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Abstract

This paper presents a new framework for visualisation of large and complex networks
in three dimensions. In general, the framework uses a divide and conquer approach.
More specifically, the framework divides a graph into a set of smaller subgraphs, and
then draws each subgraph in a $2D$ “plane” (a bounded planar region). Finally, a tbree
dimensional drawing of the graph is constructed by arranging these planes in $3D$ , sat-
is$\mathfrak{h}\ulcorner ing$ optimisation criteria.

The MultiPlane framework is very flexible. Algorithms that follow this framework
vary in computational complexity, depending on the type of graph and the optimisation
criteria that are chosen. The resulting drawing can reduce visual complexity and occlu-
sion, and is easy to navigate. Some optimisation problems arise from the ffamework;
we describe some simple approaches to these problems. Experimental results suggest
that the new framework can be useful for visual analysis of large and complex networks
such as social networks and biological networks.

Keywords: Graph drawing, Information visualisation, Three dimensions, Large
and complex networks.

1 Introduction

Recent technological advances have led to the production of a lot of data, and consequently
have led to many large and complex network models in many domains. Examples include:

$\bullet$ Social networks; These include telephone call graphs (used to trace terrorists), money
movement networks (used to detect money laundering), and citation networks or
collaboration networks. These networks can be very large.

$\bullet$ Biological networks: Protein-protein interaction (PPI) networks, metabolic pathways,
gene regulatory networks and phylogenetic networks are used by biologists to analyse
and engineer biochemical materials. In general, they have only a few thousand nodes;
however, the relationships are very complex.

$\bullet$ Software engineering: Large-scale software engineering deals with very large sets of
software modules and relationships between them. Analysis of such networks is es-
sential for design, performance tuning, and refactoring legacy code.

$\bullet$ Webgraphs, where the nodes are web pages and relationships are hyperlinks, are
somewhat similar to social networks and software graphs. They are huge: the whole
web consists of billions of nodes.
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Visualisation can be an effective analysis tool for such networks. Good visualisation
reveals the hidden structure of the networks and amplifies human understanding, thus
leading to new insights, findings and predictions. However, constructing good visualizations
of such networks can be very challenging.

Recently, many methods for visualisation of large graphs have been suggested. For exam-
ple, see the recent proceedings of Graph Drawing or Information Visualisation conferences.
Methods include fast multi-level force directed methods, spectral graph drawing, geomet-
ric or combinatorial clustering methods, and multidimensional scaling methods. However,
current visualisation methods tend to exhibit one or more of the following problems:

$\bullet$ Scalability: current methods for visualisation of large graphs can handle, at best, a few
thousand nodes. Most methods do not scale well, in terms of computational efficiency
(runtime).

$\bullet$ Visual complexity: humans have limited ability in cognition and perception. A draw-
ing of millions of nodes can be cluttered, making it difficult to recognise patterns and
inhibiting good insight on the data set.

$\bullet$ Domain complexity: In practice, the networks have properties that must be repre-
sented visually. For example, in a social network, some nodes are more important
(higher centrality) than others. For many biological networks, there are established
layout conventions for specific subnetworks. The layout algorithms must respect these
domain-dependent constraints.

$\bullet$ Interaction/navigation methods: each visualisation method should be accompanied
by good navigation methods for exploration of the data. This is critical for further
analysis, findings, understandings or even prediction of the structure of the networks.
Design of good navigation methods may dependent to a specific visualisation methods.

AfFordable high quality $3D$ graphics in every PC has motivated a great deal of research
in $3D$ graph drawing over the last ten to fifteen years. The proceedings of the annual Graph
Drawing conferences document these developments. Three dimensional graph drawings with
a variety of aesthetics and edge representations have been extensively studied (see [5, 7, 10,
11, 18, 24] $)$ . Examples include algorithms for $3D$ orthogonal drawing with a limited number
of bends or small volume, $3D$ straight-line grid drawing algorithms with small volume, and
$3D$ graph drawing algorithms that maximise symmetry.

