $x \in \mathbb{R}^3$ and $i \in \{0, 1, 2\}$, we put $U_{i,x}(\cdot) = U_i(\cdot - x)$. It is also known that

(1.4)
$$|U_i(x)|_{\mu_i} |x| \exp(\sqrt{\mu_i} |x|) \longrightarrow c > 0, \text{ as } |x| \longrightarrow \infty \quad \text{for } i \in \{0, 1, 2\}.$$

(cf. [11]). For each $u \in L^4(\mathbb{R}^3)$, we put $\hat{u}(x) = \int_{B_1(x)} |u(x)|^4 dx$ for $x \in \mathbb{R}^3$. Then from (1.4), we can choose $\mathbb{R}_0 > 0$ such that

(1.5)
$$\widehat{U}_i(z) < \frac{\left|\widehat{U}_i\right|_{\infty}}{3} \quad \text{for all } z \in \mathbb{R}^3 \setminus B_{R_0}(0) \text{ and } i \in \{1, 2\}.$$

Since we consider the case that $\mu_1 \neq \mu_2$, we may assume without any loss of generality that $\mu_2 < \mu_1$. We can now state our main results.

THEOREM 1. Suppose that the following condition holds:

$$0 < 2\sqrt{\mu_2} < \sqrt{\mu_1}.$$

Then there exists $\beta_0 > 0$ such that for each $\beta \in (0, \beta_0)$, problem (P) possesses at least one ground state solution $U_0 \in H^1(R^3) \times H^1(R^3)$ and one nonradial sign changing solution $U \in H^1(R^3) \times H^1(R^3)$.

THEOREM 2. Suppose that $\sqrt{\mu_1/\mu_2}$ is irrational. Then for each $i \in \{2, 4, 6, 8, 12, 20\}$, there exists $\beta_i \in (-1, 0)$ such that for each $\beta \in (\beta_i, 0)$, there exists a positive solution $U_i \in Hof(P)$ such that $ic_1 + c_2 < \Phi(U_i) < ic_1 + 2c_2$ and U_i has the form

(1.6)
$$\mathcal{U}_i = (U, V) = (\sum_{j=1}^i U_{1,x_j} + u, U_2 + v)$$

where $\{x_1, x_2, \dots, x_i\}$ forms a regular *i*-polyhedra in \mathbb{R}^3 in case $i \neq 2$ and $x_1 = -x_2$ in case that i = 2, and $u, v \in H$ such that ||(u, v)|| is so small that

(1.7)
$$\widehat{U}(z) < \frac{1}{2} \left| \widehat{U} \right|_{\infty} \text{ for } z \in \mathbb{R}^{3} \setminus (\bigcup_{j=1}^{i} B_{R_{0}}(x_{j})) \text{ and} \\ \widehat{V}(z) < \frac{1}{2} \left| \widehat{V} \right|_{\infty} \text{ for } z \in \mathbb{R}^{3} \setminus B_{R_{0}}(0).$$

REMARK 1. The expression (1.6) of $U_i = (U, V)$ is unique when ||(u, v)|| is so small that condition (1.7) holds, i.e., for each $U_i, (x_1, x_2, \dots, x_i)$ is uniquely determined.

REMARK 2. The assertion of Theorem 1 implies that for $\beta < 0$ with $|\beta|$ sufficiently small, problem (P) possesses at least 6 nonradial positive solutions. In [14], the existence of positive solutions of (P) of the form (1.6) was established in the case that $\{x_1, x_2, \dots, x_i\}$ forms regular cube or tetrahedra under the assumption

$$\sqrt{\frac{\mu_1}{\mu_2}} < \begin{cases} \frac{\sqrt{3}}{3} & \text{for the cube} \\ \frac{\sqrt{3}}{2} & \text{for the tetrahedra.} \end{cases}$$

THEOREM 3. Suppose that $\sqrt{\mu_1/\mu_2}$ is irrational. Then for each $k \in N$, there exists $\tilde{\beta}_k \in (-1,0)$ such that for each $\beta \in (\tilde{\beta}_k,0)$, the problem (P) has a positive solution $\tilde{\mathcal{U}}_k$ such that $kc_1 + c_2 < \Phi(\tilde{\mathcal{U}}_k) < kc_1 + 2c_2$ and $\tilde{\mathcal{U}}_k$ has the form

