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1. Introduction

In the present paper, we consider the multiple existence of non-
radial positive solutions of coupled Schrédinger system

P) —Au+pmu = ud+ pur® in R3
—Av+pv = v3+fBuv in R3

where uy,u2 > 0and 3 € R.

Coupled nonlinear Schrédinger system (P) models many physical
problems. In nonlinear optics, the phenomenon in Kerr-like pho-
torefractive media is described by system (P) (cf. [2]). In this case,
the solution wand vdenote the components of the beam in Kerr-like
photorefractive media, and the coupling constant gis the interac-
tion between two components « and v.In case g > 0, the interaction
is attractive, while the interaction is repulsive if 8 < 0.The bimodal
pulse in optical fibers under birefringent effects is also governed by
system (P) (cf. [16]). It is also known that system (P) is a model
for a mixture of two Bose-Einstein condensates(cf. [7]).

Motivated by these physical interest, the existence of solutions
of (P) has been investigated by several authors. In the case that
38 > 0,problem (P) was studied by Ambrosetti & Colorado[3], Maia,
Montefusco & Pellacci[15] and Lin & Wei[12]. They proved the
existence of least energy solutions (u,v)of (P) with »,v > 0.By the
result of Troy(cf. [22]), we know that in this case, all positive
solutions (u,v)of (P) satisfying

(1.1) u(x) — 0,v(z) — 0, as || — oo

are radially symmetric functions. On the other hand, in case that
3 < 0jit is known that there is no least energy solution of (P)(cf.
[12]).Moreover, positive solutions of (P) satisfying (1.1) is not al-
ways radial. In case that 8 < oand |slis small, there are positive
solutions with one component concentrating on the origin and the
other component concentrating around a regular polygon(cf. {14]).
The existence of non radial positive solutions was also considered
in [24] for the case that 8 < 0and u = ua.In this case, there are
infinitely many nonradial solutions if g < —1.Recently, Sirakov([21]



established the existence of ground state solutions of (P) in the case
that coefficients of nonlinear terms «®and v*in (P) are different.

On the other hand, the existence of sign changing solutions of
nonlinear scalar elliptic problem

(1.2) —Au+u = [ufftuy, u € H}(Q)

has been investigated by many authors in the last decade. Here Qis
a domain in RV(N > 3),and p € (1,(V + 2)/(V — 2)].We refer to [5], [6]
and [17] for related results of sign changing solutions of (1.2).The
existence of sign changing solutions of (P) with g > owas considered
in [10]. For the problem (P) with &3 replaced by a bounded domain,
we refer to [13] and [19].

In the present paper, we first see the multiple existence of solu-
tions of problem (P) in the case that g > 0. Next we consider the
case that g < oand |g/is small, i.e. the case that the interaction of
two solutions are small and repulsive. We will show the multiple
existence of nonradial solutions of (P) in this case with u; # us.Our
results improve the results in [14].(See Remark 2 and Remark 3).

To state our main results, we need some notations. We denote
by B.(z)the open ball in R3centered at = ¢ R*with radius » > 0. The
inner product in R3is denoted by (., gs -We put H = H'(R®*)and H =
H x H.We set uo = 1.We denote by ||| »,the norm of #defined by |ju|?, =
Jrs(IVu|® + s |uf?)dzfor w € Hand i € {0,1,2}.For simplicity of notations,
we put |u(z)[%, = |Vu(z)|®+p1 Ju(z)|? for v € Hand = € R3.For each function
u € Hwe set u*(z) = max {u(z),0},u~(z) = max {—u(z),0} .For each p > 1,we

denote by || ,the norm of the space Lr(r%). The Hilbert space His

equipped with the norm defined by |2 = )2, + llo|2,for U = (u,v) €

H.We recall that for each i € {0,1,2} ,problem

-Au+pu = 3 in R3
(F) u(z) > 0 in R3
u(x) — 0 as |z| — oo

has a radial solution, denoted by U;(cf. [8], [11]).The function viis
the unique smooth solution of (P;) up to translation. Moreover
we know that U;satisfies I;(U;) = ¢ = min{I(v) : v € &;} ,where Iis the
functional associated with problem (P)defined by

(1.3) Li(v) = % )2, - % bt forveH

and S;iis the set defined by

Si={veH:|v|2, =p*[}} fori=1.2.
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For each x € R3and i e {0,1,2},we put Ui.() = U:(- — z).It is also known
that

(1.4) Ui(2)|,,, 2| exp(v/pi |z]) — ¢ >0, as |z] — oo for i € {0,1,2}.