Laboratory experiments have shown that $3D$ graph visualisations can be up to three
times more readable than $2D[25]$ . However, the availability of the 3rd dimension has
made little impact on graph visualisation industry; currently no major graph visualization
provider uses $3D$ . Even though these $3D$ algorithms of the past 10 years are theoretically
significant, none of them have been adopted by the commercial graph drawing software
providers. Thus achieving good $3D$ visualisation remains a challenging problem.

A number of researchers have recently pointed out that full use of $3D$ layout may not
be helpful [2, 4, 6, 21, 26]. Ware [26] advocates a 2. $5D$ design attitude”. using $3D$ depth
selectively and paying special attention to $2D$ layout. He indicates that this may provide
the best match with the limited $3D$ capabilities of the human visual system.

In this paper, we propose a new flexible framework for drawing graphs in three (more
exactly 2. $5D$”) dimensions, consistent with the guidelines of Ware. The new MultiPlane
framework uses a divide and conquer approach. More specifically, we divide a graph into a
set of subgraphs, and then draws each subgraph in a plane (bounded planar region) using
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well-established $2D$ drawing algorithms. Finally, a 2. $5D$ drawing of the whole graph is
constructed by combining the $2D$ drawings, satisfying chosen optimisation criteria. Specific
algorithms are instantiations of the framework. These require solutions to optimisation
problems.

Our framework generalises some of existing methods. For example, PolyPlane methods
draw trees in 2. $5D[21]$ using a $2D$ plane for each subtree. Another method is to use 2. $5D$

to visualise a set of related networks in parallel planes [2, 4, 6, 26].
MultiPlane methods can be effective in reducing visual complexity and occlusion, and

easing navigation. For example, the drawing in Figure l(a) clearly shows the problem of
occlusion and a great deal of $3D$ clutter. It is very difficult to see the inside of the drawing
in order to see more details of the tree, say the center of the tree. However, the drawing
in Figure l(b), a tree drawn with the PolyPlane method [21], clearly shows the inside of
the tree structure, thus making it easier to identify the center of the tree. Further, while
rotating the drawing as in Figure 1(c), some of the planes can be displayed as lines; this
both reduce visual complexity and occlusion and allows the user to concentrate on their
plane of interest.

Figure 1: $(a)$ Example of occlusion: a tree with 483 nodes; $(b)$ a tree with 8613 nodes drawn
with PolyPlane method using 6 subplanes; $(c)$ navigating a 2. $5D$ drawing.

Based on the MultiPlane framework, we have developed a series of algorithms for var-
ious types of graphs including general graphs, directed graphs and clustered graphs, and
various types of network models such as scale-free networks, dynamic networks, temporal
networks, overlapping networks and multi-relational networks. Preliminary experimental
results suggest that the MultiPlane framework can be useful for visual analysis and insight
into large and complex networks arising in social network and biological network domains.
For details, see [2] for scale-free social networks and biological networks, [19, 20] for di-
rected (or hierarchical) graphs, [17] for clustered graphs, [13] for temporal email networks,
[8] for the visual comparison of network centralities, and [14, 15] for overlapping biological
networks. These methods are implemented in GEOMI, a visual analysis tool for large and
complex networks [1].

This paper is organized as follows: the framework is described in Section 2. Section 3
presents specific instances of the framework and experimental results including visualisation
of social networks and biological networks. Section 4 concludes.
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2 The MultiPlane Framework
In this section, we describe our new framework for drawing graphs in 2. $5D$ . In particular,
we use graph theoretic approaches and network analysis methods to reduce the scalability
and complexity of the large and complex network.