(1.8)
$$\widetilde{\mathcal{U}}_{k} = (U, V) = (\sum_{j=1}^{k} U_{1,x_{j}} + u, U_{2} + v)$$

where $\{x_1, x_2, \dots, x_k\} \subset R^3$ form a regular k-polygon in a two dimensional subspace of R^3 , and $u, v \in H$ such that $\|(u, v)\|$ is so small that

$$\widehat{U}(z) < \frac{1}{2} \left| \widehat{U} \right|_{\infty} \text{ for } z \in \mathbb{R}^3 \setminus (\bigcup_{j=1}^k B_{R_0}(x_j)) \text{ and } \widehat{V}(z) < \frac{1}{2} \left| \widehat{V} \right|_{\infty} \text{ for } z \in \mathbb{R}^3 \setminus B_{R_0}(0).$$

REMARK 3. The existence of positive solutions of (P) of the form (1.8) was proved in [14] in the case that the spacial dimension is 2 and μ_1, μ_2 satisfy

$$\sqrt{\frac{\mu_1}{\mu_2}} < \sin \frac{\pi}{k}.$$

We give a sketch of the proof of Theorem 2 for the case i = 2. The proofs of Theorem 2 for $i \neq 2$ and the proof of Theorem 3 are slight modifications of that of the case i = 2 of Theorem 2. The detail of the proofs can be found in [9].

2. Preliminaries

Throughout the rest of this paper, we assume that $\sqrt{\mu_1/\mu_2}$ is irrational.

For each $u, v \in H = H^1(\mathbb{R}^3)$, we put $\langle u, v \rangle = \int_{\mathbb{R}^3} uv$. We denote by $\langle \cdot, \cdot \rangle_{\mu_i}$ the inner product of H defined by $\langle u, v \rangle_{\mu_i} = \int_{\mathbb{R}^3} (\nabla u \cdot \nabla v + \mu_i uv)$ for $u, v \in H$ and $i \in \{0, 1, 2\}$. The inner product of H is defined by $\langle \mathcal{U}_1, \mathcal{U}_2 \rangle_{\mathbb{H}} = \langle \mathcal{U}_1, \mathcal{U}_2 \rangle_{\mu_1} + \langle V_1, V_2 \rangle_{\mu_2}$ for $U_1 = (U_1, V_1), U_2 = (U_2, V_2) \in H$. For each $u \in L^4(\mathbb{R}^3)$, we put $\Omega(u) = \left\{ x \in \mathbb{R}^3 : \widehat{u}(x) \geq \frac{|\widehat{u}|_{\infty}}{2} \right\}$ and

$$\mathcal{B}(u)=rac{\int_{\Omega(u)}x(\widehat{u}(x)-rac{|\widehat{u}|_{\infty}}{2})dx}{\int_{\Omega(u)}(\widehat{u}(x)-rac{|\widehat{u}|_{\infty}}{2})dx}.$$

The mapping *B* is called generalized barycenter, which is introduced in [18](cf. also [4]). By Sobolev's embedding theorem([1]), for $p \in [2,6]$ there exists $m_p > 0$ such that

$$|z|_{L^{p}(B_{r}(0))} \leq m_{p} \left(|\nabla z|^{2}_{L^{2}(B_{r}(0))} + \mu_{i} |z|^{2}_{L^{2}(B_{r}(0))} \right)^{1/2}$$

for $r > 1, z \in H^1(B_r(0))$, and $i \in \{0, 1, 2\}$. For each $a \in R$, and a functional $F : H \to R$, we denote by F^a the level set defined by $F^a = \{v \in \mathbb{H} : F^a(v) \le a\}$. The same notation is used for functionals defined on H.

It is easy to see that for each $u \in H \setminus \{0\}$ with $u^+ \neq 0$, there exists a unique positive number tsuch that $tu \in S_i(\text{cf. } [25])$. It follows from the definitions of U_i that $U_i(x) = \sqrt{\mu_i}U_0(\sqrt{\mu_i}x)$ on R^3 . Then one can see that

(2.1)
$$c_1 = \sqrt{\mu_1} c_0 > c_2 = \sqrt{\mu_2} c_0.$$

Let $i \in \{0, 1, 2\}$. It is known that $\{U_{i,x} : x \in \mathbb{R}^3\}$ is a nondegenerate critical set of I_i (cf. [23]). More precisely, we have there exists $\lambda > 0$ such that

(2.2)
$$||u||_{\mu_i}^2 - 3\langle U_i^2 u, u \rangle \ge \lambda ||u||_{\mu_i}^2$$
 for all $u \in \left\{ U_i, \frac{\partial U_i}{\partial x_1}, \frac{\partial U_i}{\partial x_2}, \frac{\partial U_i}{\partial x_3} \right\}^{\perp}$.