(cf. [11]). For each u € L*(R®),we put @(z) = [p,(, lu(z)|* dzfor = €
R3.Then from (1.4),we can choose R, > 0such that

U
(1.5) Ui(z) < g2 forallze R3\Bg,(0) and i € {1,2}.

Since we consider the case that u; # u2,we may assume without any
loss of generality that s < u1.We can now state our main results.

TueoreMm 1. Suppose that the following condition holds:

0 < 2y/p2 < 1.
Then there exists G, > 0such that for each 8 € (0, Bo),problem (P)possesses
at least one ground state solution U, € H*(R®) x H(R%)and one nonra-
dial sign changing solution U € H*(R®) x H'(R?).

TueoreMm 2. Suppose that /m/uzis irrational. Then for each i €
(2,4,6,8,12,20} ,there exists g; € (—1,0)such that for each g e (8:,0),there
exists a positive solution U; € Hof (P)such that ic; +c2 < ®(Us) < icy +
2c;and U;has the form

(1.6) U= (U, V)= (O Usg; +u,Uz +)

Jj=1
where {z1,23, - -, z:}forms a regular i—polyhedra in R¥in case i # 2and
2, = —xz9in case that i = 2,and u,v € Hsuch that |(u,v)||%8 so small that

(L.7) 0(z) < 5 |0]_ for = € R\(Ujm1Bro(ay) and
P(2) < % 7] sor = € R\BR, 0).

Remark 1. The expression (1.6)of U; = (U,V)is unique when ||(u,v)| s
so small that condition (1.7Mholds, i.e., for each Ui, (z1,x2,- - -, z:i)1S
uniquely determined.

Remark 2. The assertion of Theorem 1 implies that for g < owith
18|sufficiently small, problem (P)possesses at least 6nonradial positive
solutions. In [14], the existence of positive solutions of (P)of the

form (1.6)was established in the case that {zi,zs,- --,z:}forms regular
cube or tetrahedra under the assumption

Mo 2 for the cube
M2 3 for the tetrahedra.



Our argument employed in this paper does not require the ratio of
vatand /.

THEOREM 3. Suppose that \/ui/uzis irrational. Then for each k
N,there exists . e (-1,0)such that for each 8 € (B,0),the problem
(PYhas a positive solution U.such that ke, + c; < ®(U) < kcy + 2caand
Urhas the form .

k
(1.8) U= (U, V) = (3 Uss, +u,Us+v)

=1

where {z1,z3, -z} c R¥form a regular k-polygon in a two dimen-
stonal subspace of R®,and u,v € Hsuch that ||(u,v)||is so small that

U(z) < % |t7’°o for z € R3\(UK_, Bpy(z;)) and V(2) < % |x7|co for z € R3\ B, (0).

RemArk 3. The emistence of positive solutions of (P)of the form
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(1.8)was proved in [14] in the case that the spacial dimension is

2and p1, pasatisfy
fmr . @
— < sln —.
M2 k

We give a sketch of the proof of Theorem 2 for the case i = 2. The
proofs of Theorem 2 for : # 2and the proof of Theorem 3 are slight
modifications of that of the case i = 20f Theorem 2. The detail of
the proofs can be found in [9].

2. Preliminaries

Throughout the rest of this paper, we assume that /m/m is
irrational.
For each w,v € H = H'(R%),we put (u,v) = [ w.We denote by

(), the inner product of Hdefined by (u,v),, = fus(Vu - Vo + puv)for
u,v € Hand i € {0,1,2}. The inner product of His defined by @4,)y =
(U1, U2),, + (W1, V), for Uy = (U1, V1), Uz = (U, V2) € H.For each u e L4(R3),we

put Qu) = {:z: € R3 : 4(z) > ltzl2—‘1’1}811(21
_ fn(u) z(u(z) — Elf“)dx

RCORE SN
The mapping Bis called generalized barycenter, which is introduced

in [18](cf. also [4]). By Sobolev’s embedding theorem([1]), for
p € [2,6]there exists m, > 0such that

B(u)

1/2
2] Lo (B,(0)) < Ma (|VZ|12(B,(0)) + i |Zliﬂ(Br(0)))
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for r > 1,2 € H'(B,(0)),and i € {0,1,2}.For each a € R,and a functional F :
H— R,we denote by Fothe level set defined by F* = {v € H: F*(v) < a}.The
same notation is used for functionals defined on H.