The framework uses planes. In general, the planes are bounded planar regions in $3D$ .
An outline of the framework, which will call the MultiPlane method is below:

MultiPlane Framework

1. Choose a partitioning of a graph $G$ into a set of subgraphs $\{G_{i} : 1\leq i\leq k\}$ .

2. For each $i,$ $1\leq i\leq k$ , draw $G_{i}$ in a plane $P_{i}$ using a $2D$ drawing algorithm.

3. Arrange each plane $P_{i}$ in $3D$ satisfying chosen criteria.

4. Connect inter-plane edges between the planes.

A simple example of a drawing drawn with the framework is illustrated in Figure 2.

Figure 2: A 2. $5D$ drawing drawn with the MultiPlane fmmework.

The framework is very flexible, as there are many steps at which an arbitrary choice
can be made. Furthermore, there are combinatorial optimisation problems involved in each
step. Thus, each MultiPlane algorithm should attempt to optimise some criteria chosen at
each step.

For example, Step 1 involves the well studied problem of finding a good partitioning of
a graph. In some cases, the partitioning is given by the application domain; for example,
the entities in a software system may be clustered into modules a priori. Otherwise, the
problem of finding a good partitioning can be a classical optimisation problem; for example,
finding minimum cuts or a balanced partitioning. In most cases, such problems are NP-
hard. However, fast heuristics and approximation algorithms are available [3, 12, 22]. Note
that the number of planes used should be small; otherwise, the visualisation loses the 2. $5D$

attitude.
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For Step 2, one can choose a preferred $2D$ graph drawing algorithm based on the ap-
plication domain [9, 23]. For example, intra-plane edge crossings can be minimised using
one of well established $2D$ graph drawing algorithms [9, 23]. However, sometimes modifica-
tions are necessary due to the newly introduced optimisation criteria chosen at Step 4 for
inter-plane edges.

Step 3 involves some new criteria for arranging planes; these can vary from one instance
of the framework to another. As design guidelines for MultiPlane framework, the following
general criteria apply:

$\bullet$ plane-plane crossing: no two planes cross each other.

$\bullet$ plane-edge crossing: no edge cross each plane more than once, and no edge cross more
than one plane.

$\bullet$ plane angular resolution: the angles between the planes should be large.

For example, we can define a new problem of plane-edge crossing minimisation, to min-
imise the number of inter-plane edges which cross more than one planes.

At Step 4, we need to solve a new problem of minimising the total inter-plane edge
length, which maintaining the crossing-free properties of the inter-plane edges.

Based on the MultiPlane framework, we have developed a series of algorithms for various
types of graphs including trees, planar graphs, general graphs, hierarchical graphs, directed
graphs and clustered graphs, and various types of network models such as small-world
networks, scale-free networks, dynamic networks, evolution networks, temporal networks,
overlapping networks and multi-relational networks. The time complexity of a MultiPlane
algorithm depends on the time complexity of the method chosen at each step. In practice,
we usually choose fast heuristics in each step for scalability issue.

Preliminary experimental results suggest that the MultiPlane framework can be useful
for visual analysis and insight into large and complex networks arising in social network and
biological network domains. For details, see [2] for scale-free social networks and biological
networks, [19, 20] for directed (or hierarchical) graphs, [17] for clustered graphs, [13] for
temporal email networks, [8] for the visual comparison of network centralities, and [14, 15]
for visualisation of overlapping biological networks. These methods are implemented in
GEOMI, a visual analysis tool for large and complex networks [1].

In the next section, we present specific instances of the framework together with exper-
imental results including visualisation of social networks and biological networks.

3 MultiPlane Algorithms and Experimental Results
In this section, we first present a MultiPlane algorithm for drawing general graphs in 2.5
dimensions, and then present experimental results produced based on the MultiPlane frame-
work. Let $G$ be a general undirected graph.

We first divide the graph $G$ into a set of $k\geq 2$ smaller subgraphs. More specffically, at
Step 1 of Framework MultiPlane, we can use k-way balanced partitioning with minimum
cut to divide the graph into a set of $k$ subgraphs. This is an NP-hard problem; however
there are many good heuristics and approximation algorithms available. See [3, 12, 22] for
details.