We define a functional $\Phi: H \longrightarrow R$ associated with problem (P) by

$$\begin{split} \Phi(\mathcal{U}) &= \frac{1}{2} (\|U\|_{\mu_1}^2 + \|V\|_{\mu_2}^2) - \frac{1}{4} (|U^+|_4^4 + |V^+|_4^4) - \frac{\beta}{2} \int_{\mathbb{R}^3} (U^+)^2 (V^+)^2 \\ &= \Phi_1(\mathcal{U}) + \Phi_2(\mathcal{U}) \quad \text{for } \mathcal{U} = (U, V) \in \mathbb{H}, \end{split}$$

where

$$\Phi_1(\mathcal{U}) = \frac{1}{2} \left\| U \right\|_{\mu_1}^2 - \frac{1}{4} \left| U^+ \right|_4^4 - \frac{\beta}{4} \int_{R^3} (U^+)^2 (V^+)^2$$

and

$$\Phi_2(\mathcal{U}) = \frac{1}{2} \|V\|_{\mu_1}^2 - \frac{1}{4} |V^+|_4^4 - \frac{\beta}{4} \int_{R^3} (U^+)^2 (V^+)^2.$$

Then a direct computation shows

$$\begin{split} \langle \nabla \Phi(\mathcal{U}), \mathcal{V} \rangle_{\mathbb{H}} &= \left\langle \left(\begin{array}{c} \nabla_{u} \Phi(\mathcal{U}) \\ \nabla_{v} \Phi(\mathcal{U}) \end{array} \right), \left(\begin{array}{c} W \\ Z \end{array} \right) \right\rangle_{\mathbb{H}} \\ &= \left\langle -\Delta U + \mu_{1} U - (U^{+})^{3} - \beta U^{+} (V^{+})^{2}, W \right\rangle \\ &+ \left\langle -\Delta V + \mu_{2} V - (V^{+})^{3} - \beta (U^{+})^{2} V^{+}, Z \right\rangle \end{split}$$

for $U = (U, V), V = (W, Z) \in H$. We put

$$\mathcal{M}_{+} = \{ (U, V) \in \mathbb{H} \setminus \{0\} : \|U\|_{\mu_{1}}^{2} = |U^{+}|_{4}^{4} + \beta \int_{\mathbb{R}^{3}} (U^{+})^{2} (V^{+})^{2}, \\ \|V\|_{\mu_{2}}^{2} = |V^{+}|_{4}^{4} + \beta \int_{\mathbb{R}^{3}} (U^{+})^{2} (V^{+})^{2} \}.$$

Then one can see that $U = (U, V) \in M_+$ is a critical point of Φ if and only if U is a positive solution of problem (P). From the definition, we have

(2.3)
$$\Phi_1(\mathcal{U}) = \frac{1}{4} \|U\|_{\mu_1}^2, \Phi_2(\mathcal{U}) = \frac{1}{4} \|V\|_{\mu_2}^2 \text{ and } \Phi(\mathcal{U}) = \frac{1}{4} (\|U\|_{\mu_1}^2 + \|V\|_{\mu_2}^2)$$

for $U = (U, V) \in M_+$. We also have that for each $U = (U, V) \in M_+$, there exists $(s, t) \in R^+ \times R^+$ such that $(sU, tV) \in M_+$. In fact, for each $U = (U, V), U \neq U$

 $0, V \neq 0, (sU, tV) \in M_+$ if and only if

$$\left(\begin{array}{c}s^2\\t^2\end{array}\right) = A^{-1} \left(\begin{array}{c}\|U\|_{\mu_1}^2\\\|V\|_{\mu_2}^2\end{array}\right)$$

where

$$A = \begin{pmatrix} |U^+|_4^4 & \beta \int_{\mathbb{R}^3} (U^+)^2 (V^+)^2 \\ \beta \int_{\mathbb{R}^3} (U^+)^2 (V^+)^2 & |V^+|_4^4 \end{pmatrix}$$

Since $\beta \in (-1,0)$, we have by the Schwartz's inequality that A^{-1} exists and then there exists a unique solution $(s,t) \in R^+ \times R^+$. For given $U = (U,V) \in H$ with $U \not\equiv 0, V \not\equiv 0$, we put $NU = N(U,V) = (N_1U, N_2V) = (sU, tV) \in M_+$.