It is easy to see that for each u € H\ {0}with u* # 0,there exists a
unique positive number tsuch that tu € Si(cf. [25]). It follows from
the definitions of Uithat Ui(z) = /mUo(y/mz)on R:.Then one can see
that

(2.1) c1 = /pico > c2 = /p2co.

Let i  {0,1,2}.It is known that {Ui. : = € R3}is a nondegenerate critical
set of I;(cf. [23]). More precisely, we have there exists A > osuch that

o 9Us OU; }
Oz’ Ox2’ Ox3 ’

We define a functional ® : H — Rassociated with problem (P) by
o) = SUUIZ, + WVIE) - Ui+ VD - § [ ey
— &, (U) +®U)  forU =(U,V) € H,

(2.2) ||u||,2“ - 3(Uku,u) > A I|u||z' forall u € {U,-,

where

@) =3I, - 3 0718 - § [ 0Dy
and

20 = 5 IVIE, - 3 V-5 [ oo
Then a direct computation shows

woeova=(( v ) (7)),
= (=AU +mU — (U+)® - U+ (V*)2, W)
+(=AV +pV — (V*)? = BUT)*VY, Z)
for U = (U,V),V = (W, Z) € HWe put
My = (V) € B\ (0} : |UIE, = |05+ 8 [ @202,

IVIE, = v+ +6 [ @HV).

Then one can see that U = (U,V) € M, is a critical point of &if and

only if Uis a positive solution of problem (P). From the definition,
we have

(23) &) = SIUIE, @) =  IVIE, and 2Q0) = SUVIE, + IVIE,)

forv=(U,v)e M, .We also have that for each U = (U, V) € M, there ex-
ists (s,t) € R* x R*such that (sU,tV) € M, In fact, for each U = (U,V),U #
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0,V #0,(sU,tV) € M,if and only if

2\ _ o U,
(5)=2 (uvuw)
where
Am U+ B Jra(UT)2(VH)?
B Jgs(UH)2(V+)? V*e '

Since g € (~1,0),we have by the Schwartz’s inequality that A-lexists
and then there exists a unique solution (s,¢) € R+ x R*.For given
U= (U,V) e HwWith U # 0,V # o,we put NU = N(U,V) = (MU, NoV) =
(SU ) tV) € M+.

Now to prove Theorem 1 for the case that i = 2, we define H,
H,H; c Hand M, c M, by

Hy; ={ue H:uz) =u(-x) for z € R3}, Hy = Hy x Ha,

and
Mo = M, NH;.
Since /u1/uzis irrational, we can choose 6, e (0,cz) so small that

(2.4) c1 + keg & [2¢1 + c2 — 62,2¢1 + ¢ + 6] for all k € N.

The following Lemmata are crucial for our argument.

Lemma 1. (1) There exists p, € (~1,0)such that for each g e (1,0)and
each critical point U € M n ®%a1+229f &,

®U) € Uin1,j>1lict + jez — 62/2,ic1 + jeo + 62/2).

(2) Let g € (81,0)and {t4,} c Mysuch that Jlim Ve(U,) = 0and Jlim @(U,) =

2¢1 +c2 +ewith e € (0,62/2). Then there exists a convergence subsequence
{Un} C {Un}.

Lemma 2. For given e > 0,there exists B, € (8;,0)such that for each
B € (B, 0)and for each = € R3\ {0},

(2.5) SN (U7 + Ui,—2,U2)) < 2c1+co+¢

a
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3. Sketch of the Proof of Theorem 2 for i =2.
Throughout this section we assume that g € (6;,0).We put

br(U) = / U2 for U € Hand R>0
R\BR(0)

and

AZYE(R) = {u = (U, V) e plerteate NMas: bR(U) > 8¢; — min {2—17723,61}}
4

for each ¢ >0and R >o0.