At Step 3 and Step 4, we have a new problem of arranging each plane in $3D$ to minimise
the number of plane-edge crossings and the total inter-plane edge length.
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To solve this problem effectively and efficiently, we need to consider the structure of the
partitioning. More specifically, we can define a supergraph defined by the relation between
the set of induced subgraphs from the partitioning. Suppose that we have a set of induced
subgraph $G_{1},$ $G_{2},$

$\ldots,$
$G_{k}$ where $G_{i}=(V_{i}, E_{i})$ . We can define a supergraph $G_{S}$ such that

each $G_{i}$ is a node $v_{i}$ in $G_{S}$ and if there is an edge between a node in $G_{i}$ and a node in $G_{j}$

then there is an edge between $v_{i}$ and $v_{j}$ in $G_{S}$ . Note that we can assign weights to each node
aiid edge in $G_{S}$ depending on the size of the subgraph and the number of edges between
the subgraphs.

We can design a series of algorithms based on the structure of $G_{S}$ : path, cycle, tree,
planar graph and general graph. Suppose that $G_{S}$ is a tree. We first draw $G_{S}$ using a
weighted $3D$ tree drawing algorithm to determine the arrangement of the planes. Then we
replace each node in the drawing with a $2D$ drawing of each $G_{i}$ drawn in a $2D$ plane. See
Figure 3 for an example [17]. The drawing has no plane-plane crossings and no plane-edge
crossings.

Figure 3: 2. $5D$ dmwing of a graph with hierarchical tree clustering structure.

Figure 4 shows a 2. $5D$ drawing of eight related metabolic pathways from KEGG database,
produced by the method for general clustered graphs [17]. The most important pathway is
emphasized as the top plane, while inter-plane edges reveal complex relationships between
related pathways. The drawing has no plane-plane crossings while minimising the total
inter-plane edge lengths and plane-edge crossings.

Figure 5(a) shows a 2. $5D$ drawing of a BFS tree of the School of IT, University of
Sydney webgraph, with 4485 nodes, using 12 planes. Figure 5(b) shows 2. $5D$ visualisation
of Erdos network of mathematician collaboration. We first compute a BFS tree rooted at
Erdos, and construct a 2. $5D$ drawing with 30 planes. One can easily identify relationships
between Erdos and people with Erdos number 1 and Erdos number 2. Both use a variation
of PolyPlane algorithms [21].

Figure 6 shows a 2. $5D$ drawing of a temporal email network [13]. It clearly shows a prop-
agation of email virus based on the time stamp drawn in each plane, enabling monitoring
and easy detection of email servers infected by computer virus.

Figure 7 shows a 2. $5D$ drawing of three overlapping biological networks: metabolic
pathways, protein protein interaction networks, and gene regulatory networks [15]. The
drawing enables integrated analysis and supports complex high level analysis by relating
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Figure 4: Visualisation of eight metabolic pathways in 2. $5D$ .

Figure 5: $(a)BFS$ tree of School of IT website with 4485 nodes dmwn with 12 planes; $(b)$

Erdos Number visualisation using 30 planes.
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Figure 6: 2. $5D$ drawing of temporal email networks.

three heterogeneous networks. It achieves both drawing aesthetics for each individual net-
work, and an optimization criteria for minimising the total inter-plane edge lengths used
for highlighting the overlapping between networks.

Figure 8 shows 2. $5D$ drawings of directed grap$Iis$ , arising in software engineering domain
(from the ROME graph drawing data set), produced by the 2. $5D$ hierarcfiical layout method
for directed graphs in [19, 20]. It uses two partitioning algorithms with different optimisation
criteria such as balanced min-cut and minimising the total inter-plane edge length.

4 Conclusion
A new flexible framework for drawing graphs in 2. $5D$ using planes is presented with appli-
cation to visual analysis of large and complex networks. Our current work involves theory
of 2. $5D$ graph drawing, inspired by the MultiPlane framework with various graph models,
combinatorial optimisation criteria and application domains.
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