Now to prove Theorem 1 for the case that i = 2, we define $H_2 \subset H, H_2 \subset H$ and $M_2 \subset M_+$ by

$$H_2 = \{ u \in H : u(x) = u(-x) \text{ for } x \in \mathbb{R}^3 \}, \qquad \mathbb{H}_2 = H_2 \times H_2,$$

and

$$\mathcal{M}_2 = \mathcal{M}_+ \cap \mathbb{H}_2$$

Since $\sqrt{\mu_1/\mu_2}$ is irrational, we can choose $\delta_2 \in (0, c_2)$ so small that

(2.4) $c_1 + kc_2 \notin [2c_1 + c_2 - \delta_2, 2c_1 + c_2 + \delta_2]$ for all $k \in \mathbb{N}$.

The following Lemmata are crucial for our argument.

LEMMA 1. (1) There exists $\beta_1 \in (-1,0)$ such that for each $\beta \in (\beta_1,0)$ and each critical point $U \in M_2 \cap \Phi^{2c_1+2c_2}$ of Φ ,

$$\Phi(\mathcal{U}) \in \bigcup_{i \ge 1, j \ge 1} [ic_1 + jc_2 - \delta_2/2, ic_1 + jc_2 + \delta_2/2].$$

(2) Let $\beta \in (\beta_1, 0)$ and $\{\mathcal{U}_n\} \subset M_2$ such that $\lim_{n \to \infty} \nabla \Phi(\mathcal{U}_n) = 0$ and $\lim_{n \to \infty} \Phi(\mathcal{U}_n) = 2c_1 + c_2 + \varepsilon$ with $\varepsilon \in (0, \delta_2/2)$. Then there exists a convergence subsequence $\{\mathcal{U}_{n_i}\} \subset \{\mathcal{U}_n\}$.

LEMMA 2. For given $\epsilon > 0$, there exists $\beta_{\epsilon} \in (\beta_1, 0)$ such that for each $\beta \in (\beta_{\epsilon}, 0)$ and for each $x \in \mathbb{R}^3 \setminus \{0\}$,

(2.5)
$$\Phi(\mathcal{N}(U_{1,x}+U_{1,-x},U_2)) < 2c_1 + c_2 + \varepsilon$$

a

3. Sketch of the Proof of Theorem 2 for i = 2.

Throughout this section we assume that $\beta \in (\beta_1, 0)$. We put

$$b_R(U) = \int_{\mathbb{R}^3 \setminus B_R(0)} |U|^2_{\mu_1}$$
 for $U \in H$ and $R > 0$

and

$$\Lambda_{2,\varepsilon}(R) = \left\{ \mathcal{U} = (U,V) \in \Phi^{2c_1+c_2+\varepsilon} \cap \mathcal{M}_2 : b_R(U) \ge 8c_1 - \min\left\{\frac{1}{2m_4^4}, c_1\right\} \right\}$$

for each $\epsilon > 0$ and R > 0.

PROPOSITION 1. For $\epsilon > 0$ sufficiently small, there exists $(R_{\epsilon}, \delta_{\epsilon}, \alpha_{\epsilon}, \gamma_{\epsilon}) \in (\mathbb{R}^+)^4$ such that $\lim_{\epsilon \to 0} \delta_{\epsilon} = \lim_{\epsilon \to 0} \alpha_{\epsilon} = \lim_{\epsilon \to 0} \gamma_{\epsilon} = 0$ and each $U = (U, V) \in \Lambda_{2,\epsilon}(R_{\epsilon})$ has the form