ProposiTioN 1. For e > 0sufficiently small, there exists (R.,é.,ac,7.) €
(R+)*such that lim & = lim e = lim 7. = 0and each U = (U,V) € Ay (R.)has
E— & — & =

the form
(3.1) U= (a(lhz+U,-z) +u,vUs +v)
where a € (1 - ae,1+ac),y € (1 — e, 1 + 7¢),

. P 3 :
(32) lol2 R o=B(Ulp,e) U= <3|0|_ forzeR\ |J Bri),

i==+1
(3.3) 7(2) < % V] for 2 e R\Ba, (0),
and
(34) (4,0) € {Ur,e, Uz}t x {U}* with |[ul? + |[v]|2, < 6.

REMARK 4. By (3.2) and the definition of B,one can see that for
each U € Aze(Re),(z,—z) € R® x R® in (3.1)1is uniquely determined, and
the mapping U € As.(Re) — (z,—z) € R® x R3 18 continuous. We define a
continuous mapping n: Ay(Re) — Rt by

(3.5) nU) = |z| forU € Az.(R,).

We also need the following Proposition.

P;zoposmon 2. There exists My > 0 satisfying that for e > 0 sufficiently
small,

S(U) > 2c1 + c2 — BMoe~ 2Vl for each U € Aye(Re),
where z € R? such that Uhas the form (3.1).
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Now for = € R%\ {0} ,we define a class I';(z) ¢ C([0, 1], Ma)by

Ta(z) = {p € C([0, 1], M2) : p(0) = N (U1, U2),p(1) = N(U1,c + U1,—2, U3)}

and put

)= inf s $(p(t)).
c2(x) peﬁ(z)teﬁﬁ] (p(2))

We also note that from the definitions of Nand ®,we have that N(U; .+
U1,-2,U2) = (U2 + Uy,—2,U2) —0in Has |z| — oo and then

(3.6) l ,lim @(N(ULE + U1,—2,02)) = 211 (Uh) + I (U3) = 2¢; + c3.
T —00

fBased on the preliminary results above, we can prove Theorem
2 fori=2. ,

PROOF OF THEOREM 2. Let ¢ € (0,6,/2) sufficiently small. Let 3 ¢ (3.,0). To
complete the proof, it is sufficient to show that there exists § > 0 and
R > osuch that

(3.7) 2¢c1 +c2+ 6 < () < 2¢1 + 2 + 62/2 for |z| > R.

In fact, if the inequalities above hold, we have by (3.6) that we can
choose z € R¥such that |z| > Rand

SN (U1 + U1,-2,02)) < 2¢1 + ¢2 + 6.

That is ®(p(1)) < ex(z) for all p € I'y(z).We also have ®(»(0)) < Zex +
c2- Then since the Palais-Smail condition holds by (2) of Lemma 1
on ®(@eateaZa+etsz/2) we have by a standard mountain pass argument
that there exists a critical point Uof ® with &(U) = cs(z).

From the definition of cand Lemma 2, one can see the pass p €
I'2(x)defined by

P(s) = N(Ursc + Ut,—sz, U2), s€[0,1]

satisfies max,¢(0 1) ®(p(s)) < 2¢1+cy+e.Then the second inequality of (3.7)

holds. We now show that the first inequality of (3.7) holds. We first
see that there exists R > 2R, such that ,

(38) br,(U) > 8c; — %min { 5;? cl} for U = (U, V) € Age(Re) with n(U) > E,
4

where nis the function defined by (3.5). By Proposition 1, each
U= (U,V) € Ay.(R:)has the form

(3.9) U= (a(Uhe + U1,—z) + u,YUz +v)
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with a € (1-ae,1+ac),v € (1=7¢, 1+7.)and (u,v) € {Uyz, U1, -z} % {Uz}*with
lull?, + flvl|2, < 6..Since lime_oé. = lim.—oac = 0,we may assume that

e > ois sufficiently small that
1 . 1
(3.10) 8a3c1 — 6 > 8¢; — 5 min {z—m—g,cl} .
Then noting that
b (0) 2 @ [V + Us el = ull, - 2 [ o et Uil
Re

and

U1z + Un,—2l|2, — 8c1 and U1 + Ut,—zls, — 0, as |z| — oo,
Br,(0) :
we find by (3.10) that there exists Rsuch that for each U = (U,V) €

Az.(R.)With n(U) > R,(3.8) holds. Now we choose = € R%so large that
|z} > R.Then

1 . 1
bR;(NI(UI,z + Ul,—a:)) > 8c; — -émm {2—7"3,61} .