(3.1)
$$\mathcal{U} = (\alpha(U_{1,x} + U_{1,-x}) + u, \gamma U_2 + v)$$

where $\alpha \in (1 - \alpha_{\varepsilon}, 1 + \alpha_{\varepsilon}), \gamma \in (1 - \gamma_{\varepsilon}, 1 + \gamma_{\varepsilon}),$

$$(3.2) \quad |x| \ge R_{\varepsilon}, \quad x = \mathcal{B}(U|_{B_{R_0}(x)}), \quad \widehat{U}(z) < \frac{1}{2} \left| \widehat{U} \right|_{\infty} \quad \text{for } z \in \mathbb{R}^3 \setminus \bigcup_{i=\pm 1} B_{R_0}(ix),$$

(3.3)
$$\widehat{V}(z) < \frac{1}{2} \left| \widehat{V} \right|_{\infty} \quad \text{for } z \in \mathbb{R}^3 \backslash B_{R_0}(0),$$

and

(3.4)
$$(u,v) \in \{U_{1,x}, U_{1,-x}\}^{\perp} \times \{U_2\}^{\perp} \text{ with } \|u\|_{\mu_1}^2 + \|v\|_{\mu_2}^2 \leq \delta_{\varepsilon}.$$

REMARK 4. By (3.2) and the definition of B, one can see that for each $U \in \Lambda_{2,\epsilon}(R_{\epsilon}), (x, -x) \in R^3 \times R^3$ in (3.1) is uniquely determined, and the mapping $U \in \Lambda_{2,\epsilon}(R_{\epsilon}) \to (x, -x) \in R^3 \times R^3$ is continuous. We define a continuous mapping $\eta : \Lambda_{2,\epsilon}(R_{\epsilon}) \longrightarrow R^+ by$

(3.5)
$$\eta(\mathcal{U}) = |x| \quad \text{for } \mathcal{U} \in \Lambda_{2,\varepsilon}(R_{\varepsilon}).$$

We also need the following Proposition.

PROPOSITION 2. There exists $M_0 > 0$ satisfying that for $\varepsilon > 0$ sufficiently small,

$$\Phi(\mathcal{U}) \geq 2c_1 + c_2 - \beta M_0 e^{-2\sqrt{\mu_2}|x|} \quad for \ each \ \mathcal{U} \in \Lambda_{2,\epsilon}(R_{\epsilon}),$$

where $x \in \mathbb{R}^3$ such that U has the form (3.1).

Now for $x \in \mathbb{R}^3 \setminus \{0\}$, we define a class $\Gamma_2(x) \subset C([0, 1], M_2)$ by

 $\Gamma_2(x) = \{ p \in C([0,1], \mathcal{M}_2) : p(0) = \mathcal{N}(U_1, U_2), p(1) = \mathcal{N}(U_{1,x} + U_{1,-x}, U_2) \}$

and put

$$c_2(x) = \inf_{p \in \Gamma_2(x)} \sup_{t \in [0,1]} \Phi(p(t)).$$

We also note that from the definitions of Nand Φ , we have that $N(U_{1,x}+U_{1,-x},U_2) - (U_{1,x}+U_{1,-x},U_2) \longrightarrow 0$ in Has $|x| \longrightarrow \infty$ and then

(3.6)
$$\lim_{|x| \to \infty} \Phi(\mathcal{N}(U_{1,x} + U_{1,-x}, U_2)) = 2I_1(U_1) + I_2(U_2) = 2c_1 + c_2.$$

Based on the preliminary results above, we can prove Theorem 2 for i = 2.

PROOF OF THEOREM 2. Let $\varepsilon \in (0, \delta_2/2)$ sufficiently small. Let $\beta \in (\beta_{\varepsilon}, 0)$. To complete the proof, it is sufficient to show that there exists $\delta > 0$ and R > 0 such that

(3.7)
$$2c_1 + c_2 + \delta < c_2(x) < 2c_1 + c_2 + \delta_2/2$$
 for $|x| > R$.

In fact, if the inequalities above hold, we have by (3.6) that we can choose $x \in R^3$ such that |x| > R and

$$\Phi(\mathcal{N}(U_{1,x}+U_{1,-x},U_2)) < 2c_1+c_2+\delta.$$

That is $\Phi(p(1)) < c_2(x)$ for all $p \in \Gamma_2(x)$. We also have $\Phi(p(0)) < \frac{7}{4}c_1 + c_2$. Then since the Palais-Smail condition holds by (2) of Lemma 1 on $\Phi^{(2c_1+c_2,2c_1+c_2+\delta_2/2)}$, we have by a standard mountain pass argument that there exists a critical point U of Φ with $\Phi(U) = c_2(x)$.

From the definition of ε and Lemma 2, one can see the pass $p \in \Gamma_2(x)$ defined by

$$p(s) = \mathcal{N}(U_{1,sx} + U_{1,-sx}, U_2), \quad s \in [0,1]$$

satisfies $\max_{s \in [0,1]} \Phi(p(s)) \leq 2c_1 + c_2 + \epsilon$. Then the second inequality of (3.7) holds. We now show that the first inequality of (3.7) holds. We first see that there exists $\overline{R} > 2R_{\epsilon}$ such that ,

(3.8)
$$b_{R_{\varepsilon}}(U) \ge 8c_1 - \frac{1}{2} \min\left\{\frac{1}{2m_4^4}, c_1\right\} \text{ for } \mathcal{U} = (U, V) \in \Lambda_{2,\varepsilon}(R_{\varepsilon}) \text{ with } \eta(U) \ge \overline{R},$$

where η is the function defined by (3.5). By Proposition 1, each $U = (U, V) \in \Lambda_{2,\epsilon}(R_{\epsilon})$ has the form

(3.9)
$$\mathcal{U} = (\alpha(U_{1,x} + U_{1,-x}) + u, \gamma U_2 + v)$$

with $\alpha \in (1 - \alpha_{\varepsilon}, 1 + \alpha_{\varepsilon}), \gamma \in (1 - \gamma_{\varepsilon}, 1 + \gamma_{\varepsilon})$ and $(u, v) \in \{U_{1,x}, U_{1,-x}\}^{\perp} \times \{U_2\}^{\perp}$ with $\|u\|_{\mu_1}^2 + \|v\|_{\mu_2}^2 \leq \delta_{\varepsilon}$. Since $\lim_{\varepsilon \longrightarrow 0} \delta_{\varepsilon} = \lim_{\varepsilon \longrightarrow 0} \alpha_{\varepsilon} = 0$, we may assume that $\varepsilon > 0$ is sufficiently small that

(3.10)
$$8\alpha_{\epsilon}^{2}c_{1} - \delta_{\epsilon} > 8c_{1} - \frac{1}{2}\min\left\{\frac{1}{2m_{4}^{4}}, c_{1}\right\}.$$

Then noting that

$$b_{R_{\epsilon}}(U) \geq \alpha^{2} \|U_{1,x} + U_{1,-x}\|_{\mu_{1}}^{2} - \|u\|_{\mu_{1}}^{2} - 2 \int_{B_{R_{\epsilon}}(0)} |U_{1,x} + U_{1,-x}|_{\mu_{1}}^{2}$$

and

$$||U_{1,x} + U_{1,-x}||^2_{\mu_1} \longrightarrow 8c_1 \text{ and } \int_{B_{R_{\varepsilon}}(0)} |U_{1,x} + U_{1,-x}|^2_{\mu_1} \longrightarrow 0, \text{ as } |x| \longrightarrow \infty,$$

we find by (3.10) that there exists \overline{R} such that for each $U = (U, V) \in \Lambda_{2,\varepsilon}(R_{\varepsilon})$ with $\eta(U) \geq \overline{R}$, (3.8) holds. Now we choose $x \in R^3$ so large that $|x| > \overline{R}$. Then

$$b_{R_{\epsilon}}(\mathcal{N}_1(U_{1,x}+U_{1,-x})) \ge 8c_1 - \frac{1}{2}\min\left\{\frac{1}{2m_4^4}, c_1\right\}$$

Let $p = (p_1, p_2) \in \Gamma_2(x)$ such that $\sup_{t \in [0,1]} \Phi(p(t)) \leq 2c_1 + c_2 + \varepsilon$. From the definition,

$$\eta(p_1(1)) = \eta(\mathcal{N}_1(U_{1,x} + U_{1,-x})) > \overline{R} \text{ and } b_{R_{\epsilon}}(p_1(1)) \ge 8c_1 - \frac{1}{2}\min\left\{\frac{1}{2m_4^4}, c_1\right\}.$$