Let p = (p1,p2) € T2(z)such that sup,q) (1)) < 2¢) + c2 + . From the
definition,

- 1

n(p1(1)) = MM U1,z + U1,—z)) > R and bg,(p1(1)) = 81 — %min {2_7713,01} .
On the other hand, recalling that ®;(U) > c;,we have that &,(U) <
Tc1.Then by the definition of ¢,bg, (p1(0)) < 7c1 < 8¢; —min {#f,cl}, there

exists ¢t € (0,1)such that bg, (pi(t)) = 8¢; — min{ 2¢,¢; + . Then by (3.8),
2my

n(p1(t)) < R. Therefore by the continuity of »,we have that there exists
to € (0,t)such that n(p:(to)) = R.By Proposition 2, we have

®(p(to)) = 2¢1 + c2 + BMpe~2VFIR,
Therefore we obtain that sup,c 1) 2(p(t)) > 2c1+¢2 + BMoe~2vP2R Thus by
the mountain pass theorem(cf. [20]), we find that there exists a

critical point Uof #with &(U) = ca(x). ]
References
1. R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
2. N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, ‘jus. Rev. Lett

82 (1999), 2661-2664.

3. A. Ambrosetti and E. Colorado, Bounded and ground states of coupled nonlinear schrodinger equa-
tions, preprint.

4. T. Bartsch and Tobias Weth, Three nodal solutions of singularly perturbed elliptic equatuions on
domanis without topology, Ann. I. H. Poincare 22 (2005), 259-281.

5. A. Castro, J. Cossio, and J. M. Neuberger, A sign-changing solution for a superlinear dirichlet
problem, Rocky Mountain J. Math. 27 (1997), 1041-1053.

6. M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a sym-
metric domain, Cal.Var. and Partial Differential Equations 21 (2004), 1-14.



7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

B. D. Esry, C. H. Greene, J. P. Burke, and J. L. Bohn, Jartree-fock theory for double condensates,
Phys. Rev. Lett 78 (1997), 3494-3497.

B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions fo nonlinear elliptic equation
in r™, Adv. Math. Suppl. Stud. 7 (1981), 369-402.

N. Hirano, Multiple existence of nonradial positive solutions for a coupled nonlinear schrodinger
system, to appear.

N. Hirano and N. Shioji, Multiple existence of solutions for a coupled nonlinear schrodinger equa-
tions, Nonlinear Analysis TMA, to appear.

M. K. Kwong, Uniqueness of positive solutions of —6u — u+uf = 0 in r", Arch. Rat. Mech. Anal.
105 (1989), 243-2686.

T. C. Lin and J. Wei, Ground state of n coupled nonlinear schrodinger equations in r", Communi-
cations in Mathematical Physics 255 (2005), 629-653.

, Spikes in two-component systems of nonlinear schrodinger equations, Annales de 'Institut
H. Poincare 22 (2005), 403-439.

, Solitary and self-similar solutions of two-component system of nonlinear schrodinger equa-
tions, Phys. D 2 (2006), 99-115.

L.A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear
schrodinger system, preprint.

C. R. Menyuk, Nonlinear pulse propagation in birefrignent optical fibers, IEEE J. Quantum Electron
23 (1987), 174-176.

E. S. Noussair and J. Wei, On the effect of domain geometry on the eristence of nodal solutions in
singular perturbations problems, Indiana Univ. Math. J. 46 (1996), 1255-1271.

G. Cerami & D. Passaseo, The effect of concentrating potentials in some singulerly perturbed prob-
lems, Carc. Var. PDE. 17 (2003), 257-281.

A. Pomponio, Coupled nonlinear schrodinger systems with potentials, J. Diff. Equations 227 (2006),
258-281.

P. Rabinowitz, Minimaz methods in critical point theory with applications to differential equations,
C. B. M. S. Regional Conf. Math. Series 65. A.M.S. Providence, 1986.

B. Sirakov, Leat energy solitary waves for a system of nonlinear schrodinger equations in r", Com-
munications in Mathematical Physics 271 (2007), 199-221.

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Diff. Equations 42
(1981), 400-413.

J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear dirichlet
problem, J. Diff. Equations 129 (1996), 315-333.

J. Wei and T. Weth, Eristence of nonraidal symmetric bound states for a system of coupled
schrodinger equations, preprint. .

X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff.
Equations 92 (1991), 163-178.

241