On the other hand, recalling that $\Phi_2(U) \ge c_2$, we have that $\Phi_1(U) \le \frac{7}{4}c_1$. Then by the definition of $\varepsilon, b_{R_{\epsilon}}(p_1(0)) < 7c_1 \le 8c_1 - \min\left\{\frac{1}{2m_4^4}, c_1\right\}$, there exists $t \in (0, 1)$ such that $b_{R_{\epsilon}}(p_1(t)) = 8c_1 - \min\left\{\frac{1}{2m_4^4}, c_1\right\}$. Then by (3.8), $\eta(p_1(t)) < \overline{R}$. Therefore by the continuity of η , we have that there exists $t_0 \in (0, t)$ such that $\eta(p_1(t_0)) = \overline{R}$. By Proposition 2, we have

$$\Phi(p(t_0)) \ge 2c_1 + c_2 + \beta M_0 e^{-2\sqrt{\mu_2}R}$$

Therefore we obtain that $\sup_{t \in [0,1]} \Phi(p(t)) > 2c_1 + c_2 + \beta M_0 e^{-2\sqrt{\mu_2}R}$. Thus by the mountain pass theorem (cf. [20]), we find that there exists a critical point U of Φ with $\Phi(U) = c_2(x)$.

References

- 1. R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
- 2. N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, 'jus. Rev. Lett 82 (1999), 2661-2664.
- 3. A. Ambrosetti and E. Colorado, Bounded and ground states of coupled nonlinear schrodinger equations, preprint.
- 4. T. Bartsch and Tobias Weth, Three nodal solutions of singularly perturbed elliptic equatuions on domanis without topology, Ann. I. H. Poincare 22 (2005), 259-281.
- 5. A. Castro, J. Cossio, and J. M. Neuberger, A sign-changing solution for a superlinear dirichlet problem, Rocky Mountain J. Math. 27 (1997), 1041-1053.
- 6. M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Cal.Var. and Partial Differential Equations 21 (2004), 1-14.

- B. D. Esry, C. H. Greene, J. P. Burke, and J. L. Bohn, Jartree-fock theory for double condensates, Phys. Rev. Lett 78 (1997), 3494-3497.
- 8. B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions fo nonlinear elliptic equation in r^n , Adv. Math. Suppl. Stud. 7 (1981), 369-402.
- 9. N. Hirano, Multiple existence of nonradial positive solutions for a coupled nonlinear schrodinger system, to appear.
- 10. N. Hirano and N. Shioji, Multiple existence of solutions for a coupled nonlinear schrodinger equations, Nonlinear Analysis TMA, to appear.
- 11. M. K. Kwong, Uniqueness of positive solutions of $-\delta u u + u^p = 0$ in r^n , Arch. Rat. Mech. Anal. 105 (1989), 243-266.
- 12. T. C. Lin and J. Wei, Ground state of n coupled nonlinear schrodinger equations in r^n , Communications in Mathematical Physics **255** (2005), 629-653.
- 13. ____, Spikes in two-component systems of nonlinear schrodinger equations, Annales de l'Institut H. Poincare 22 (2005), 403-439.
- 14. _____, Solitary and self-similar solutions of two-component system of nonlinear schrodinger equations, Phys. D 2 (2006), 99-115.
- 15. L.A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear schrodinger system, preprint.
- C. R. Menyuk, Nonlinear pulse propagation in birefrignent optical fibers, IEEE J. Quantum Electron 23 (1987), 174–176.
- 17. E. S. Noussair and J. Wei, On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems, Indiana Univ. Math. J. 46 (1996), 1255-1271.
- 18. G. Cerami & D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Carc. Var. PDE. 17 (2003), 257-281.
- 19. A. Pomponio, Coupled nonlinear schrodinger systems with potentials, J. Diff. Equations 227 (2006), 258-281.
- P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C. B. M. S. Regional Conf. Math. Series 65. A.M.S. Providence, 1986.
- B. Sirakov, Leat energy solitary waves for a system of nonlinear schrodinger equations in rⁿ, Communications in Mathematical Physics 271 (2007), 199-221.
- 22. W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Diff. Equations 42 (1981), 400-413.
- 23. J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear dirichlet problem, J. Diff. Equations 129 (1996), 315-333.
- 24. J. Wei and T. Weth, Existence of nonraidal symmetric bound states for a system of coupled schrodinger equations, preprint.
- 25. X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equations 92 (1991), 163-178.